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Mathematical models allow for predictions of behavi or under specific handling and environmental 
conditions, and are particularly useful in expensiv e studies or in studies where long term effects may  
be difficult to monitor. In mathematical modeling t here are two main types of models: descriptive 
models and mechanistic models; the first are relati onships between response and predictor which are 
not ruled by biological processes; the latter takes  into account the basic processes in plants by mean s 
of differential equations to account for the develo pment of plants. This requires a deeper knowledge o f 
the physiological development of plants. This work reviews mathematical modeling on tomato plant. 
The TOMGRO model is modular and has been widely stu died and calibrated under several climatic 
conditions which demonstrates that it is a robust m odel. As a future research the TOMGRO model is 
proposed to be adapted to other crops. 
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INTRODUCTION  
 
An important trend in greenhouse production involves 
mathematical modeling, which can provide a description 
of changes in plant growth caused by environmental 
conditions, such as temperature and light intensity 
(Caliskan et al., 2009), epidemic dynamics (Contreras-
Medina et al., 2009) and other factors. Mathematical 
modeling was initiated at the end of the 1960s as a result 
of the integration of plant physiological knowledge of 
internal processes with the development of computer 
systems (Bouman et al., 1996). A mathematical model for 
a particular crop consists of a set of mathematical 
expressions describing the changes in a state variable in 
response to physiological processes active on the plant 
(e.g. biomass changes resulting from photosynthesis and 
respiration). Crop mathematical modeling therefore 
represents a quantitative way to assess concurrently 
active processes in the plants. In this sense, crop 
mathematical modeling, as part of biotechnology, can 
help    to   eliminate   malnutrition   and   hunger   through  
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evaluation of improved crops without much effort or 
economical resources. Biotechnology can be applied to 
improve agriculture and food production and to support 
the human population in an environmentally sustainable 
manner (Tonukari and Omotor, 2010). The objective of 
this work was to review mathematical modeling for 
tomato plants. 
 
 
STRUCTURE OF A GROWTH MODEL 
 
 A growth and development crop model can be defined 
through a mathematical equation:  
 

                                         (1) 

 
The state vector (x) consists of n of crop variables, such 
as dry weight, number of fruits and foliar area. The input 
vector (u) deals mainly with the climatic conditions (air 
temperature, CO2 concentration, humidity and 
photosynthetically active radiation (PAR)). The vector (p) 
represents biological parameters or constants for the 
model, and (β) represents the vector of initial conditions 
of the state variables. As (f) is a vector of n  functions  the  
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model does not have a general analytical solution and 
must be solved by numerical methods or through 
computer simulations (López et al., 2005). 
 
 
MATHEMATICAL MODELING 
 
A mathematical model is an abstraction of reality that 
describes processes, the aim of which is the study and 
analysis of a system under varying conditions (Mason 
and Dzierzon, 2006). In order to create a successful 
mathematical model, the modeler must choose which 
mathematical principles and techniques to use. The 
solution also needs to be tested against experimental 
data (Crouch and Haines, 2004). Models sometimes 
simplify systems to reduce the datasets required to 
estimate parameters (Lentz, 1998; Lisson et al., 2005). 
Mathematical models allow for predictions of behavior 
under specific handling and environmental conditions, 
and are particularly useful in expensive studies or in 
studies where long term effects may be difficult to monitor 
(Fraisse et al., 2006). In this way, a mutual dependency 
between basic crop physiology research and model 
development can be demonstrated (Lisson et al., 2005). 

Plant development involves processes working within 
efficiencies of scale. The representation of these 
processes and related interactions in a model is a 
particular challenge. Ecophysiological orientation is 
needed to predict plant composition and function on the 
basis of physiological traits. The modeling of physio-
logical traits can help to improve yield and to facilitate 
decisions that optimize the use of available resources 
(Soltani et al., 2001). Crop growth models do exist for 
many horticultural crops, which are often distinguished 
between descriptive and mechanistic models (Pronk et 
al., 2003; Vázquez-Cruz et al., 2010). Descriptive models 
reflect little or none of the mechanisms causal to system 
behavior, whereas mechanistic models incorporate 
quantitative description of these mechanisms.  
 
 
Descriptive models 
 
Until 1960, agricultural research was almost completely 
reliant on experimental and empirical work combined with 
statistical analyses (Van Ittersum et al., 2003). Initially, 
function oriented models were designed to describe and 
analyze plant growth without an underlying model for 
physiological processes (Renton et al., 2005). Descriptive 
models use a relatively short computing time and 
normally contain few stated variables (Mirschel et al., 
2004). Although the predictive value of descriptive 
models can be high, important limitations exist. For 
example, they are unable to simulate plant adaptability 
and response to different conditions. Also, adding new 
input factors necessitates building a new model based on 
an   extended   data   set   (Renton  et  al.,  2005).  Unlike  

 
 
 
 
descriptive models, mechanistic models are ruled by 
biological principles and involve breaking the system 
down into components that are modeled separately. 
Generally, descriptive models only try to describe 
relationships between response and predictor variables 
as economically as possible for a particular data set. 
Essentially, descriptive models are accounts of 
observational data, most often associated with curve 
fitting and regression. They are not ruled by biological 
processes and often do not require detailed knowledge of 
respiration, photosynthesis or assimilation mechanisms in 
plants (Domijan et al., 2006). 
 
 
Mechanistic models 
 
Mechanistic models are used for testing hypotheses and 
synthesizing knowledge of complex systems based on 
physiological processes that respond to climatic 
conditions, such as photosynthesis, assimilation and 
respiration (Brainard and Bellinder, 2004; Thornley and 
Cannell, 2000). These models are increasingly being 
used to investigate the impacts of weather and climate 
variation on crop growth and production (Tao et al., 
2009). 

Photosynthetically active radiation (PAR) is the driving 
force for evapotranspiration and photosynthesis (Dutilleul 
et al., 2007; Sentelhas and Gillespie, 2008). In 
photosynthesis- based models, the interception of light by 
leaf area is used to simulate the production of 
photosynthates Carbon is allocated according to organ 
demands through carbon leaf assimilation and 
mobilization of carbon from reserves. Subsequently, 
photosynthates are used to ascertain respiration, 
conversion into structural dry matter (DM) and fresh 
weight, as estimated from the dry weight (Jordan-Meille 
and Pellerin, 2004). Partitioning of carbon into various 
compounds (that is, sugars, other fruit compounds and 
respired CO2) can also be taken into account. These 
processes are nearly always described in terms of a set 
of differential equations. 

Prediction of leaf area index is required to estimate 
interception of solar radiation and biomass production 
(Soltani et al., 2006). In field crops, there is often a linear 
relationship between cumulative intercepted PAR and 
accumulated biomass (Zhang et al., 2008). Insufficient 
nitrogen (N) levels reduce leaf area development, 
decrease mass accumulation and lead to early matura-
tion (Sinclair et al., 2003). Temperature can affect plant 
leaf area through its effects on the rate of leaf growth 
(Singels et al., 2005). Although respiration is one of the 
main energy sources in growing plants, it has been 
studied much less than photosynthesis (Kuretz et al., 
2003). Respiration has been modeled according to the 
concepts of growth and maintenance. Short-term 
observations generally show that respiration is highly 
sensitive  to  temperature  variations  and  that  CO2   may  



 
 
 
 
affect the growth coefficient (Challinor and Wheeler, 
2008). In simulation models, the growth coefficient is 
usually independent of environmental factors (Urban, 
2003; Bannayan et al., 2005). 

Mathematical models that could successfully predict 
product composition as a function of climatic variables 
would be useful tools in achieving more desirable 
sensorial characteristics in the final crop product (Heredia 
and Andres, 2008). 
 
 
Tomato growth models 
 
Tomato growth (TOMGRO) is a complex mechanistic 
model, initially, of 69 state variables that compute the 
development and production of tomato plants (Jones et 
al., 1991). The model has an input vector of climatic 
variables: air temperature, solar radiation (PAR) and CO2 
concentration. The output vector consists of seven main 
groups of state variables: number of leaves, number of 
new branches, number of fruits, dry weight of leaves, dry 
weight of new branches, dry weight of fruits and foliar 
area. The model uses a source-demand function to 
identify carbohydrates for the growth of different parts of 
the plant. 

The latest version of TOMGRO (v3.0) consists of 574 
state variables, simulating in great detail the development 
of fruit, with each fruit having specific positions on the 
clusters. The development of the fruit is modeled 
separately from the growth in biomass, which enables 
size to be handled as a variable (Kenig and Jones, 1997). 
Moreover, Jones et al. (1999) proposed a relatively 
simple model for tomato crops which behaves similarly to 
the more complex TOMGRO model, but with the 
advantage of having only five state variables: number of 
nodes on main stem, index leaf area, total plant weight, 
fruit weight and weight of ripe fruit (Ramírez-Arias, 2005). 
This simplified version was evaluated with data from 
several experiments, including data collected in a 
commercial greenhouse and the results showed that the 
model can accurately describe the growth and yield of 
tomatoes in different locations and timeframes. Some 
researchers have used the TOMGRO model or variants 
to implement a control strategy to optimize greenhouse 
climates. 

De Koning (1994) developed a model of 300 state 
variables to predict the distribution of dry matter with 
tomatoes grown in greenhouses. The number of growing 
tomatoes was estimated by predicting the initiation, 
abortion and harvesting of individuals. The demand for 
photoassimilates was based on potential growth rate. The 
dry matter distribution in the model was found to be 
proportional to potential growth rate. The model can 
reasonably predict the formation of fruit clusters, the rate 
of fruit growth, and the distribution of dry matter. The 
prediction of the number of fruits per cluster; however, 
was  not  found  to  be  acceptably accurate. Even so, this  
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model has been used as a basis for the development of 
simplified models that can be used in research on 
optimization and control of greenhouse climates (Tap, 
2000). 

Tomsim is another model developed for tomato with a 
modular structure, which predicts the growth and 
development of tomato. The production of dry matter is 
predicted by a sub-module based on the estimation of 
photosynthesis (Ramírez-Arias, 2005). The functions for 
the development of fruits were adapted from Koning 
(1994). 
 
 
Development, calibration and validation of 
greenhouse tomato models 
 
Dayan et al. (1993a, b) conducted a detailed analysis of 
the TOMGRO model using calibration and validation for 
climatic conditions in Israel, but did so without conducting 
a sensitivity analysis. They found that the model takes 
into account the most important phenomenas that occur 
inside a greenhouse and therefore can be used to study 
the effects of environmental conditions and management 
practices for fruit production. This model is both 
schematic and modular, meaning it can be easily adapted 
and that subroutines can be replaced or combined with a 
more comprehensive model. It can also be used in 
economic optimization studies. The TOMGRO model was 
modified to allow the modeling of growth and 
development of individual plant organs, allowing fairly 
accurate simulations of the number and weight of fruits 
per cluster. Adjustments were also made to more 
accurately describe leaf area expansion and to improve 
user interface, allowing specification of parameter values 
and initial conditions prior to simulation (Gary et al., 
1995). 

On the other hand, iterative procedures were applied to 
derive the parameters for the functional responses of 
various processes to temperature, radiation intensity and 
CO2 concentration. The model was subsequently 
validated on the basis of the results of completely 
independent experiments. It was shown that the model 
accounts for the major phenomena observed under 
greenhouse conditions and may be used therefore with 
confidence to examine the effects of environmental 
conditions and management practices on tomato fruit 
yield.  

Dimokas et al. (2009) performed calibration and 
validation studies for the adaptation of the TOMGRO 
model to a short term cropping technique and to 
conditions in Greece. They were able to model the 
current practice of topping tomato plants for short term 
cultivation with the TOMGRO model, modifying it 
accordingly and calibrating it with winter 2005 data. As 
compared to data from winter 2007, results showed that 
dry matter partitioning in the plant was not altered by 
topping,  but  the  duration  of  fruit  life   from   setting   to  
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maturity was shortened. Good agreement was observed 
between the measured and simulated plant development 
indicators, biomass and fruit production. Satisfactory 
agreement was also obtained for plant leaf area, normally 
a weak point of the TOMGRO model. Based on these 
results, they concluded that this adaptation of the model 
accurately simulated the development of short-term 
tomato crops grown in greenhouses and could therefore 
be used for decision support to help growers optimize 
greenhouse operations.  

Cooman et al. (2007) analyzed the variation of the 
TOMGRO model in response to solar radiation intensity, 
greenhouse air temperature and CO2 concentration. The 
differences in model output were apportioned to the 
sources of variation to obtain a sensitivity analysis. A 
similar degree of variability on the prediction of fruit dry 
weight was evidenced for the three climate variables, with 
solar radiation and air temperature being the most 
sensitive. Fruit dry weight increased with solar radiation 
and CO2 concentration, while an optimal range was 
detected for air temperature. Variance decomposition 
showed that within the climate variables, dry fruit weight 
was most sensitive to solar radiation, followed by air 
temperature and CO2 concentration. The development of 
vegetative plant parts was more sensitive to air tem-
perature than to solar radiation and CO2 concentration.  
 
 
FUTURE RESEARCH 
 
TOMGRO model which is a simplified model for potential 
growth of tomatoes takes into account environmental 
variables such as photosyntetically active solar radiation 
(PAR), air temperature and CO2 air concentration and 
also takes into consideration physiological process such 
as crop photosynthesis and respiration, which are 
inherent to any plant. For these reasons it seems 
possible to adapt the TOMGRO model to other crops. 
Hernández-Hernández (2009) adapted the five state 
variables TOMGRO model to the sweet pepper crop 
having good agreement with the measured variables. In 
general, the procedure was to find new parameters for 
the functions involved. 
 
 
CONCLUSIONS 
 
The TOMGRO model is both schematic and modular in 
form. This means it can be adapted easily, and most of its 
subroutines can be replaced easily by others as improved 
descriptions become available. It can also be combined 
with a more comprehensive model describing green-
house climate and appears robust for use in economic 
optimization of greenhouse climate conditions and 
management. It may also form the basis of decision 
support systems, aiming at recommendations for crop 
management. 
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