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The increasing rate of disease incidence resulting from devastating effects of plant pathogens, limits 
crop productivity globally, thus affecting food security. The current global population growth with many 
mouths to feed is dependent on vibrant agricultural productivity. The effects of globalization, climate 
change, evolution of pathogens and vectors to mention a few, have combined to increase spread of 
invasive plant pathogens. Consequently, early detection of pathogens, accurate diagnosis and 
assessment and surveillance are imperative to predicting disease outbreaks and ample time to develop 
and apply appropriate mitigation measures for crop protection and enhanced productivity. Diagnosis is 
the process to determine cause of disease, while detection deals with knowing pathogen. Both disease 
diagnosis and pathogen detection are central to protecting crops and natural plant systems, as well as 
crucial prelude to undertaking prevention and management measures. Visual assessments of disease 
in plants populations are unreliable and subjective, arising from human limitations. Failure in pathogen 
detection and disease diagnosis lead directly to inadequate disease control and reductions in crop 
production and quality. Geographic Information Systems (GIS) and Digital Imaging (DI) have been 
applied in plant pathology to improve speed and accuracy of disease assessment, diagnostics and 
pathogen detection. These new technologies have assisted in collection and analysis of field data in 
ways that were not possible before advent of computer and thus, minimize human errors. This paper 
presents a brief review on application of both emerging technologies in plant disease diagnosis and 
detection.  
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INTRODUCTION  
 
Plant disease remains a major threat to global 
agriculture, accounting for about 10% reduction in crop 
yield (Strange and Scott, 2005). Broadly speaking, 

disease is defined as anything that adversely affects 
plant health. A conservative definition usually includes a 
persistent irritation, resulting in plant damage.  In  present  
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context, it includes only those (living) things that replicate 
themselves and spread to adjacent plants to cause 
abnormalities. This includes such biological organisms as 
nematodes, fungi, bacteria, and viruses, which are 
sometimes referred to as pathogenic microorganisms. 
Their presence remains a challenge to plant health 
across the globe, especially resource-poor farmers in 
developing countries, whose limited resources are unable 
to deal with disease outbreaks (Mutka and Bart, 2015). 
Successful control of most plant diseases depends on 
early detection and accurate diagnosis. The terms 
diagnosis and detection were often used interchangeably. 
Diagnosis is the process of determining cause of a 
problem (disease) through careful examination; whereas 
detection is to find out pathogen responsible for disease 
(Kumar and Sreenivasulu, 2009). Diagnosis is as much 
an art as it is a science. The science deals with 
technology applied to detect pathogens; while art 
involves synthesis of information obtained from history 
case, symptoms and results of laboratory tests to 
determine pathogen that causes disease (Kumar et al., 
2009). Diagnosis can be a long or short process, 
depending on diagnostician‘s expertise and nature of 
problem. Once cause, is known an appropriate control 
strategy can be developed. Thus, inaccurate identification 
of disease and disease-causing agent, affect disease 
control measures and can lead to a waste of time and 
money and further plant losses. Therefore, proper 
disease diagnosis and early detection are vital in disease 
management to prevent the establishment and dispersal 
of pests and pathogens after introduction and to minimize 
subsequent impact (Cook and Madden, 2002; Myerson 
and Reaser, 2002).  
 
 
PLANT DISEASE DIAGNOSIS METHODS 
 
Visual assessment 
 
Traditionally, plant disease diagnosis normally relies on 
symptoms recognition through visual observation and 
rating based on these symptoms and signs. Symptoms 
are physical characteristics of disease expressed by plant 
and include wilt, galls, cankers, rots, necrosis, chlorosis, 
and general decline; while signs are physical evidence of 
pathogen causing disease. Signs can include fungal 
fruiting bodies such as mushrooms or pycnidia, mycelia, 
bacterial slime, presence of nematodes or insects, or 
insect holes presence. Literature is replete with different 
assessment methods in plant disease diagnosis, 
including Large (1966), James (1971) Cobb (1892), 
Horsfall and Barratt (1945), Chester (1950). In addition, 
Stover (1983), Gauhl et al. (1993) and Nwauzoma et al 
(2008) have given further insight on diagnosis of Sigatoka 
leaf spot diseases of banana and other leaf spot diseases 
using visual assessment. Disease diagnosis based on 
symptoms is unreliable because different pathogens may  
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cause similar symptoms as was Banana streak virus 
(BSV) case and Cucumber mosaic virus (CMV), resulting 
in considerable confusion (Wardlaw, 1961; Stover, 1972) 
and this is common with most foliar pathogens. 
Moreover, visual assessment depends on subjectivity of 
raters and often lack accuracy, reproducibility and 
traceability. Barbedo (2013), citing Bock et al. (2010) 
listed some shortcomings associated with visual 
assessment of disease symptoms: 
 
1. Raters may get tired and lose concentration, thus 
decreasing their accuracy. 
2. There can be substantial inter- and intra-rater 
variability (subjectivity). 
3. There is a need to develop standard area diagrams to 
aide assessment. 
4. Training may need to repeat to maintain quality. Raters 
are expensive. 
5. Visual rating can be destructive if samples collected in 
field for assessment was later taken to laboratory. 
6. Raters are prone to various illusions (for example, 
lesion number/size and area infected). 
 
 
Microscopy 
 
Usually, a plant pathology diagnostician relies on a 
combination of gross symptomatology and microscopic 
images to make a disease diagnosis. Yield losses from 
foliar diseases can reach as high as 58% when infections 
in field occur early and environmental conditions favor 
disease spread and development (Berry et al., 2000). 
Early detection and diagnosis of disease with timely 
applications of foliar fungicides are necessary to avoid 
devastating losses. Rapid diagnosis of plant pathogens is 
also critical because some fungicides cannot be applied 
after a certain stage in plant's maturity. In addition, some 
genetic leaf abnormalities like lesion mimics, leaf 
speckling, heat stripe, genetic stripe, among others, can 
be similar to symptoms produced by plant pathogens. 
Other reasons why it is important to assess disease early 
and accurately are to predict yield loss, monitor and 
forecast epidemics, to assess crop germplasm for 
disease resistance, and for understanding fundamental 
biological processes including coevolution (Bock et al., 
2010). An improper diagnosis of a genetic abnormality or 
a plant pathogen can be very costly (Berry et al., 2000). 
Microscopy involves isolation and growing a pure culture 
of the pathogen in a suitable medium and observing for 
diagnostic features under the microscope. 
 
 
Serology 
 
As alternatives and over years, serological and 
immunological methods like Enzyme-linked 
Immunosorbent Assay (EIA), Immunoelectron microscopy 
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(IEM) and Polymerase Chain Reaction (PCR) have been 
in use at one time or other. In the last three decades, 
specifically PCR, enhance technique process is widely 
applied in plant disease diagnosis and phenotyping 
(Nutter et al., 2006; Jackson et al., 2007; Hilber and 
Scheupp, 1992). PCR offers several advantages 
compared to traditional methods of diagnosis: Organisms 
need not be cultured prior to their detection by PCR; the 
technique possesses exquisite sensitivity, with theoretical 
potential to detect a single target molecule in a complex 
mixture without using radioactive probes; and it is rapid 
and versatile. Hence, the use of PCR to diagnose plant 
diseases and other applications in plant pathology has 
remained unsurpassed.  
 
 
Modern technologies 
 
As impressive as these methods may be, there is a direct 
contact between diagnostician and plant or plant parts 
and this may introduce assessment errors. The use of 
Geographic Information Systems (GIS) and Digital 
Imaging (DI) in plant diseases diagnosis falls under broad 
definition of ―remote sensing‖ (Bock et al., 2010), which 
implies obtaining information about an object without 
having direct physical contact with it (de Jong et al., 
2006). Remote sensing of disease is a passive process, 
rather than an active method that would generate 
imaging radiation. Both GIS and DI provide systems and 
methods that allow diagnostic technician to diagnose 
diseases and other plant anomalies without physically 
handling plant tissue, which limits errors. 

The technologically advanced application using remote 
sensing techniques to detect and measure plant diseases 
started with aerial photography (Neblette, 1927; 
Taubenhaus et al., 1929) and has been applied to 
various pathos systems (Colwell, 1956; Brenchley, 1964; 
Wallen and Jackson, 1971; Jackson et al., 1978; 
Lillesand et al., 1981; Gerten and Weise, 1984; Edwards 
et al., 1985; Lee, 1989). It had been applied as an 
accurate and reliable method to detect plant diseases, 
facilitated by highly sophisticated and innovative methods 
of data analysis that lead to new insights derived from 
sensor data for complex plant–pathogen systems 
(Mahlein, 2016). Indeed, automated image analysis-
based phenotyping provides a powerful alternative to 
visual assessments. Indeed, automation eventually 
provides a calibrated image analysis, thereby eliminating 
any subjectivity of raters and ensuring reproducibility 
(Rousseau et al., 2013). 
 
 

Geographical information systems 
 
GIS is a computer system that assembles and stores, 
manipulates, and displays geographically referenced 
information. In addition, it analysis and provides an 
electronic  representation  of  information   called   spatial  

 
 
 
 
data from different sources including natural earth and 
other manufactured features. GIS references these real-
world spatial data elements to a coordinate system, 
which later can be separated into different layers. GIS 
system stores each category of information in a separate 
"layer" for ease of maintenance, analysis, and 
visualization. For example, layers can represent terrain 
characteristics, census data, demographics information, 
environmental and ecological data, roads, land use, river 
drainage and flood plains, and rare wildlife habitats. The 
power of GIS lies in its ability to analyze relationship 
between features and their associated data (Samson, 
1995). Different applications create and use different 
layers. GIS can also store attribute data, which is 
descriptive information of map features.  

This attribute information placed in a database 
separate from graphics data, but linked to them. GIS 
allows examination of both spatial and attribute data at 
same time. In addition, GIS allows users to search 
attribute data and relate it to spatial data. Thus, it 
combines geographic and other types of data to generate 
maps and reports, enabling users to collect, manage, and 
interpret location-based information in a planned and 
systematic way. The sources of such data include 
satellite imagery, aerial photos, maps, ground surveys, 
and global positioning systems (GPS).  

 
 
Application in plant pathology 

 
GIS can be applied in different disciplines including 
veterinary activities, where it is used to understand 
dynamics and spreading pattern of a disease and quick 
response in the case of disease emergency (Jebara, 
2007). In area of plant disease and pest management, 
Thomas et al. (2002) applied GPS technology to study 
outbreak of six insect pests and 12 diseases and risk 
map in various crops from six different states in United 
States of America and make management decisions. GIS 
is also important in spatial analysis of plant disease 
epidemics (Nutter et al., 1995; Orum et al., 1997); 
mapping distribution of diseases or specific genotypes of 
plant pathogens, plant disease epidemiology and 
management (Nelson et al., 1999). Jaime-Garcia et al. 
(2001) analyzed genetic structure of Phytophthora 
infestans that causes late blight disease in a mixed 
potato and tomato production area in Mexico.  

Jaime-Garcia and Cotty (2006), studied spatial 
relationship texture, crop rotation and Aspergillus sp. 
community structure in soil. Sanyong and Amarakul 
(2001), applied GIS to study distribution of three tree 
species in different parts of Thailand and lastly, Azahar et 
al. (2011) and Taliei et al. (2013) compared effect of plant 
density on distribution pattern of diseases in Malaysia. 
Therefore, importance of GIS in plant disease detection 
and diagnosis has wide application in precision 
agriculture. 
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Figure 1. A flow chart showing GIS application in plant pathology (Priya, 2015). SVM, Support Vector Machine; k-
NN, Known Nearest Neighbor; NN, Neural Network.  

 
 
 
Digital imaging (DI) 
 
Digital imaging is an art as well as science. It is the art of 
making images (pictures) like photographs and printed 
text or artwork using digital camera or image machine. 
Digital cameras are easy to handle and are a simple 
source of RGB (red, green, and blue) digital images for 
disease detection, identification and quantification. RGB 
colour images with red, green and blue channels are 
used to detect biotic stress in plants (Bock et al., 2010). 
Each image comprises of a certain amount of pixels, 
which are then mapped unto a grid and stored in a 
sequence by a computer. In all classes of digital imaging, 
information are converted by image sensors into digital 
signals processed by computer and outputted as a visible 
light image.  

The steps in digital imaging are: Image acquisition, 
image pre-processing, features extraction and neural 
network based classification (Priya, 2015). A flow 
diagram for identification of plant diseases using image 
processing techniques is as follows (Figure 1). 
 
 
Techniques of digital imaging 
 
Digital imaging processing techniques include detection, 
quantification, and classifying plant diseases. 
Quantification estimates severity of a particular disease, 
either estimating leaves area affected by disease or how 
deep infection rooted is on the affected plant or part, 
which can be estimated by means of  colour  and  texture  

features.  
Most quantification algorithms include a segmentation 

step to isolate symptoms, from which features can be 
extracted and properly processed in order to provide an 
estimate of disease severity. It is worth noting that 
problem of determining disease severity by analysing and 
measuring its symptoms is difficult even if performed 
manually by one or more specialists, which have to pair 
diagnosis guidelines with symptoms as accurately as 
possible.  

As a result, manual measurements will always contain 
some degree of subjectivity, which in turn means that 
references used to validate automatic methods are 
always correct (Barbedo, 2013). It is important to take 
this to consideration when assessing the performance of 
those methods. Classification is an extension of detection 
methods, but instead of detecting only one specific 
disease amidst different conditions and symptoms, it 
identifies and labels whichever pathogen is affecting 
plant. Classification method includes a segmentation 
step, which is normally followed by extraction of a 
number of features that will feed some kind of classifier 
(Barbedo, 2013).  
 
 
Types of digital imaging sensors 
 
Multi and hyperspectral reflectance sensors: These 
sensors are grouped on the basis of spectral resolution of 
their spatial scale and type of detector (whether the 
sensors  are  imaging   or   non-imaging   systems).   This  
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notwithstanding, they assess spectral information of 
objects at broadband wavelengths. Multispectral imaging 
sensors provide data in the R, G and B wavebands, 
including infrared band. Modern hyperspectral sensors 
increase the complexity of data measured up to 350 to 
2,500 nm (Steiner et al., 2008). While non-imaging 
sensors average the spectral information over a certain 
area, hyperspectral data can detect huge matrices along 
spatial x- and y- axes.  The strong, spatial resolution 
influence pathogen interactions (Mahlein et al., 2012b, 
West et al., 2003). Sensors with approximately 1 m 
spatial resolutions are usually unsuitable to detect single 
symptoms on diseased plant parts.  
 
Thermal sensors: Infrared thermography (IRT) 
correlates plant temperature with plant water status, 
micro climate in crop stands and changes in transpiration 
due to early infections by plant pathogens (Jones et al., 
2002; Lenthe et al., 2007; Oerke et al., 2006).  Emitted 
infrared radiation in the thermal infrared region from 8 to 
12 um can be detected by thermographic and infrared 
cameras and is illustrated in false colour images, where 
each image pixel contains the temperature value of the 
measured object. In pathosystem for apple and Venturia 
ineaqualis, thermography visualized the spatial 
colonization of apple tissues by the pathogen above 
visible symptoms, where hyphae and conidia were only 
seen through microscopy (Oerke et al., 2011). Gomez 
(2014) monitored the infection and spread of 
Peronospora sparsa on different Rosa cultivars using 
IRT. IRT effectively analysis the heterogeneity between 
and within leaves, mean temperature difference within 
single leaves, plants and crop stands which are important 
indicators for appearance of disease symptoms. 
 
Fluorescence imaging sensors: Chlorophyll 
fluorescence imaging assesses photosynthetic electron 
transfer and differences in plants photosynthetic activities 
(Bauriegel et al., 2014). It has been used to study 
differences in the photosynthetic activity due to biotic and 
abiotic stresses leaves (Bürling et al., 2011, Scholes and 
Rolfe, 2009).  

A combination of fluorescence imaging with image 
analysis techniques is useful for discrimination and 
quantification of fungal infections (Konanz et al., 2014). 
Research has been directed at extracting fluorescence 
parameters from sun-induced reflectance in the field, 
which would have potential for plant disease assessment 
at canopy or field level (Rossini et al., 2014). A variety of 
sensors methods have been used for different plant 
pathogen systems (Table 1) (Mahlein, 2016). 
 
 
Digital imaging in plant pathology application 
 
A pioneering study to demonstrate capacity of remote 
sensing  and  image  analysis   in   plant   pathology   was  

 
 
 
 
Nilsson (1980, 1995). Previous reviews on use of images 
from digital cameras in agriculture and other plant 
sciences include Nutter (1990), Price and Osborne 
(1990) and Nilsson (1995). Specifically, Bock (2010) gave 
a comprehensive review on use of image analysis to 
assess disease severity. As an important tool in plant 
pathology, Digital Imaging is used to assess disease 
severity (Bock 2010), diagnose plant diseases and other 
disorders, to quantify host resistance and plant disease 
classiffication (Newton, 1989; Holmes et al., 2000; 
Mahlein, 2016). Detection can be partial or real time; in 
partial classification, a disease was identified amongst 
other several possible maladies. In partial classification, 
putative regions are classified as being disease result of 
interest or not, instead of applying a complete 
classification into any possible disease. Abdullah et al. 
(2007) applied this method, using neural networks to 
discriminate between Corynespora pathogen from other 
pathogens that affect rubber tree (Hevea brasiliensis) 
leaves. Real time monitoring continuously monitors crops 
and raises an alarm as soon as disease of interest was 
detected in any plants. For instance, Sena et al. (2003) 
discriminated between maize plants affected by fall 
armyworm from healthy ones.  

Mahlein (2016) reported that image-based diagnosis of 
plant diseases has been refined for many crop systems 
over many years. The studies further showed that image-
based phenotyping produced more accurate and precise 
results than visual assessments of disease in different 
pathogens. The use of automated, high-throughput digital 
imaging in plant disease phenotyping allows for collection 
of data at numerous time points, produce images from 
which quantitative phenotype data can be derived and 
improve reproducibility of experiments. Many different 
phenotype measurements can be obtained from image 
data.  

For studies on plant growth and development, these 
measurements may be plant height or biomass. For 
studies of plant disease or other stresses, percent leaf 
area covered with symptoms or changes in 
photosynthetic responses can be derived from images. 
Tucker and Chakraborty (1997) used image analysis to 
count lesion number and measure severity of leaf blight 
(Alternaria helianthi) of sunflower (Helianthus annuus) 
and oat leaf rust (Puccinia coronate f.sp. avenae) on oats 
(Avena sativa). Newton (1989), used image analysis to 
measure sporulation area of powdery mildew (Erisyphe 
graminis) on barley leaves of various cultivars. Although 
this parameter showed significant positive correlation with 
most components of partial resistance, but image 
analysis was unable to discern colony size component 
reduced which could be performed through visual rating. 
However, Todd and Kommendahl (1994) found image 
analysis more discerning than raters at differentiating 
germplasm reaction of corn to Fusarium spp. causing 
stalk rot, and for differentiating among Fusarium spp., 
although no actual values were used in the  study.  Image 
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Table 1. Plant pathosystems and diseases assessed by different optical sensors. 
  

Type of sensor 
Crop 
species 

Name of disease and pathogen References 

 

 

Red, Green, Blue 
(RGB) Colour 
Imaging 

Cotton 
Bacterial angular (Xanthomonas campestris), 
Ascochyta blight (Asscochyta gossypii) 

Camargo and Smith (2009) 

Sugar beet 

Cercospora leaf spot (Cercospora beticola); Leaf spot 
(Ramularia beticola), Phoma leaf spot (Phomabetae), 
bacterial leaf spot (Pseudomonas syringae, pv. 
Aptata) 

Neumann et al. (2014) 

Grape fruit Citrus canker (Xanthomonas axonopodis) Bock et al. (2008) 

Tobacco Anthracnose (Colletotrichum destructivum) Wijekoon et al. (2008) 

Apple Apple Scab (Venturia inaequalis) Wijekoon et al. (2008) 

Canadian 
goldenrod 

Rust (Coleosporium asterum) Wijekoon et al. (2008) 

    

Thermal sensors 

Sugar beet Cercospora leaf spot (C. beticola) Chaerle et al. (2004) 

Cucumber 
Downy mildew (Pseudoperonospora cubensis); 
Powdery mildew (Podosphaera xanthii) 

Berdugo et al. (2014); Oerke et al. 
(2011) 

Apple Apple Scab (V. inaequalis) Okerke et al. (2011) 

Rose Downy mildew (Peronospora sparsa) Gomez (2014) 
    

Flourescence 
imaging 

Wheat 
Leaf rust (Puccinia triticina); Powdery 
mildew(Blumeria gramineas f.sp. tritici) 

Burling et al. (2011) 

Sugar beet Cercospora leaf spot (C. beticola) 
Chaerle et al. (2004), Konanz et al. 
(2014) 

Bean 
Common bacterial blight (Xanthomonas fuscans sub. 
sp.fuscans) 

Rousseau et al. (2013) 

Lettuce Downy mildew (Bremia lactucae) 
Buriegel et al. (2014), Brabandt et al. 
(2014) 

    

Spectral sensors 

Barley 
Net blotch (Pyrenophora teres), Brown rust (Puccinia 
hordei), Powdery mildew (Blumeria graminis hordei) 

Kuska et al. (2015), Wahabzada et al. 
(2015a) 

Wheat 
Head blight (Fusarium graminearum); Yellow rust 
(Pucinia striiformis f.sp. tritici) 

Bauriegel et al. (2014), Bravo et al. 
(2003), Huang et al. (2007), Moshou et 
al. (2004) 

Sugar beet 

Cercospora leaf spot (C. beticola), sugar beet rust (U. 
betae), Powdery mildew (Erysiphe betae), Root rot 
(Rhizoctonia solani), Rhizotonia (Beet necrotic yellow 
vein virus) 

Bergstrasser et al. (2015), Hillnhutter 
et al. (2011), Mahlein et al. (2010 2012 
2013), Rumpf et al. (2010), Steddom 
et al. (2003 2005) 

Tomato Late blight (Phytophthora infestans) Wang et al. (2008) 

Apple Apple scab (V. inaequalis) Delalieux et al.(2007) 

Tulip  Tulip breaking virus (TBV) Polder et al. (2014) 

Sugarcane Orange rust (Puccinia kuehnii) Apan et al. (2004) 
 

Source: Mahlein (2016). 

 
 
 
analysis was as good as, and complimentary to visual 
assessment comparing resistance of potatoes to late 
blight based on internal images of symptoms in tuber 
(Niemira et al., 1999). 

Studies with a variety of pathogens show that image-
based diagnosis produces a more accurate and precise 
results than can be obtained with visual assessments of 
disease and allows for exploration of more dimensions of 
disease phenotypes. Stewart and McDonald (2014) used 
automated image  analysis  of  infected  wheat  leaves  to 

analyse disease symptoms of septoria wheat blotch 
caused by Zymoseptoria tritici. This fungus is 
characterised by chlorosis, necrotic lesions and fruiting 
bodies (pycnidia). Typical visual disease assessment 
relied on estimates of percentage leaf area covered by 
pycnidia lesions. Pycnidia are small and accurate 
estimates of pycnidia cover are difficult to make 
especially when they are numerous. Image analysis 
made it possible to quantify pycnidial size and density 
along  with  other  traits,  which   would   not   have   been 
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possible with visual assessment alone. Olmstead et al. 
(2001) found that image analysis of powdery mildew 
(Podosphaera clandestine) on sweet cherry was inferior 
to rater estimates when compared to actual values. 
Despite these studies, most recent works suggest that 
image analysis most often provides a more accurate and 
precise, but generally more time-consuming way of rating 
disease. Image analysis has now been widely tested and 
explored as a tool in plant pathology, and for applicability 
in sectors within discipline having various research goals. 
Thus, image-based phenotyping can greatly enhance 
data available for characterizing plant disease (Mukta 
and Bart, 2015). Again, Bock et al. (2008) examined 
citrus canker disease symptoms on grape fruit leaves 
caused by bacterium Xanthomonas axonopodis Pv. citri 
using digital imaging. Studies on bacterial blight caused 
by Xanthononas spp. on two different genotypes of bean 
found that image analysis enhanced ability to distinguish 
between genotypes with different levels of disease 
severity (Xie et al., 2012). Furthermore, all 
measurements of disease were reproducible between 
different disease susceptibility levels on different 
genotypes. Hence, image-based phenotyping offers 
potential to improve reproducibility and sensitivity of 
disease quantification. 

Some advanced system with potential applications in 
field are imaging platform for detection of tulip breaking 
virus (TBV) infected tulip bulbs (Polder et al., 2014) or a 
prototype of a hyperspectral imaging platform for yellow 
rust detection (Puccinia striiformis) in wheat (Bravo et al., 
2003). Polder et al. (2014) developed a robot with 
multispectral cameras and online machine vision analysis 
pipeline. This work was the result of limited technical 
experts for rating tulip bulbs. They were able to adjust 
and optimize this system to attain a level of accuracy 
equivalent to that obtained by experienced rating experts. 
Bravo et al. (2003) detected and classified yellow rust 
diseased patches in wheat fields with a success rate of 
96% under ambient light conditions using hyperspectral 
imaging. The result was very encouraging, leading to 
development of cost effective optical sensor platform for 
early and accurate detection of plant diseases in different 
crops. Considering plant disease occurrence depends on 
specific environmental factors and often exhibit a 
heterogeneous distribution in fields, optical techniques 
such as RGB (Red, Green, Blue) imaging, multi and 
hyperspectral sensors, thermography or chlorophyll 
fluorescence that use digital imaging are useful in 
identifying primary diseases foci and areas differing in 
disease severity in the fields (Franke and Menz, 2007). 
 
 

Conclusion 
 
This article has reviewed useful additions on GIS and DI 
applications in plant disease diagnosis, detection and 
measurement of disease severity. Although previously 
known   methods   such   as   PCR,   ELISA,   and   visual  

 
 
 
 
assessment are already available and widely used for 
plant disease detection, but not without obvious setbacks. 
On other hand, GIS and digital imaging are particularly 
useful in diagnosing and identifying recurring patterns of 
plant disease as well as other problems such as insect 
and weed infestations without direct contact with plant or 
plant parts. A highly interdisciplinary approach with a 
close link to practical agriculture could lead to powerful 
solutions for diagnosis and disease detection with high 
accuracy and sensitivity that will improve plant health 
management. For best results successful applications of 
GIS and digital imaging in plant disease diagnosis 
requires teamwork, involving an experienced field 
diagnostician and an experienced computer user with 
some background in statistics. Incorporating traditional 
epidemiological statistical techniques into a GIS interface 
allows researchers to gain a greater insight into the 
spatial aspect of disease spread. In addition, availability 
of software capable of producing attractive maps 
provides an opportunity to communicate in visually form, 
plant disease situation to a wider audience.  
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