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The increasing rate of disease incidence resulting from devastating effects of plant pathogens, limits
crop productivity globally, thus affecting food security. The current global population growth with many
mouths to feed is dependent on vibrant agricultural productivity. The effects of globalization, climate
change, evolution of pathogens and vectors to mention a few, have combined to increase spread of
invasive plant pathogens. Consequently, early detection of pathogens, accurate diagnosis and
assessment and surveillance are imperative to predicting disease outbreaks and ample time to develop
and apply appropriate mitigation measures for crop protection and enhanced productivity. Diagnosis is
the process to determine cause of disease, while detection deals with knowing pathogen. Both disease
diagnosis and pathogen detection are central to protecting crops and natural plant systems, as well as
crucial prelude to undertaking prevention and management measures. Visual assessments of disease
in plants populations are unreliable and subjective, arising from human limitations. Failure in pathogen
detection and disease diagnosis lead directly to inadequate disease control and reductions in crop
production and quality. Geographic Information Systems (GIS) and Digital Imaging (DI) have been
applied in plant pathology to improve speed and accuracy of disease assessment, diagnostics and
pathogen detection. These new technologies have assisted in collection and analysis of field data in
ways that were not possible before advent of computer and thus, minimize human errors. This paper
presents a brief review on application of both emerging technologies in plant disease diagnosis and
detection.
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INTRODUCTION

Plant disease remains a major threat to global disease is defined as anything that adversely affects
agriculture, accounting for about 10% reduction in crop plant health. A conservative definition usually includes a
yield (Strange and Scott, 2005). Broadly speaking, persistent irritation, resulting in plant damage. In present
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context, it includes only those (living) things that replicate
themselves and spread to adjacent plants to cause
abnormalities. This includes such biological organisms as
nematodes, fungi, bacteria, and viruses, which are
sometimes referred to as pathogenic microorganisms.
Their presence remains a challenge to plant health
across the globe, especially resource-poor farmers in
developing countries, whose limited resources are unable
to deal with disease outbreaks (Mutka and Bart, 2015).
Successful control of most plant diseases depends on
early detection and accurate diagnosis. The terms
diagnosis and detection were often used interchangeably.
Diagnosis is the process of determining cause of a
problem (disease) through careful examination; whereas
detection is to find out pathogen responsible for disease
(Kumar and Sreenivasulu, 2009). Diagnosis is as much
an art as it is a science. The science deals with
technology applied to detect pathogens; while art
involves synthesis of information obtained from history
case, symptoms and results of laboratory tests to
determine pathogen that causes disease (Kumar et al.,
2009). Diagnosis can be a long or short process,
depending on diagnostician’s expertise and nature of
problem. Once cause, is known an appropriate control
strategy can be developed. Thus, inaccurate identification
of disease and disease-causing agent, affect disease
control measures and can lead to a waste of time and
money and further plant losses. Therefore, proper
disease diagnosis and early detection are vital in disease
management to prevent the establishment and dispersal
of pests and pathogens after introduction and to minimize
subsequent impact (Cook and Madden, 2002; Myerson
and Reaser, 2002).

PLANT DISEASE DIAGNOSIS METHODS
Visual assessment

Traditionally, plant disease diagnosis normally relies on
symptoms recognition through visual observation and
rating based on these symptoms and signs. Symptoms
are physical characteristics of disease expressed by plant
and include wilt, galls, cankers, rots, necrosis, chlorosis,
and general decline; while signs are physical evidence of
pathogen causing disease. Signs can include fungal
fruiting bodies such as mushrooms or pycnidia, mycelia,
bacterial slime, presence of nematodes or insects, or
insect holes presence. Literature is replete with different
assessment methods in plant disease diagnosis,
including Large (1966), James (1971) Cobb (1892),
Horsfall and Barratt (1945), Chester (1950). In addition,
Stover (1983), Gauhl et al. (1993) and Nwauzoma et al
(2008) have given further insight on diagnosis of Sigatoka
leaf spot diseases of banana and other leaf spot diseases
using visual assessment. Disease diagnosis based on
symptoms is unreliable because different pathogens may
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cause similar symptoms as was Banana streak virus
(BSV) case and Cucumber mosaic virus (CMV), resulting
in considerable confusion (Wardlaw, 1961; Stover, 1972)
and this is common with most foliar pathogens.
Moreover, visual assessment depends on subjectivity of
raters and often lack accuracy, reproducibility and
traceability. Barbedo (2013), citing Bock et al. (2010)
listed some shortcomings associated with visual
assessment of disease symptoms:

1. Raters may get tired and lose concentration, thus
decreasing their accuracy.

2. There can be substantial inter- and intra-rater
variability (subjectivity).

3. There is a need to develop standard area diagrams to
aide assessment.

4. Training may need to repeat to maintain quality. Raters
are expensive.

5. Visual rating can be destructive if samples collected in
field for assessment was later taken to laboratory.

6. Raters are prone to various illusions (for example,
lesion number/size and area infected).

Microscopy

Usually, a plant pathology diagnostician relies on a
combination of gross symptomatology and microscopic
images to make a disease diagnosis. Yield losses from
foliar diseases can reach as high as 58% when infections
in field occur early and environmental conditions favor
disease spread and development (Berry et al., 2000).
Early detection and diagnosis of disease with timely
applications of foliar fungicides are necessary to avoid
devastating losses. Rapid diagnosis of plant pathogens is
also critical because some fungicides cannot be applied
after a certain stage in plant's maturity. In addition, some
genetic leaf abnormalities like lesion mimics, leaf
speckling, heat stripe, genetic stripe, among others, can
be similar to symptoms produced by plant pathogens.
Other reasons why it is important to assess disease early
and accurately are to predict yield loss, monitor and
forecast epidemics, to assess crop germplasm for
disease resistance, and for understanding fundamental
biological processes including coevolution (Bock et al.,
2010). An improper diagnosis of a genetic abnormality or
a plant pathogen can be very costly (Berry et al., 2000).
Microscopy involves isolation and growing a pure culture
of the pathogen in a suitable medium and observing for
diagnostic features under the microscope.

Serology
As alternatives and over years, serological and
immunological methods like Enzyme-linked

Immunosorbent Assay (EIA), Immunoelectron microscopy
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(IEM) and Polymerase Chain Reaction (PCR) have been
in use at one time or other. In the last three decades,
specifically PCR, enhance technique process is widely
applied in plant disease diagnosis and phenotyping
(Nutter et al., 2006; Jackson et al., 2007; Hilber and
Scheupp, 1992). PCR offers several advantages
compared to traditional methods of diagnosis: Organisms
need not be cultured prior to their detection by PCR; the
technique possesses exquisite sensitivity, with theoretical
potential to detect a single target molecule in a complex
mixture without using radioactive probes; and it is rapid
and versatile. Hence, the use of PCR to diagnose plant
diseases and other applications in plant pathology has
remained unsurpassed.

Modern technologies

As impressive as these methods may be, there is a direct
contact between diagnostician and plant or plant parts
and this may introduce assessment errors. The use of
Geographic Information Systems (GIS) and Digital
Imaging (DI) in plant diseases diagnosis falls under broad
definition of “remote sensing” (Bock et al., 2010), which
implies obtaining information about an object without
having direct physical contact with it (de Jong et al.,
2006). Remote sensing of disease is a passive process,
rather than an active method that would generate
imaging radiation. Both GIS and DI provide systems and
methods that allow diagnostic technician to diagnose
diseases and other plant anomalies without physically
handling plant tissue, which limits errors.

The technologically advanced application using remote
sensing techniques to detect and measure plant diseases
started with aerial photography (Neblette, 1927;
Taubenhaus et al.,, 1929) and has been applied to
various pathos systems (Colwell, 1956; Brenchley, 1964;
Wallen and Jackson, 1971; Jackson et al., 1978;
Lillesand et al., 1981; Gerten and Weise, 1984; Edwards
et al., 1985; Lee, 1989). It had been applied as an
accurate and reliable method to detect plant diseases,
facilitated by highly sophisticated and innovative methods
of data analysis that lead to new insights derived from
sensor data for complex plant—-pathogen systems
(Mahlein, 2016). Indeed, automated image analysis-
based phenotyping provides a powerful alternative to
visual assessments. Indeed, automation eventually
provides a calibrated image analysis, thereby eliminating
any subjectivity of raters and ensuring reproducibility
(Rousseau et al., 2013).

Geographical information systems

GIS is a computer system that assembles and stores,
manipulates, and displays geographically referenced
information. In addition, it analysis and provides an
electronic representation of information called spatial

data from different sources including natural earth and
other manufactured features. GIS references these real-
world spatial data elements to a coordinate system,
which later can be separated into different layers. GIS
system stores each category of information in a separate
"layer" for ease of maintenance, analysis, and
visualization. For example, layers can represent terrain
characteristics, census data, demographics information,
environmental and ecological data, roads, land use, river
drainage and flood plains, and rare wildlife habitats. The
power of GIS lies in its ability to analyze relationship
between features and their associated data (Samson,
1995). Different applications create and use different
layers. GIS can also store attribute data, which is
descriptive information of map features.

This attribute information placed in a database
separate from graphics data, but linked to them. GIS
allows examination of both spatial and attribute data at
same time. In addition, GIS allows users to search
attribute data and relate it to spatial data. Thus, it
combines geographic and other types of data to generate
maps and reports, enabling users to collect, manage, and
interpret location-based information in a planned and
systematic way. The sources of such data include
satellite imagery, aerial photos, maps, ground surveys,
and global positioning systems (GPS).

Application in plant pathology

GIS can be applied in different disciplines including
veterinary activities, where it is used to understand
dynamics and spreading pattern of a disease and quick
response in the case of disease emergency (Jebara,
2007). In area of plant disease and pest management,
Thomas et al. (2002) applied GPS technology to study
outbreak of six insect pests and 12 diseases and risk
map in various crops from six different states in United
States of America and make management decisions. GIS
is also important in spatial analysis of plant disease
epidemics (Nutter et al., 1995; Orum et al., 1997);
mapping distribution of diseases or specific genotypes of
plant pathogens, plant disease epidemiology and
management (Nelson et al., 1999). Jaime-Garcia et al.
(2001) analyzed genetic structure of Phytophthora
infestans that causes late blight disease in a mixed
potato and tomato production area in Mexico.

Jaime-Garcia and Cotty (2006), studied spatial
relationship texture, crop rotation and Aspergillus sp.
community structure in soil. Sanyong and Amarakul
(2001), applied GIS to study distribution of three tree
species in different parts of Thailand and lastly, Azahar et
al. (2011) and Taliei et al. (2013) compared effect of plant
density on distribution pattern of diseases in Malaysia.
Therefore, importance of GIS in plant disease detection
and diagnosis has wide application in precision
agriculture.
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Figure 1. A flow chart showing GIS application in plant pathology (Priya, 2015). SVM, Support Vector Machine; k-

NN, Known Nearest Neighbor; NN, Neural Network.

Digital imaging (DI)

Digital imaging is an art as well as science. It is the art of
making images (pictures) like photographs and printed
text or artwork using digital camera or image machine.
Digital cameras are easy to handle and are a simple
source of RGB (red, green, and blue) digital images for
disease detection, identification and quantification. RGB
colour images with red, green and blue channels are
used to detect biotic stress in plants (Bock et al., 2010).
Each image comprises of a certain amount of pixels,
which are then mapped unto a grid and stored in a
sequence by a computer. In all classes of digital imaging,
information are converted by image sensors into digital
signals processed by computer and outputted as a visible
light image.

The steps in digital imaging are: Image acquisition,
image pre-processing, features extraction and neural
network based classification (Priya, 2015). A flow
diagram for identification of plant diseases using image
processing techniques is as follows (Figure 1).

Techniques of digital imaging

Digital imaging processing techniques include detection,
guantification, and classifying plant diseases.
Quantification estimates severity of a particular disease,
either estimating leaves area affected by disease or how
deep infection rooted is on the affected plant or part,
which can be estimated by means of colour and texture

features.

Most quantification algorithms include a segmentation
step to isolate symptoms, from which features can be
extracted and properly processed in order to provide an
estimate of disease severity. It is worth noting that
problem of determining disease severity by analysing and
measuring its symptoms is difficult even if performed
manually by one or more specialists, which have to pair
diagnosis guidelines with symptoms as accurately as
possible.

As a result, manual measurements will always contain
some degree of subjectivity, which in turn means that
references used to validate automatic methods are
always correct (Barbedo, 2013). It is important to take
this to consideration when assessing the performance of
those methods. Classification is an extension of detection
methods, but instead of detecting only one specific
disease amidst different conditions and symptoms, it
identifies and labels whichever pathogen is affecting
plant. Classification method includes a segmentation
step, which is normally followed by extraction of a
number of features that will feed some kind of classifier
(Barbedo, 2013).

Types of digital imaging sensors

Multi and hyperspectral reflectance sensors: These
sensors are grouped on the basis of spectral resolution of
their spatial scale and type of detector (whether the
sensors are imaging or non-imaging systems). This
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notwithstanding, they assess spectral information of
objects at broadband wavelengths. Multispectral imaging
sensors provide data in the R, G and B wavebands,
including infrared band. Modern hyperspectral sensors
increase the complexity of data measured up to 350 to
2,500 nm (Steiner et al., 2008). While non-imaging
sensors average the spectral information over a certain
area, hyperspectral data can detect huge matrices along
spatial x- and y- axes. The strong, spatial resolution
influence pathogen interactions (Mahlein et al., 2012b,
West et al.,, 2003). Sensors with approximately 1 m
spatial resolutions are usually unsuitable to detect single
symptoms on diseased plant parts.

Thermal sensors: Infrared thermography (IRT)
correlates plant temperature with plant water status,
micro climate in crop stands and changes in transpiration
due to early infections by plant pathogens (Jones et al.,
2002; Lenthe et al., 2007; Oerke et al., 2006). Emitted
infrared radiation in the thermal infrared region from 8 to
12 um can be detected by thermographic and infrared
cameras and is illustrated in false colour images, where
each image pixel contains the temperature value of the
measured object. In pathosystem for apple and Venturia
ineaqualis, thermography visualized the spatial
colonization of apple tissues by the pathogen above
visible symptoms, where hyphae and conidia were only
seen through microscopy (Oerke et al., 2011). Gomez
(2014) monitored the infection and spread of
Peronospora sparsa on different Rosa cultivars using
IRT. IRT effectively analysis the heterogeneity between
and within leaves, mean temperature difference within
single leaves, plants and crop stands which are important
indicators for appearance of disease symptoms.

Fluorescence imaging Sensors: Chlorophyli
fluorescence imaging assesses photosynthetic electron
transfer and differences in plants photosynthetic activities
(Bauriegel et al., 2014). It has been used to study
differences in the photosynthetic activity due to biotic and
abiotic stresses leaves (Burling et al., 2011, Scholes and
Rolfe, 2009).

A combination of fluorescence imaging with image
analysis techniques is useful for discrimination and
guantification of fungal infections (Konanz et al., 2014).
Research has been directed at extracting fluorescence
parameters from sun-induced reflectance in the field,
which would have potential for plant disease assessment
at canopy or field level (Rossini et al., 2014). A variety of
sensors methods have been used for different plant
pathogen systems (Table 1) (Mahlein, 2016).

Digital imaging in plant pathology application

A pioneering study to demonstrate capacity of remote
sensing and image analysis in plant pathology was

Nilsson (1980, 1995). Previous reviews on use of images
from digital cameras in agriculture and other plant
sciences include Nutter (1990), Price and Osborne
(1990) and Nilsson (1995). Specifically, Bock (2010) gave
a comprehensive review on use of image analysis to
assess disease severity. As an important tool in plant
pathology, Digital Imaging is used to assess disease
severity (Bock 2010), diagnose plant diseases and other
disorders, to quantify host resistance and plant disease
classiffication (Newton, 1989; Holmes et al.,, 2000;
Mabhlein, 2016). Detection can be partial or real time; in
partial classification, a disease was identified amongst
other several possible maladies. In partial classification,
putative regions are classified as being disease result of
interest or not, instead of applying a complete
classification into any possible disease. Abdullah et al.
(2007) applied this method, using neural networks to
discriminate between Corynespora pathogen from other
pathogens that affect rubber tree (Hevea brasiliensis)
leaves. Real time monitoring continuously monitors crops
and raises an alarm as soon as disease of interest was
detected in any plants. For instance, Sena et al. (2003)
discriminated between maize plants affected by fall
armyworm from healthy ones.

Mabhlein (2016) reported that image-based diagnosis of
plant diseases has been refined for many crop systems
over many years. The studies further showed that image-
based phenotyping produced more accurate and precise
results than visual assessments of disease in different
pathogens. The use of automated, high-throughput digital
imaging in plant disease phenotyping allows for collection
of data at numerous time points, produce images from
which quantitative phenotype data can be derived and
improve reproducibility of experiments. Many different
phenotype measurements can be obtained from image
data.

For studies on plant growth and development, these
measurements may be plant height or biomass. For
studies of plant disease or other stresses, percent leaf
area covered with symptoms or changes in
photosynthetic responses can be derived from images.
Tucker and Chakraborty (1997) used image analysis to
count lesion number and measure severity of leaf blight
(Alternaria helianthi) of sunflower (Helianthus annuus)
and oat leaf rust (Puccinia coronate f.sp. avenae) on oats
(Avena sativa). Newton (1989), used image analysis to
measure sporulation area of powdery mildew (Erisyphe
graminis) on barley leaves of various cultivars. Although
this parameter showed significant positive correlation with
most components of partial resistance, but image
analysis was unable to discern colony size component
reduced which could be performed through visual rating.
However, Todd and Kommendahl (1994) found image
analysis more discerning than raters at differentiating
germplasm reaction of corn to Fusarium spp. causing
stalk rot, and for differentiating among Fusarium spp.,
although no actual values were used in the study. Image
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Type of sensor Crop. Name of disease and pathogen References
species
Bacterial angular (Xanthomonas campestris), .
Cotton Ascochyta blight (Asscochyta gossypii) Camargo and Smith (2009)
Cercospora leaf spot (Cercospora beticola); Leaf spot
(Ramularia beticola), Phoma leaf spot (Phomabetae),
Sugar beet bacterial leaf spot (Pseudomonas syringae, pv. Neumann et al. (2014)
Aptat
Red, Green, Blue . Paa) .
(RGB) Colour Grape fruit Citrus canker (Xanthomonas axonopodis) Bock et al. (2008)
Imaging Tobacco Anthracnose (Colletotrichum destructivum) Wijekoon et al. (2008)
Apple Apple Scab (Venturia inaequalis) Wijekoon et al. (2008)
Canadian . -
goldenrod Rust (Coleosporium asterum) Wijekoon et al. (2008)
Sugar beet Cercospora leaf spot (C. beticola) Chaerle et al. (2004)
Cucumber Downy mildew (Pseudoperonospora cubensis); Berdugo et al. (2014); Oerke et al.
Thermal sensors Powdery mildew (Podosphaera xanthii) (2011)
Apple Apple Scab (V. inaequalis) Okerke et al. (2011)
Rose Downy mildew (Peronospora sparsa) Gomez (2014)
Leaf rust (Puccinia triticina); Powdery .
Wheat mildew(Blumeria gramineas f.sp. tritici) Burling etal. (2011)
. Chaerle et al. (2004), Konanz et al.
Sugar beet Cercospora leaf spot (C. beticola
Flourescence Hg P pot ( ) (2014)
imagi i i
Imaging Bean Common bacterial blight (Xanthomonas fuscans sub. Rousseau et al. (2013)
sp.fuscans)
Lettuce Downy mildew (Bremia lactucae) Buriegel et al. (2014), Brabandt et al.
(2014)
Barle Net blotch (Pyrenophora teres), Brown rust (Puccinia Kuska et al. (2015), Wahabzada et al.
y hordei), Powdery mildew (Blumeria graminis hordei) (2015a)
. . . ) Bauriegel et al. (2014), Bravo et al.
Wheat Heaq _bllgh} (ngarlum _grz_amlnearum), Yellow rust (2003), Huang et al. (2007), Moshou et
(Pucinia striiformis f.sp. tritici)
al. (2004)
Cercospora leaf spot (C. beticola), sugar beet rust (U. Bergstrasser et al. (2015), Hillnhutter
Spectral sensors Sugar beet betae), Powdery mildew (Erysiphe betae), Root rot et al. (2011), Mahlein et al. (2010 2012
(Rhizoctonia solani), Rhizotonia (Beet necrotic yellow 2013), Rumpf et al. (2010), Steddom
vein virus) et al. (2003 2005)
Tomato Late blight (Phytophthora infestans) Wang et al. (2008)
Apple Apple scab (V. inaequalis) Delalieux et al.(2007)
Tulip Tulip breaking virus (TBV) Polder et al. (2014)
Sugarcane Orange rust (Puccinia kuehnii) Apan et al. (2004)

Source: Mahlein (2016).

analysis was as good as, and complimentary to visual
assessment comparing resistance of potatoes to late
blight based on internal images of symptoms in tuber
(Niemira et al., 1999).

Studies with a variety of pathogens show that image-
based diagnosis produces a more accurate and precise
results than can be obtained with visual assessments of
disease and allows for exploration of more dimensions of
disease phenotypes. Stewart and McDonald (2014) used
automated image analysis of infected wheat leaves to

analyse disease symptoms of septoria wheat blotch
caused by Zymoseptoria tritici. This fungus is
characterised by chlorosis, necrotic lesions and fruiting
bodies (pycnidia). Typical visual disease assessment
relied on estimates of percentage leaf area covered by
pycnidia lesions. Pycnidia are small and accurate
estimates of pycnidia cover are difficult to make
especially when they are numerous. Image analysis
made it possible to quantify pycnidial size and density
along with other traits, which would not have been
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possible with visual assessment alone. Olmstead et al.
(2001) found that image analysis of powdery mildew
(Podosphaera clandestine) on sweet cherry was inferior
to rater estimates when compared to actual values.
Despite these studies, most recent works suggest that
image analysis most often provides a more accurate and
precise, but generally more time-consuming way of rating
disease. Image analysis has now been widely tested and
explored as a tool in plant pathology, and for applicability
in sectors within discipline having various research goals.
Thus, image-based phenotyping can greatly enhance
data available for characterizing plant disease (Mukta
and Bart, 2015). Again, Bock et al. (2008) examined
citrus canker disease symptoms on grape fruit leaves
caused by bacterium Xanthomonas axonopodis Pv. citri
using digital imaging. Studies on bacterial blight caused
by Xanthononas spp. on two different genotypes of bean
found that image analysis enhanced ability to distinguish
between genotypes with different levels of disease
severity (Xie et al, 2012). Furthermore, all
measurements of disease were reproducible between
different disease susceptibility levels on different
genotypes. Hence, image-based phenotyping offers
potential to improve reproducibility and sensitivity of
disease quantification.

Some advanced system with potential applications in
field are imaging platform for detection of tulip breaking
virus (TBV) infected tulip bulbs (Polder et al., 2014) or a
prototype of a hyperspectral imaging platform for yellow
rust detection (Puccinia striiformis) in wheat (Bravo et al.,
2003). Polder et al. (2014) developed a robot with
multispectral cameras and online machine vision analysis
pipeline. This work was the result of limited technical
experts for rating tulip bulbs. They were able to adjust
and optimize this system to attain a level of accuracy
equivalent to that obtained by experienced rating experts.
Bravo et al. (2003) detected and classified yellow rust
diseased patches in wheat fields with a success rate of
96% under ambient light conditions using hyperspectral
imaging. The result was very encouraging, leading to
development of cost effective optical sensor platform for
early and accurate detection of plant diseases in different
crops. Considering plant disease occurrence depends on
specific environmental factors and often exhibit a
heterogeneous distribution in fields, optical techniques
such as RGB (Red, Green, Blue) imaging, multi and
hyperspectral sensors, thermography or chlorophyll
fluorescence that use digital imaging are useful in
identifying primary diseases foci and areas differing in
disease severity in the fields (Franke and Menz, 2007).

Conclusion

This article has reviewed useful additions on GIS and DI
applications in plant disease diagnosis, detection and
measurement of disease severity. Although previously
known methods such as PCR, ELISA, and visual

assessment are already available and widely used for
plant disease detection, but not without obvious setbacks.
On other hand, GIS and digital imaging are particularly
useful in diagnosing and identifying recurring patterns of
plant disease as well as other problems such as insect
and weed infestations without direct contact with plant or
plant parts. A highly interdisciplinary approach with a
close link to practical agriculture could lead to powerful
solutions for diagnosis and disease detection with high
accuracy and sensitivity that will improve plant health
management. For best results successful applications of
GIS and digital imaging in plant disease diagnosis
requires teamwork, involving an experienced field
diagnostician and an experienced computer user with
some background in statistics. Incorporating traditional
epidemiological statistical techniques into a GIS interface
allows researchers to gain a greater insight into the
spatial aspect of disease spread. In addition, availability
of software capable of producing attractive maps
provides an opportunity to communicate in visually form,
plant disease situation to a wider audience.

Conflict of Interests

The authors have not declared any conflict of interests.

REFERENCES

Abdullah NE, Rahim AA, Hashim H, Kamal MM (2007). Classification of
rubber tree leaf diseases using multilayer perceptron neural network.
In: 5" student conference on research and development. IEEE,
Selangor pp. 1-6.

Apan A, Held A, Phinn S, Markley J (2004). Detecting sugarcane
‘orange rust’ disease using EO-1 Hyperion hyperspectral imagery.
Int. J. Remote Sens. 25:489-498.

Azahar TM, Mustapha JC, Mazliham S, Boursier P (2011). Temporal
analysis of basal stem rot disease in oil palm plantations. An analysis
on peat soil. Int. J. Eng. Technol. 11(3):96-101.

Barbedo JGA (2013) Digital image processing techniques for detecting,
quantifying and classifying plant diseases. SpringerPlus 2:660.

Bauriegel E, Braband H, Garber U, Herppoach WB (2014). Chlorophyll
fluorescence imaging to facilitate breeding of Bremia lactucae-
resistant lettuce cultivars. Comput Electron Agric. 105:74-82.

Berdugo C, Zito R, Paulus S, Mahlein AK (2014). Fusion of sensor data
for the detection and differentiation of plant diseases in cucumber.
Plant Pathol. 63:1344-1356.

Bergstrasser S, Fanourakis D, Schmittgen S., Cendrero-Mateo MP,
Jansen M, Scharr H, Rascher U (2015). HyperART non-invasive
quantification of leaf traits using hyperspectral absorption-reflectance-
transmittance imaging. Plant Methods 11:1.

Berry JA, Dolezal WE, Sayers AC (2000). Remote imaging system for
plant diagnosis. United States of America, Patent Number: US
6014451A.

Bock CH, Poole GH, Parker PE, Cook AZ, Gottwald TR (2008). Visual
rating and the use of image analysis for assessing different
symptoms of citrus canker on grapefruit leaves. Plant Dis. 92:530-
541.

Bock CH, Poole GH, Parket PE, Gottwald TR (2010). Plant disease
severity estimated visually by digital photography and image analysis
and by hyperspectral imaging. Crit. Rev. Plant Sci. 29(2):59-107.

Brabandt H, Bauriegel E, G"arber U, Herppich WB (2014). ®PSII and
NPQ to evaluate Bremia lactucae-infection in susceptible and
resistant lettuce cultivars. Sci. Hortic. (Amsterdam) 180:123-129.

Bravo C, Moshou D, West J, McCartney A, Ramon H (2003). Early



disease detection in wheat fields using spectral reflectance. Biosyst.
Engine. 84:137-145.

Brenchley GH (1964). Aerial photography for the study of potato late
blight epidemics. World Rev. Pest Cont. 3:68-84.

Burling K, Hunsche M, Noga G (2011). Use of blue-green and
chlorophyll fluorescence measurements for differentiation between
nitrogen deficiency and pathogen infection in wheat. J. Plant Physiol,
168:1641-1648.

Camargo A, Smith JS (2009). Image pattern classification for the
identification of disease causing agents in plants. Comput. Electron
Agric. 66:121-125.

Chaerle L, Hagenbeek D, DeBruyne E, Valcke R, Van Der Straten D
(2004). Thermal and chlorophyll fluorescence imaging distinguish
plant pathogen interactions at an early stage. Plant Cell Physiol.
45:887-896.

Chester KS (1950). Plant disease losses: their appraisal and
interpretation. Plant Dis. Rep. Supplement 190-198 (S193):190-362.
Cobb NA (1892). Contribution to an economic knowledge of the

Australian rusts (Uredinae). Agric. Gazt. (NSW) 3:60.

Colwell RN (1956). Determining the prevalence of certain cereal crop
diseases by means of aerial photography. Hilgardia 26:223-286.

Cook RJ, Madden LV (2002). Crop biosecurity and countering
agricultural  bioterrorism: Responses of the  American
phyopathological Society. APS White paper. Apsnet Feature Story.
http://www.apsent.org/online.

Cotty PJ, Probst C, Jaime-Garcia R (2006). Etiology and management
of aflatoxin contamination. In Leslie, J.F., Bandyopadhyay, R., and
Visconti, A. (eds) Mycotoxins: detection methods, management,
public health and agricultural trade. Wallingford: CABI Publ. pp. 287—
299.

de Jong SM, Van de Meer FD (2006). Remote Sensing Image Analysis:
Including the Spatial Domain. Book series on Remote Sensing Digital
Image Processing Vol.5. Kluwer Academic Publishers, Dordrecht.
ISBN: 1-4020-2559-9, 359 p.

Delalieux S, van Aardt J, Keulemans W, Coppin P (2007). Detection
ofbiotic stress (Venturia inaequalis) in apple trees using hyperspectral
data: non-parametric statistical approaches and physiological
implications. Eur. J. Agron. 27:130-143.

Edwards GJ, Balzquez CH, Miller J (1985). Preliminary experiments
with remote sensing to detect citrus canker. Proc. Fla. State. Hortic.
Soc. 98:16-18.

Franke J, Menz G (2007). Multi-temporal wheat disease detection by
multispectral remote sensing. Précis Agric. 8:161-172.

Gauhl F, Pasberg-Gauhl C, Vuylsteke D, Ortiz R (1993). Multolocational
evaluation of Black Sigatoka resistance in banana and plantain. ITA
research guide, 47. Int. Inst. Trop. Agric. (IITA), Ibadan, Nigeria.
59pp.

Gerten DM, Weise MV (1984). Video image analysis of lodging and
yield loss in winter wheat relative to foot rot. Phytopathology 74:872.
Gomez S (2014). Infection and spread of Peronospora sparsa on Rosa
sp (Berk). A microscopic and a thermographic approach.

Dissertation, University of Bonn, Germany.

Hilber UW, Scheupp H (1992). Accurate and rapid measurement of
lengths of fungal germ tubes by image analysis. Can. J. Plant Pathol.
14:185-186.

Hillnhutter C, Mahlein AK, Sikora RA, Oerke EC (2011). Remote
sensing to detect plant stress induced by Heterodera schachtii and
Rhizoctonia solani in sugar beet fields. Field Crops Res. 122:70-77.

Holmes GJ, Brown EA, Ruhl G (2000). What's a picture worth? The use
of modern communications in diagnosing plant diseases. Plant Dis.
84:1256-1265.

Horsfall JG, Barrat RW (1945). An improved grading system for
measuring plant disease. Phytopathology 35:655.

Huang W, Lamb DW, Niu Z, Zhang Y, Liu L, Wang J (2007).
Identification of yellow rust in wheat using in-situ spectral reflectance
measurements and air borne hyperspectral imaging. Précis Agric.
8:187-197.

Jackson EW, Obert DE, Menz M, Hu G, Avant JB, Chong J, Bonman
JM (2007). Characterization and mapping oat crown rust resistance
using three assessment methods. Phytopathology 97:1063-1070.

Jackson HR, Wallen VR, Downer JF (1978). Analysis and electronic
area measurement of complex aerial photographic images. J. App.

Nwauzoma 4179

Photo. Eng. 4:101-106.

Jaime-Garcia R, Orum TV, Felix-Gastelum R, Trinidad-Correa R,
Vanetten AD, Nelson MR (2001). Spartial analysis of Phytophthora
infestans genotypes and late blight severity on tomato and potato in
the Delfuerte valley, using geostatistics and geographic information
systems. Phytopathology 91:1156-1165.

Jaime-Garcia R, Cotty PJ (2006). Spatial relationships of soil texture
and crop rotation to Aspergillus flavus community structure in South
Texas. Phytopathology 96:599-607.

James WC (1971). An illustrated series of assessment keys for plant
diseases, their preparation and usage. Can. Plant Dis. Surv. 51:39-
65.

Jebara KB (2007). The role of Geographic Information System (GIS) in
the control and prevention of animal diseases. OIE (World
Organisation for Animal Health) Conf. Paris, France. pp. 175-183.

Jones HG, Stoll M, Santoa T, De-Sousa C, Chaues MM, Grant OM
(2002). Use of infrared thermography for monitoring stomatal closure
in the field: Application to grapevine. J. Exp. Bot. 53:2249-2260.

Kumar PL, Sreenivasulu P (2009). Diagnosis of virus diseases. In:
Kumar PL (ed.) Methods for the Diagnosis of Plant Virus Diseases-
Laboratory Manual International Institute of Tropical Agriculture
(IITA), Ibadan, Nigeria pp. 7-11.

Kumar PL, Sreenivasulu P, Waliyar F (2009). ELISA and RT-PCR
methods for the detection of plant viruses. In: Kumar PL (ed.)
Methods for the Diagnosis of Plant Virus Diseases- Laboratory
Manual International Institute of Tropical Agriculture (IITA), Ibadan,
Nigeria pp. 19-26.

Kuska M, Wahabzada M, Leucker M, Dehne HW, Kersting K, Oerke
EC, Steiner U, Mahlein AK ( 2015). Hyperspectral phenotyping on
microscopic scale — towards automated characterization of plant-
pathogen interactions. Plant Methods 11:28.

Large EC (1966). Measuring plant disease. Ann. Rev. Phytopath. 4:9-
26.

Lee YJ (1989). Aerial photography for the detection of soil-borne
disease. Can. J. Plant Pathol. 11:173-176.

Lilesand TM, Meisner DM, French DW, Johnsson JL (1981).
Evaluation of digital photographic enhancement for dutch elm
disease detection. Photogramm. Eng. Remote Sens. 48:1581-1592.

Mahlein AK (2016). Plant disease detection by imaging sensors-parallel
and specific demands for precision agriculture and plant phenotyping.
Plant Dis. 100(2):241-251.

Mahlein AK, Rumpf T, Welke P, Dehne HW, Pl'umer L, Steiner U,
Oerke EC (2013). Development of spectral vegetation indices for
detecting and identifying plant diseases. Remote Sens. Environ.
128:21-30.

Mahlein AK, Steiner U, Dehne HW, Oerke EC (2010). Spectral
signatures of sugar beet leaves for the detection and differentiation of
diseases. Precis. Agric. 11:413-431.

Mahlein AK, Steiner U, Hillnhitter C, Dehne HW, Oerke EC (2012b).
Hyperspectral imaging for small scale analysis of symptoms caused
by different sugar belt disease. Plant Methods 8(3):1746-4811.

Moshou D, Bravo C,West J, Wahlen S, McCartney A, Ramon H (2004).
Automatic detection of ‘yellow rust’ in wheat using reflectance
measurements and neural networks. Comput. Electron. Agric.
44:173-188.

Mutka AM, Bart RS (2015). Image-based phenotyping of plant disease
symptoms. Front. Plant Sci. 5(1):734.

Myerson LA, Reaser JK (2002). Biosecurity: Moving toward a
comprehensive approach. Bioscience 52:593-600.

Neblette CB (1927). Aerial photography for the study of plant disease.
Photo-Era Magazine 58:346.

Nelson MR, Orum TV, Jaime-Garcia R, Nadeem A (1999). Applications
of Geographic information systems and geostatistics in plant disease
epidemiology and management. Plant Dis. 83:308-319.

Neumann M, Hallau L, Klat B, Kerstong K, Bauckhage C (2014).
Erosion band features for cell phone image based plant disease
classification. Proceeding of the 22™ international Conference on
Pattern recognition (ICRR). Stockholm: Sweden.

Newton AC (1989). Measuring the sterol content of barley leaves
infected with powdery mildew as a means of assessing partial
resistance to Erysiphe graminis f.sp. hordei. Plant Pathol. 38:534-
540.



4180 Afr. J. Agric. Res.

Niemira BA, Kirk WW, Stein JM (1999). Screening for late blight
susceptibility in potato tubers by digital analysis of cut tuber surfaces.
Plant Dis. 83:469-473.

Nilsson HE (1980). Remote sensing and image processing for disease.
Prot. Ecol. 2:271-274.

Nilsson HE (1995). Remote sensing and image analysis in plant
pathology. Ann. Rev. Phytopathol.15:489-527.

Nutter Jr FW, Esker PD, Coelho-Netto RA (2006). Disease assessment
concepts in plant pathology. Euro. J. Plant Pathol. 115:95-103.

Nutter Jr FW, Wegulo SN, Martinson CA (1995). Use of geographic
information sysems to generate disease prevalence, incidence and
severity maps for seed corn production. Phytopathology 85:1173.

Nutter Jr FW (1990). Remote sensing and image analysis for crop loss
assessment. In: Crop Loss Assessment in Rice. International Rice
Research Institute, Manila, The Philippines pp. 93-105.

Nwauzoma AB, Uma S, Mustaffa MM, Durai P (2008). Response of
banana hybrids to Sigatoka leaf spot disease under tropical
conditions in Southern India. Acta Agron. Niger. 8(1):33-42.

Oerke EC, Frohling P, Steiner U (2011). Thermographic assessment of
scab disease on apple leaves. Précis Agric. 12:699-715.

Oerke EC, Steiner U, Dehne HW, Lindenthal M (2006). Thermal
imaging of cucumber leaves affected by downy mildew and
environmental conditions. J. Exp. Bot. 57:2121-2132.

Olmstead JW, Lang GA, Grove GG (2001). Assessment of severity of
powdery mildew infection of sweet cherry leaves by digital image
analysis. HortScience 36:107-111.

Orum TV, Bigelow DM, Nelson MR, Howell DR, Cotty PJ (1997). Spatial
and temporal patterns of Aspergillus flavus strain composition and
propagule density in Yuma County. Ariz. Soils Plant Dis. 81:911-916.

Polder G, van der Heijden GWAM, van Doorn J, Baltissen TAHMC
(2014). Automatic detection of tulip breaking virus (TBV) in tulip fields
using machine vision. Biosyst. Eng. 117:35-42.

Price TV, Osborne CF (1990). Computer imaging and its application to
some problems in agriculture and plant science. Crit. Rev. Plant Sci.
9:235-266.

Priya S (2015). Identification of Plant Disease Using Image Processing
Techniques. Int. J. Res. Med. Appl. Sci. (IJRMAS ISSN: 2454-3667)
1:5.

Rossini M, Alonso L, Cogliati S, Damm A. Guante L, Julietta T, Meroni
M, Morene J, Panigada C, Pinto F, Rascher U, Schickling A,
Schuttemeyer D, Zemek F, Colomo R (2014). Measuring sun-induced
chlorophyll fluorescence: An evaluation and synthesis of existing field
data. Int. Workshop Remote Sens. Veg. Fluoresc. 22:1-5.

Rousseau C, Belin E, Bove E, Rousseau D, Fabre F, Berruyer R,
Guillaumes J, Manceau C, Jacques MA, Boureau T (2013). High
throughput quantitative phenotyping of plant resistance using
chlorophyll fluorescence image analysis. Plant Method 9:17.

Rumpf T, Mahlein AK, Steiner U, Oerke EC, Dehne HW, Pl'umer L
(2010). Early detection and classification of plant diseases with
Support Vector Machines based on hyperspectral reflectance.
Comput. Electron. Agric. 74:91-99.

Samson SA (1995). Determining the need for a geographic information
system (GIS). J. Ext. 33(5):105-109.

Sanyong S, Amarakul V (2001). GIS application for plant disease
distribution on Jack fruit, Baele fruit and Ma Kiang trees in lower
Northern part of Thailand. Paper presented at the 22" Asian
Conference on Remote Sensing, 5-9 November 2001, Singapore.

Scholes JD, Rolfe SA (2009). Chlorophyll fluorescence imaging as tool
for understanding the impact of fungal disease on plant performance:
A phenomics perspective. Funct. Plant Biol. 36:880-892.

Sena Jr DG, Pinto FAC, Queiroz DM, Viana PA (2003) Fall armyworm
damaged maize plant identification using digital images. Biosyst.
Eng. 85(4):449-454.

Steddom K, Bredehoeft MW, Khan M, Rush CM (2005). Comparison of
visual and multispectral radiometric disease evaluations of
Cercospora leaf spot of sugar beet. Plant Dis. 89:153-158.

Steddom K, Heidel G, Jones D, Rush CM (2003). Remote detection of
rhizomania in sugar beet. Phytopatholgy. 93:720-726.

Steiner U, Burling K, Oerke EC (2008). Sensorik f'ur einen
pr-azisierten Pflanzenschutz. Gesunde Pflanz. 60:131-141.

Stewart EL, McDonlad BA (2014). Measuring quantitative virulence in
the wheat pathogen Zymoseptoria tritici using high-throughput
automated image analysis. Phytopathology 104:985-992.

Stover RH (1972). Banana, Plantain and Abaca diseases.
Commonwhealth Mycological Institute, England, 316 p.

Stover RH (1983). Effet du cercospora noir sur les plantains en América
central. Fruits 38:326-329.

Strange RN, Scott PR (2005). Plant disease: a threat to global food
security. Ann. Rev. Phytopathol. 43:83-116.

Taliei F, Safaie N, Aghajani MA (2013). Spatial distribution of
Macrophomina phaseolina and Soybean Charcoal Rot incidence
using geographic information system (A case study in Northern Iran).
J. Agric. Sci. Technol. 15:1523-1536.

Taubenhaus JJ, Ezekiel WN, Neblette CB (1929). Airplane photography
in the study of cotton root rot. Phytopathology 19:1025-1029.

Thomas CS, Skinner PW, Fox AD, Greer CA, Gubler WD (2002).
Utilization of GIS/GPS-Based Information Technology in Commercial
Crop Decision Making in California, Washington, Oregon, Idaho, and
Arizona. J. Nematol. 34(3):200-206.

Todd LA, Kommedahl T (1994). Image analysis and visual estimates for
evaluating disease reactions of corn to Fusarium stalk rot. Plant Dis.
78:876-878.

Tucker CC, Chakraborty S (1997). Quantitative assessment of lesion
characteristics and disease severity using digital image processing. J.
Phytopathol. 145:273-278.

Wahabzada M, Mahlein AK, Bauckhage C, Steiner M, Oerke EC,
Kersting K (2015a). Metro maps of plant disease dynamics—
automated mining of differences using hyperspectral images. PLoS
One 10:e0116902.

Wallen VR, Jackson HR (1971). Aerial photography as a survey
technique for the assessment of bacterial blight of field beans. Can.
Plant Dis. Surv. 51:163-169.

Wang X, Zhang M, Zhu J, Geng S (2008). Spectral prediction of
Phytophthora infestans infection on tomatoes using artificial neural
network (ANN). Int. J. Remote Sens. 29:1693-1706.

Wardlaw CW (1961). Banana diseases including Plantains and Abaca.
Longmans, London.

West JS, Bravo C, Oberli R, Lemaire D, Moshai D, McCartney HA
(2003). The potential of optical canopy measurement for targetd
control of field crop diseases. Ann. Rev. Phytopathol. 41:593-614.

WiJdekoon CP, Goodwin PH, Hsiang T (2008). Quantifying fungal
infection of plant leaves by digital image analysis using scion image
software. J. Microbiol. Method 74:94-101.

Xie W, Yu K, Pauls KP, Navabi A (2012). Application of image analysis
in studies of quantitative disease resistance exemplified using
common bacterial blight-common bean. Pathosystem 102:434-442.



