Characterization of paddy soil compaction based on soil apparent electrical conductivity zones

Mastura M.1*, Amin M. S. M.1,2 and Aimrun W.1

1Smart Farming Technology Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
2Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.

Accepted 22 March, 2011

Soil apparent electrical conductivity (ECa) is one of the most common and frequently used measurements to determine field soil variability, especially for precision farming. Soil cone index (CI) is a measure of soil compaction that poses a big challenge for water management in poorly drained soils. The soil compaction affects the root penetration and development of the rice plant. The purpose of this study was to characterize the CI within the ECa zones for a Malaysian paddy soil. The study of soil compaction and ECa was conducted on silty clay paddy soil at Sawah Sempadan, Tanjung Karang, Selangor (latitude 3°35" N and longitude 101°05" E). Measurement of ECa and CI were done using Veris 3100 and hand-operated soil cone penetrometer, respectively. The deep ECa (ECa,d) was compared to the minimum, mean and maximum CI and also within ECa,d zone. The maximum CI was found at 0.147 MPa with average maximum at 0.081 MPa. The results indicate that the hardest layer exists at a depth of 10 to 20 cm. ECa,d in Zone 2 (50 to 100 mS m⁻¹) showed that the CI values have the highest significant negative correlation with ECa,d. The significant correlation of ECa,d and soil cone index was found at mid range of the soil ECa,d.

Keywords: Zone delineation, paddy field, cone index, regression.

INTRODUCTION

Soil variability always exists within a field and can be mapped using some precision farming tools and software. Corwin and Lesch (2003) found that the soil electrical conductivity has become one of the most frequently used measurements to characterize field variability for application of precision farming. Soil sensor such as the Veris EC sensor is a useful tool in mapping soil apparent electrical conductivity (ECa) in order to identify areas of contrasting soil properties (Amin et al., 2004; Aimrun et al., 2007). The bulk soil electrical conductivity measurement called soil apparent electrical conductivity (ECa) measures conductance through soil solution and solid soil particles and also via exchangeable cations which exist at the solid-liquid interface of clay mineral (Corwin and Lesch, 2003).

Paddy soil is basically compacted which is caused by vehicle traffic such as tractors and combine harvesters. When soil is compacted, there are changes in physical properties of soil such as, soil structure, pore space, and density, which play an important role in the growth and development of plants (Sudduth et al., 2008). Soil compaction has been used to assess root growth and penetration. The soil compaction is measured by the value of cone index. The higher the cone index, the greater is the amount of energy that must be expended by the roots to widen the soil pores (Chen et al., 2005).

The cone index (CI) is a measure of a soil's resistance to penetration and is regarded as an indicator of soil strength. Two distinct peaks in the CI profile are labeled hardpan and fragipan depth where it can be determined, based on value of CI. The CI must have at least three consecutive data points that exceed 1 MPa (145 psi) to be classified as hardpan layer as mentioned by

Abbreviations: ECa, Apparent electrical conductivity; CI, cone index; ECa,d, deep ECa; ECa,s, shallow ECa; TAKRIS, Tanjung Karang rice irrigation scheme; r, coefficient of correlation.
soil compaction and apparent electrical conductivity are very important for precision farming. Farmers need quick, reliable, and inexpensive technique and sensing technology to measure soil variability such as soil compaction and other properties that can characterize soil variability in their fields. The objective of this study was to characterize the relationship between EC_a and the soil profile based on CI for identifying soil variability in a paddy field in a humid tropical region practicing double cropping of rice per year.

MATERIALS AND METHODS

Study site

This study was conducted at Sawah Sempadan irrigation compartment, of the Tanjung Karang rice irrigation scheme (TAKRIS), (Figure 1) in the district of Kuala Selangor, Malaysia. The total area of Sawah Sempadan is 2,300 ha and divided into 24 blocks namely Blocks A to X. However, only blocks C, J and O were selected. Each block consists of about 100 lots and the size of each lot is 1.2 ha (200 × 60 m). These three blocks are located on the same tertiary irrigation canals and block C is located in the upstream, close to the main canal, and then followed by blocks J and O. The total area was 380 ha with 312 paddy lots. The soil series for the whole area are Jawa (Sulfic Tropaquept), Teluk (Sulfic Tropaquept), Sempadan (Sulfic Tropaquept) and Karang (Thypic Sulfaquept), (Aimrun et al., 2002) and can be referred on Figure 2. The soil series were grouped as acid sulfate soil from this order; mineral soil-alluvium soil- marine alluvium (parent material)-acid sulfate soil. The characteristics are having poor drainage and fine texture. The field study was carried out in December 2007 after harvest of the second season.

Isaac et al. (2002) for maize plant. The readings of cone penetrometer require a “stop-and-go”, making it difficult to collect enough data to accurately map compaction variations within a field (Sudduth et al., 2008).

Assessment and interpretation of spatial variability of...
Soil apparent electrical conductivity

Data acquisition of EC_a was obtained by using a sensor known as Veris 3100 sensor (Figure 3). The sensor was pulled across each field behind a tractor in a series of parallel transects spaced about 15 m apart. The sensor was calibrated using an Ohmmeter to ensure that its resistance is lesser than 2 Ohm. This sensor was used in conjunction with a differential global positioning system (DGPS) receiver and Veris data logger. The EC_a data were geo-referenced to create spatial variability map.

The sensor has three pairs of coulter-electrodes to determine soil EC_a. The coulters penetrate the soil into a depth of 6 cm. One pair of the coulter emit an electrical current and the other two pairs detect the resistance (Lund et al., 1999; Amin et al., 2004; Aimrun, 2006). The six coulters can be named and arranged as 1, 2, 3, 4, 5 and 6 from left to right. The center pair (plates 2 and 5) passes the electric current (reference) into the soil. The coulters 3 and 4 integrate resistance between depths of 0 and 30 cm (shallow), while the outside pair (coulter plates 1 and 6) integrates the electrical resistance between 0 and 90 cm (deep). The Veris data logger recorded the latitude, longitude, elevation, shallow EC_a (EC_{dS}) and deep EC_a (EC_{dD}) data (mS m$^{-1}$) in an ASCII text format. The reading of EC_a in the data logger is conversion of resistance to conductivity ($1/\text{resistance} = \text{conductivity}$). The EC data logger was available to receive reading only when DGPS signal was available. The data were then transferred from the data logger to a computer. The data quality screening was done by removing all negative values and it is generally not more than 10% of the total data count, otherwise it should be collected again.

Zone delineation based on EC_{dD}

The EC_a data in ASCII format was transferred from the veris data logger to a diskette and then to a computer. ArcGIS software was used to view, analyze the EC_a data and to create a map. Spatial analysis was done to interpolate the data using kriging method, and then to produce the soil EC_a variability map. The EC_{dD} zones were delineated to three classes or zones. Zone 1 was defined as low for EC_{dD} value of more than 100 mS m$^{-1}$, zone 2 was defined as moderate (51 to 100 mS m$^{-1}$), and zone 3 was defined as high for EC_a value of higher than 100 mS m$^{-1}$. The sampling point were 8 and 7 points for Block J and O, respectively. For zones 1, 2 and 3, the number of soil sampling points were 8 and 7 points for Block J and O, respectively. For zones 1, 2 and 3, the number of soil sampling points were 8 and 7 points for Block J and O, respectively.

Sampling points

The soil samples were taken from 30 points within the study area. Figure 4 shows the soil variability map used for determining the sampling points. For zones 1, 2 and 3, the number of soil sampling points were 12, 10 and 8 points, respectively. Block C had high variability (three zones were found), so more points were collected from this area (15 points). Block J had lower variability than Block C, and Block O had no obvious variability. The total numbers of sampling points were 8 and 7 points for Block J and O, respectively.

The cone index measurement

The soil compaction was determined by using CI value, based on soil resistance to penetration. The hand-operated soil cone penetrometer was used in this study following the American Society of Agricultural Engineering (ASAE) standards (S313.2) (ASAE, 1999). The equipment has cone base size of 32.3 cm2 and 2.027 cm diameter, with 1.6 cm diameter shaft for soft soil. Graduation on the driving shaft is 2.54 cm apart and used to identify the depth of hand-operated device (Figure 5). The equipment was pressed up to 50 cm from the soil surface and the readings were recorded.
at every 2.5 cm (1 inch). The cone Index (CI) is defined as the force per unit area required to push the penetrometer through a specified small increment of soil. CI can be calculated by using the formula:

\[
\text{Cone index (MPa)} = \frac{(\text{division} \times 0.05 \text{ kg} \times 9.81 \times 10^{-6})}{\text{A (m}^2\text{)}}
\]

Where: 1 division in pressure gauge = 0.05 kg and A is cone basearea \((3.23 \times 10^{-4} \text{ m}^2)\)

Statistical analysis

It is known that we can never be completely (100%) certain that a relationship exists between the two variables. There are too many sources of error to be controlled, for example, sampling error, researcher bias, problems with reliability and validity and simple mistakes. Correlation is a type of analysis to find the relation between two variables and show how the variables are related. The purpose is to get the significant relation and explainable by considering the value of \(r\). The bivariate correlation procedure was chosen to determine the correlation. Pearson correlation was selected because the relation between variables is a linear association.

Regression analyses were run to see the prediction model from independent variable with dependent variable. Before this analysis was run, the correlation was done to make sure the variables have significant correlation to each other. There are two types of regression, that is, linear and non-linear. Linear regression was chosen to find the prediction of one variable with another variable. The analysis shows the prediction model from multiple dependent variables. The \(R^2\) was used as an indicator to determine how well the model fits the given data. The highest \(R^2\) was chosen as the best model. Ronnie et al. (2003) used stepwise method in regression analysis and found that \(E_{Ca}\) was often a key loading factor that changes in soil texture.

RESULTS AND DISCUSSION

Soil apparent electrical conductivity

The \(E_{Ca}\) measurements were integrated over a soil depth of 0 to 30 cm for \(E_{Ca}s\) and 0 to 90 cm for \(E_{Ca}d\). Total number of \(E_{Ca}\) data was 115,908.
points for an area of 380 ha. The average number of ECa data for each lot was 366 points and slightly lesser as compared to 500 points used by Aimrun et al. (2007) for their research at Seberang Perai paddy field, Pulau Pinang. The number of data depended on the speed of the tractor and the condition of the soil surface. With the logging interval of one second, a slow drive can collect more data points (Amin, 2004).

The descriptive statistics of soil ECa within the 3 blocks are shown in Table 1. The values of ECas at sampling points were found to be 7.89, 163.57 and 55.2 mS m⁻¹ for minimum, maximum and mean, respectively. For ECad, the values of minimum, maximum and mean were 11.00, 370.00 and 108.3 mS m⁻¹, respectively. The CVs for ECas and ECad, were 69.2 and 83.41%, respectively. This higher CV of the sampling points were due to the zones of the soil variability map. The mean ECas values at Block C, J and O were 43.63, 42.21 and 116.6 mS m⁻¹, respectively. The mean ECad values at Block C, J and O were 73.0, 96.86 and 254.29 mS m⁻¹, respectively.

The results showed the values of ECa increased from Block C to O (upstream to downstream). This happened because the soils in Block O and Block C are too different in their characteristics. As can be observed, soils in Block O have very shallow topsoil layer and greyey soil was found at very shallow depth. While Block C has lower average ECa because of many areas are occupied by peat soil and acid sulfate for Jawa and Telok series. The

<table>
<thead>
<tr>
<th>Block</th>
<th>ECa</th>
<th>n</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>Std.D</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block C</td>
<td>ECas</td>
<td>48070</td>
<td>1.00</td>
<td>369.6</td>
<td>43.63</td>
<td>19.3</td>
<td>41.5</td>
</tr>
<tr>
<td></td>
<td>ECad</td>
<td>48070</td>
<td>1.00</td>
<td>413.70</td>
<td>73.0</td>
<td>33.5</td>
<td>45.9</td>
</tr>
<tr>
<td>Block J</td>
<td>ECas</td>
<td>37937</td>
<td>1.00</td>
<td>346.1</td>
<td>42.21</td>
<td>15.7</td>
<td>37.3</td>
</tr>
<tr>
<td></td>
<td>ECad</td>
<td>37937</td>
<td>1.00</td>
<td>933.6</td>
<td>96.86</td>
<td>32.8</td>
<td>33.9</td>
</tr>
<tr>
<td>Block O</td>
<td>ECas</td>
<td>29901</td>
<td>1.00</td>
<td>307.60</td>
<td>116.61</td>
<td>46.3</td>
<td>39.7</td>
</tr>
<tr>
<td></td>
<td>ECad</td>
<td>29901</td>
<td>1.00</td>
<td>992.5</td>
<td>254.29</td>
<td>80.1</td>
<td>31.5</td>
</tr>
<tr>
<td>At sampling points</td>
<td>ECas</td>
<td>30</td>
<td>7.89</td>
<td>163.57</td>
<td>55.22</td>
<td>38.2</td>
<td>69.2</td>
</tr>
<tr>
<td></td>
<td>ECad</td>
<td>30</td>
<td>11.0</td>
<td>370.00</td>
<td>108.3</td>
<td>90.3</td>
<td>83.4</td>
</tr>
</tbody>
</table>

*n = No. of sampling point samples.

Figure 5. The ASAE standard cone and hand-operated cone penetrometer pushed into the paddy soil profile.
mean values of the ECd were higher than those at the shallow depths. The effect of soil parent materials at the subsoil layer probably caused the higher ECd values (Aimrun, 2006).

Previous studies in paddy fields at Malaysian Agricultural Research and Development Institute (MARDI) Seberang Perai Station, Penang, by Aimrun et al. (2007) found the values for ECd ranged from 0.9 to 64 mS m⁻¹ with the average and standard deviation of 5.67 and 3.04 mS m⁻¹, respectively for an area of 9 ha. The ECd values from 5202 data points ranged from 1.3 to 48.9 mS m⁻¹ with the average and the standard deviation of 9.1 and 6.8 mS m⁻¹, respectively. Comparing these two sites, the data of ECd at Sawah Sempadan were higher than those at Seberang Prai, Pulau Pinang. The percentages of clay were found to have positive correlation with ECd with values for Sawah Sempadan and Seberang Perai of 46.77 and 21.68 %, respectively. The low ECd at Seberang Perai was probably due to less clay particles to transmit the electric current.

Cone index

The values of CI were randomly divided into four depths according to depth of penetration of the soil profile (Table 2). The groups were depths 1 to 4. These small groups eased evaluation of the data. The studies by Bockari-Gevao et al. (2005) at Sungai Burong Compartment (latitude 3° 35'' N and longitude 101° 05'' E) of the TAKRIS, found the values of cone index ranged from 0.11 to 0.28 MPa. Whereas, the results of this study were lower (0.02 to 0.147 MPa). These were possibly due to the different soil series in that area. The soil series in Sungai Burong study site is Selangor Series and has medium soil texture compared to fine texture for soil series (Telok and Jawa) in this study area (Sawah Sempadan). The study at Kerian paddy field, Perak, Malaysia, by Ngoo and Burkhanuddin (2008) found peak CI at 0.15 MPa. These similar CI was probably due to same parent material (marine alluvium).

Figures 6, 7 and 8 show the graph of CI for minimum,
Figure 7. Graph of maximum CI values with paddy soil depth for various ECa,d zones.

Figure 8. Graph of mean CI values with paddy soil depth for various ECa,d zones.
Table 3. The significant correlation of CI and soil ECa with soil depth, n= 30.

<table>
<thead>
<tr>
<th>CI</th>
<th>ECa(s) Depth 1 (< 13 cm)</th>
<th>Depth 2 (13 to 26 cm)</th>
<th>Depth 3 (26 to 39 cm)</th>
<th>Depth 4 (> 39 cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>ECa(s) ns</td>
<td>-0.442*</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>ECa(d) ns</td>
<td>-0.523**</td>
<td>-0.05*</td>
<td>ns</td>
</tr>
<tr>
<td>Mean</td>
<td>ECa(s) ns</td>
<td>-0.445*</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>ECa(d) ns</td>
<td>-0.541**</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>Max.</td>
<td>ECa(s) ns</td>
<td>-0.383*</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>ECa(d) ns</td>
<td>-0.475**</td>
<td>ns</td>
<td>ns</td>
</tr>
</tbody>
</table>

** Correlation is significant at the 0.01 level; * Correlation is significant at the 0.05 level.

The results show that also give the same results and correlation where r = -0.475** and 0.383*, respectively. Minimum values of CI correlation with deep and ECa, respectively. The results show that ECa, respectively. The results show that ECa has better correlation compared to ECa by considering the significance level.

Table 4 shows the significant correlation for CI and ECa within ECa zone. The soil ECa values were found to have significant negative correlation at zone 2 of ECa. Each depth of CI has significant negative correlation with minimum, mean and maximum CI except for depth 1. No significance (ns) was found in the other zones.

Regression analysis

The tests showed that ECa have significant correlation to CI within Zone 2. The regression analysis showed that CI could be estimated by using ECa. The CI in paddy soils was apparently not influenced by ECa because no significant correlation was found. Prediction models were developed for each depth except for depth 1 since there was no significant correlation. Table 5 shows the equations to estimate CI based on the ECa values. Each model only used ECa as independent variable because there was no significant correlation found with ECa. The constants of the models are different for each model but the coefficients remained the same at 0.001. The general equation is the form of: CI = a – (0.001 ECa) with R² ranging from 0.318 to 0.784.

The study showed that the spatial variability of the soil apparent electrical conductivity varied highly at Block C as compared to Blocks J and O. Soil ECa and ECa have significantly negative correlation with cone index at depth 2 (13 to 26 cm) where the highest soil compaction occurs. The study shows that ECa can be used as an indicator to determine the hardest layer in the paddy field with mid range ECa (zone 2). The hardest layer is found typically between 13 to 26 cm (depth 2).

ACKNOWLEDGEMENTS

The authors would like to thank members of the Precision Farming Engineering Research and Development (PREFERD) group for their assistance in data collection and analysis. The financial support from MOSTI is...
Table 4. Correlation of CI and soil EC
d zones 1, 2 and 3.

| Zone and EC
d | EC
d | Depth 1 | Depth 2 | Depth 3 | Depth 4 |
|-----------|------|--------|--------|--------|--------|
| Zone 1 (1 – 50 mS m\(^{-1}\)) n = 12 | Min | EC
d | ns | ns | ns | ns |
| | Mean | EC
d | ns | ns | ns | ns |
| | Max | EC
d | ns | ns | ns | ns |
| Zone 2 (51 – 100 mS m\(^{-1}\)) n = 10 | Min | EC
d | ns | -0.765** | -0.849** | -0.897** |
| | Mean | EC
d | ns | ns | ns | ns |
| | Max | EC
d | ns | -0.731** | -0.858** | -0.877** |
| Zone 3 (101 mS m\(^{-1}\) and upward) n = 8 | Min | EC
d | ns | ns | ns | ns |
| | Mean | EC
d | ns | ns | ns | ns |
| | Max | EC
d | ns | ns | ns | ns |

Table 5. Model development for CI in zone 2.

<table>
<thead>
<tr>
<th>Depth</th>
<th>Model developed</th>
<th>(R^2)</th>
</tr>
</thead>
</table>
| Minimum | Depth 2 | 0.136 – (0.001 × EC
d) | 0.543*** |
| | Depth 3 | 0.134 – (0.001 × EC
d) | 0.693*** |
| | Depth 4 | 0.163 – (0.001 × EC
d) | 0.784*** |
| Mean | Depth 2 | 0.148 – (0.001 × EC
d) | 0.487*** |
| | Depth 3 | 0.141 – (0.001 × EC
d) | 0.709*** |
| | Depth 4 | 0.171 – (0.001 × EC
d) | 0.746*** |
| Maximum| Depth 2 | 0.162 – (0.001 × EC
d) | 0.318** |
| | Depth 3 | 0.150 – (0.001 × EC
d) | 0.743*** |
| | Depth 4 | 0.179 – (0.001 × EC
d) | 0.711*** |

acknowledged. The invaluable assistance from members of the Smart Farming Technology Laboratory, Institute of Advanced Technology (SFTL, ITMA), Universiti Putra Malaysia (UPM) is highly appreciated.

REFERENCES

