Full Length Research Paper
ABSTRACT
Spirulina platensis is a blue-green multicellular photosynthetic cyanobacterium and it is used in many countries as human and animal feed. The aim of this work is to determine and set kinetics drying for S. platensis at different temperatures (30, 40, 50 and 60°C). A completely randomized design was adopted and the treatments were the drying temperatures. S. platensis was furnished by the company, Brasil Vital, located in Anápolis – Goiás. The initial water content from the product was determined according to analytical norm from Association of Official Analytical Chemists (AOAC). The product was subjected to drying in a heater at temperatures of 30, 40, 50 and 60°C. The samples were placed on stainless steel removable trays with background screen; they consisted of three replications. The temperature and relative humidity from the air in the environment were monitored with a thermo-hygrometer. During the process of drying, the trays with samples were periodically weighed to obtain a constant weight. Afterwards, the math models were set on the experimental drying data, using Statistica 12.0 software. The criteria for the selection of the estimative statistics were: R2 close to 100%, P < 10% and SE close to zero. The effective diffusion coefficient was obtained from the mathematical model of liquid diffusion. One can conclude that the necessary time for S. platensis to reach constant weight was 7.00, 4.58, 3.83, and 3.25 h, at temperatures of 30, 40, 50, and 60°C, respectively. The recommended model used to predict the drying phenomenon for S. platensis was the Midilli Mathematical model at temperatures of 30, 40, and 50°C, and the model Approach of Diffusion at temperature of 60°C. The diffusion coefficient increased with increased temperature; its values were from 3.343 × 10-8 to 14.881 × 10-8 m2 s-1 at temperature ranging from 30 to 60°C. It activates energy for liquid diffusion at 39.52 kJ.mol-1.
Key words: Post-harvest, water content, microalgae.
INTRODUCTION
MATERIALS AND METHODS
The selection criterion for statistical estimators was R² close to 100%, P < 10%, and SE close to zero (Madamba et al., 1996). The effective diffusion coefficient was obtained through setting of mathematic model of liquid diffusion, depicted by Equation 4, to the experimental data of drying of S. platensis. The equation is the analytical solution for the second law of Fick, taking into account the cylindrical geometric shape, disregarding volumetric shrinkage of it (Crank, 1975).
RESULTS AND DISCUSSION
CONCLUSION
CONFLICT OF INTERESTS
REFERENCES
Adiba BD, Salem B, Nabil S, Abdelhakim M (2011). Preliminary characterization of food tablets from date (Phoenix dactylifera L.) and spirulina (Spirulina sp.) powders. Powder Technol. 208:725-730. |
|
AOAC (Association of Official Analytical Chemists) (1995). Official methods of analysis of A.O.A.C. International. 16 th ed. Arlington: A.O.A.C. 949 p. |
|
Baptestini FM, Corrêa PC, Junqueira MS, Ramos AM, Vanegas JD, Costa CF (2015). Modelagem matemática da secagem de espuma de graviola. Rev. Bras. Eng. Agríc. Ambient. 19:1203-1208. [In Portuguese]. |
|
Bennamoun L, Afzal MT, Léonard A (2015). Drying of alga as a source of bioenergy feedstock and food supplement–A review. Renew. Sustain. Energy Rev. 50:1203-1212. |
|
Bezerra RP (2010). Cultivo descontínuo alimentado de Arthrospira (Spirulina) platensis em reator tubular utilizando uréia como fonte de nitrogênio e CO2 puro ou proveniente de fermentação alcoólica. Tese. Doutorado em Tecnologia Bioquímico-Farmacêutica, Universidade de São Paulo, São Paulo 237 p. [In Portuguese]. |
|
Celma AR, López-Rodriguéz F, Blázquez C (2009). Experimental modelling of infrared drying of industrial grape by-products. Food Bioproducts Process 87:247-253. |
|
Corrêa Filho LC, Andrade ET, Martinazzo AP, Andrea EM, Sousa FA, Figueira VG (2015). Cinética de secagem, contração volumétrica e análise da difusão líquida do figo (Ficus carica L.). Rev. Bras. Eng. Agríc. Ambient. 19:797-802. [In Portuguese]. |
|
Corrêa PC, Oliveira GHH, Botelho FM, Goneli ALD, Carvalho FM (2010). Modelagem matemática e determinação das propriedades termodinâmicas do café (Coffea arabica L.) durante o processo de secagem. Rev. Ceres 57:595-601. [In Portuguese]. |
|
Costa LM, Resende O, Sousa KA, Gonçalves DN (2011). Coeficiente de difusão efetivo e modelagem matemática da secagem de sementes de crambe. Rev. Bras. Eng. Agríc. Ambient. 15:1089-1097. [In Portuguese]. |
|
Costa S, Capistrano D, Moraes Filho FC (2015). Cinética da secagem do feijão verde (Vigna unguiculata L. Walp) em micro-ondas com e sem pré-tratamento osmótico. Blucher Chem. Eng. Proceed. 1:4587-4594. [In Portuguese]. |
|
Crank J (1975). The Mathematics of Diffusion. 2rd ed. Clarendon Press Oxford, New York 414 p. |
|
Domenico CNB, Conrad TM (2015). Simulação de processos de secagem através dos modelos matemáticos exponencial e de page. Vivências [In Portuguese] 11:134-146. |
|
Faria GSM (2012). Influência do processo de secagem convectiva na qualidade da carragenana extraída de Kappaphycus alvarezzii. Dissertação. Pós-graduação em Engenharia de Alimentos, Universidade Federal de Santa Catarina, Florianópolis [In Portuguese] 76 p. |
|
Faria RQ, Teixeira IR, Devilla IA, Ascheri DP, Resende O (2012). Cinética de secagem de sementes de crambe. Rev. Bras. Eng. Agríc. Ambient. 16: 573-583. [In Portuguese]. |
|
Ferreira LFD, Pirozi MR, Ramos AM, Pereira JAM (2012). Modelagem matemática da secagem em camada delgada de bagaço de uva fermentado. Pesqui. Agropecu. Bras. [In Portuguese] 47:855-862 |
|
Goneli ALD (2008). Variação das propriedades físico-mecânicas e da qualidade da mamona (Ricinus communis L.) durante a secagem e o armazenamento. Tese. Doutorado em Engenharia Agrícola, Universidade Federal de Viçosa, Viçosa [In Portuguese] 186 p. |
|
Goneli ALD, Nasu AK, Gancedo R, Araújo WD, Sarath KLL (2014a). Cinética de secagem de folhas de erva baleeira (Cordia verbenacea DC.). Rev. Bras. Plantas Med. [In Portuguese] 16:434-443. |
|
Goneli ALD, Vieira MC, Vilhasanti HDCB, Gonçalves AA (2014b). Modelagem matemática e difusividade efetiva de folhas de aroeira durante a secagem. Pesqui. Agropecu. Trop. [In Portuguese] 1:56-64. |
|
Jangam SV, Law CL, Mujumdar AS (2010). Drying of food, vegetables and fruits. 1. ed. Singapore: National University of Singapore P 232. |
|
Kashaninejad M, Mortazavi A, Safekordi A, Tabil LG (2007). Thin-layer drying characteristics and modeling of pistachio nuts. J. Food Eng. 78:98-108. |
|
Kucuk H, Midilli A, Kilic A, Dincer I (2014). A review on thin-layer drying-curve equations. Dry. Technol. 32:757-773. |
|
Madamba PS, Driscoll RH, Buckle KA (1996). Thin-layer drying characteristcs of garlic slices. J. Food Eng. 29:75-97. |
|
Martinazzo AP, Corrêa PC, Resende O, Melo EDC (2007). Análise e descrição matemática da cinética de secagem de folhas de capim-limão. Rev. Bras. Eng. Agríc. Ambient. [In Portuguese] 11:301-306. |
|
Martins EA, Lage EZ, Goneli AL, Filho CPH, Lopes JG (2015). Cinética de secagem de folhas de timbó (Serjania marginata Casar). Rev. Bras. Eng. Agríc. Ambient. [In Portuguese] 19:238-244. |
|
Mendonça TA, Druzian JI, Nunes IL (2014). Prospecção Tecnológica da Utilização da Spirulina platensis. Cadernos de Prospecção, [In Portuguese] 5:44-52. |
|
Prates MFO, Reis RD, Devilla IA, Faria RQ, Lima Junior AF (2012). Cinética de secagem de folhas de Solanum lycocarpum A. St.-Hil. (fruta-de-lobo). Rev. Bras. Plantas Med. 14:514-521. [In Portuguese]. |
|
Radünz LL, Amaral AD, Mossi AJ, Melo EDC, Rocha RP (2011). Avaliação da cinética de secagem de carqueja. Eng. Agric. [In Portuguese] 19:19-27. |
|
Reis DR, Santos P, Silva FS, Porto AG (2015). Influência das características do ar na cinética de secagem de pimenta variedade bico. Braz. J. Food Technol. [In Portuguese] 18:146-154. |
|
Reis RC, Devilla IA, Ascheri DP, Servulo AC, Souza AB (2012). Cinética de secagem de folhas de manjericão (Ocimus basilicum L.) via infravermelho. Rev. Bras. Eng. Agríc. Ambient. 16:1346-1352. [In Portuguese]. |
|
Resende O, Ferreira LU, Almeida DP (2010). Modelagem matemática para descrição da cinética de secagem do feijão adzuki (Vigna angularis). Rev. Bras. Produtos Agroind. [In Portuguese] 12:171-178. |
|
Rizvi SSH (1995). Thermodynamic properties of foods in dehydration. In: Rao MA, Rizvi SSH. Engineering properties of foods. New York: Academic Press pp. 223-309. |
|
Rodovalho RS, Silva HW, Silva IL, Rossetto CAV (2015). Cinética de secagem dos grãos de pimenta bode. Glob. Sci. Technol. [In Portuguese] 8:128-142. |
|
Silva HW, Rodovalho RS, Velasco MF, Silva CF, Vale LS (2016). Cinética e propriedades termodinâmicas relacionadas à secagem dos frutos de pimenta Cabacinha. Rev. Bras. Eng. Agríc. Ambient. 20:174-180. [In Portuguese]. |
|
Silva LD, Silva WP, Silva CMDPS, Farias VSO (2013). Descrição da secagem de placas cerâmicas por meio de um modelo de difusão. Cerâmica [In Portuguese] 59:409-416. |
|
Silva LMDM, Sousa FCD, Sousa EPD, Mata C, Moreira MER, Duarte MEM (2014). Modelos de predição da cinética de secagem dos grãos de guandu. Braz. J. Food Technol. [In Portuguese] 17:310-318. |
|
Sousa KA, Resende O, Chaves TH, Costa LM (2011). Cinética de secagem do nabo forrageiro (L.). Raphanus sativus. Rev. Ciênc. Agron. 42:883-892. [In Portuguese]. |
|
Ullmann R, Resende O, Sales JF, Chaves TH (2010). Qualidade das sementes de pinhão manso submetidas à secagem artificial. Rev. Ciênc. Agron. 41:442-447. [In Portuguese]. |
|
Zogzas NP, Maroulis ZB, Marinos-Kouris D (1996). Moisture diffusivity data compilation in foodstuffs. Dry. Technol. 14:2225-2253. |
Copyright © 2023 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0