African Journal of
Agricultural Research

  • Abbreviation: Afr. J. Agric. Res.
  • Language: English
  • ISSN: 1991-637X
  • DOI: 10.5897/AJAR
  • Start Year: 2006
  • Published Articles: 6544

Article in Press

Simultaneous selection for grain yield and stability of sorghum [Sorghum bicolor (L.) Moench] genotypes in Northeast Ethiopia

Fisseha Worede, Fasil Tarekegn, Kebede Teshome

  •  Received: 15 February 2021
  •  Accepted: 10 May 2021
Sorghum is an important crop in Ethiopia. However, its productivity is low owing to lack of farmer-preferred and stable improved varieties. To identify suitable cultivars, multi-environment evaluation of sorghum genotypes was carried out at four locations for two years. The result of AMMI ANOVA showed that genotype (G), environment (E) and Genotype-environment interaction (G×E) significantly (P<0.01) affected sorghum grain yield. The G×E term was partitioned into two significant Interaction Principal Component Axes; where they captured 65.89% of the G×E variance. Genotypes G9, G10 and G12 are highly affected by environmental changes as they had higher G×E. Genotypes G1, G7, G2, G5, G11 and G8 had relatively low G×E indicating lower influence of the environments on their performance. The GGE analysis showed that the first two PCAs explained 75.11% of the GGE variance. Genotypes G8 and G3 were the highest-yielding genotypes and significantly out yielded the checks. Genotypes G1, G12, G7 and G8 were stable genotypes. G8 was the most desirable genotype followed by G3, G7 and G6. G8 (PGRC/E#222878 × KAT-369-1) was officially released and given a local name called Raya. This white seeded variety is preferred by farmers for various food preparations (recipes) , and it commands a premium price at the market. It can give high and stable yield in the unstable environmental conditions of Northeast Ethiopia. If used in its appropriate niche, the variety can contribute to the increase of sorghum productivity, and income of the cultivators.

Keywords: AMMI, Desirable genotype, GGE, G×E, sorghum, stability