African Journal of
Agricultural Research

  • Abbreviation: Afr. J. Agric. Res.
  • Language: English
  • ISSN: 1991-637X
  • DOI: 10.5897/AJAR
  • Start Year: 2006
  • Published Articles: 6596

Review

Trichoderma: A significant fungus for agriculture and environment

Rajesh R. Waghunde
  • Rajesh R. Waghunde
  • Department of Plant Pathology, College of Agriculture, N.A.U.., Bharuch, India.
  • Google Scholar
Rahul M. Shelake
  • Rahul M. Shelake
  • Proteo-Science Center, Faculty of Science, Ehime University, Matsuyama, Japan.
  • Google Scholar
Ambalal N. Sabalpara
  • Ambalal N. Sabalpara
  • Director of Research and Dean P. G. Studies, Navsari Agricultural University, Navsari, India.
  • Google Scholar


  •  Received: 28 October 2015
  •  Accepted: 27 January 2016
  •  Published: 02 June 2016

References

Agosin E, Volpe D, Mun~oz G, San Martin R, Crawford A (1997). Effect of culture conditions on spore shelf life of the biocontrol agent Trichoderma harzianum. World J. Microbiol. Biotechnol. 7(13):225-232.
Crossref

 

Ahamed A, Vermette P (2008). Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions. Biochem. Eng. J. 40:399-407.
Crossref

 
 

Ahamed A, Vermette P (2009). Effect of culture medium composition on Trichoderma reesei's morphology and cellulase production. Bioresour. Technol. 100:5979-5987.
Crossref

 
 

Ahmed AS, Sanchez CP, Candela ME (2000). Evaluation of induction of systemic resistance in pepper plants (Capsicum annuum) to Phytopthora capsici using Trichoderma harzianum and its relation with capsidiol accumulation. Eur. J. Plant Pathol. 106:817-824.
Crossref

 
 

Alabouvette C, Olivain C, Migheli Q, Steinberg C (2009). Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New. Phytol. 184:529-544.
Crossref

 
 

Alizadeh H, Behboudi K, Ahmadzadeh M, Javan-Nikkhah M, Zamioudis, C. Pieterse CM, Bakker PA (2013). Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14. Biol. Cont. 65(1):14-23.
Crossref

 
 

Atanasova L, Druzhinina IS, Jaklitsch WM (2013). Two hundred Trichoderma species recognized on the basis of molecular phylogeny.Trichoderma: Biology and applications. CABI, Wallingford, pp. 10-42.
Crossref

 
 

Azcbn-Aguilar C, Barea JM (1997). Applying mycorrhiza biotechnology to horticulture: significance and potentials. Sci. Hortic. 68:1-24.
Crossref

 
 

Benítez T, Rincón AM, Limón MC, Codón AC (2004). Biocontrol mechanisms of Trichoderma strains. Int. Microbiol. 7: 249-260.

 
 

Bhagat D, Koche M, Ingle RW, Mohod YN (2010). Evaluate the suitability of locally available substrates for mass multiplication of cellulolytic fungi and bacteria. J. Plant Dis. Sci. 5:27-29.

 
 

Bhatt TK, Sabalpara AN (2001). Sensitivity of some bio-inoculants to pesticides. J. Mycol. Plant. Pathol. 31:114-115.

 
 

Bigirimana J, Meyer G de, Poppe J, Elad Y, Hofte M (1997). Induction of systemic resistance on bean (Phaseolus vulgaris) by Trichoderma harzianum. Med. Fac. Landbouww. Univ. Gent. 62:1001-1007.

 
 

Bissett J (1984). A revision of the genus Trichoderma. I. Sect. Longibrachiatum sect. nov. Can. J. Bot. 62:924-931.
Crossref

 
 

Bissett J (1991). A revision of the genus Trichoderma. II. Infrageneric classification. Can. J. Bot. 69:2357-2372.
Crossref

 
 

Bissett J (1991a). A revision of the genus Trichoderma. III. Sect. Pachybasium . Can. J. Bot. 69:2373-2417.
Crossref

 
 

Bissett J (1991b). A revision of the genus Trichoderma. IV. Additional notes on section Longibrachiatum. Can. J. Bot. 69:2418-2420.
Crossref

 
 

Bochner BR, Gadzinski P, Panomitros E (2001). Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res. 11:1246-1255.
Crossref

 
 

Brotman Y, Briff E, Viterbo A, Chet I (2008). Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiol. 147:779-789.
Crossref

 
 

Chaverri P, Gazis R, Samuels GJ (2011). Trichoderma amazonicum, a new endophytic species on Hevea brasiliensis and H. guianensis from the Amazon basin. Mycologia 103:139-151.
Crossref

 
 

Chaverri P, Samuels GJ (2013). Evolution of habitat preference and nutrition mode in a cosmopolitan fungal genus with evidence of inter kingdom host jumps and major shifts in ecology. Evolution 67:2823-2837.

 
 

Chaverri P, Samuels GJ (2003). Hypocrea/Trichoderma (Ascomycota, Hypocreales, Hypocreaceae): Species with green ascospores. Stud. Mycol. 48:1-116.

 
 

Chet I, Inbar J, Hadar I (1997). Fungal antagonists and mycoparasites. In: Wicklow DT, Söderström B (Eds.). The Mycota IV: Environmental and microbial relationships. Springer-Verlag, Berlin. pp. 165-184.

 
 

Chet I (1987). Trichoderma-Application, mode of action, and potential as a biocontrol agent of soil-born pathogenetic fungi. In: Innovative approaches to plant disease control. Chet I (Ed.). John Wiley and Sons. pp.137-160.

 
 

Chet I, Inbar J (1994). Biological control of fungal pathogens. Appl. Biochem. Biotechnol. 48:37-43.
Crossref

 
 

Contreras-Cornejo HA, Macias-Rodriguez L, Beltran-Pena E, Herrera-Estrella A, Lopez-Bucio J (2011). Trichoderma-induced plant immunity likely involves both hormonal and camalexin dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Plant Signal Behav. 6:1554-1563.
Crossref

 
 

Cumagun CJR, Ilag LL (1997). Enhancing the Efficacy of Trichoderma harzianum Rifai by Chitin amendment against sheath blight of rice. Phil. Phytopathol. 33:72-86.

 
 

Daguerre Y, Siegel K, Edel-Hermann V, Steinberg C (2014). Fungal proteins and genes associated with biocontrol mechanisms of soil-borne pathogens: a review. Fungal Biol Rev. 28:97-125.
Crossref

 
 

Das BC, Das BK, Dutta P, Sarmah DK (2006). Bioformulation of Trichoderma harzianum Rifai for management of soybean stem-rot caused by Rhizoctonia solani Kuhn. J. Biol. Cont. 20:57-64.

 
 

De Meyer G, Bigirimana J, Elad Y, Hofte M (1998). Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. Eur. J. Plant Pathol. 104:279-286.
Crossref

 
 

Djonovic S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM (2006). Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol. Plant. Microb. Interact. 19:838-853.
Crossref

 
 

Doi Y, Abe I, Sugiyama J (1987). Trichoderma sect. Saturnisporum, sect. nov. and Trichoderma ghanense, sp. nov. Bull. Nat. Sci. Museum, Ser. B (Botany). 13:1-9.

 
 

Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011). Trichoderma: the genomics of opportunistic success. Nat. Rev. Microbiol. 16:749-759.
Crossref

 
 

Druzhinina IS, Kopchinskiy AG, Komoń M, Bissett J, Szakacs G, Kubicek CP (2005). An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet. Biol. 42:813-928.
Crossref

 

 

Ejechi BO (1997). Biological control of wood decay in an open tropical environment with Penicillium spp. and Trichoderma viride. Int. Biodeterior. Biodegrad. 39:295-299.
Crossref

 

Elsharkawy MM, Shimizu M, Hideki T, Kouichi O, Mitsuro H (2013). Induction of systemic resistance against cucumber mosaic virus in Arabidopsis thaliana by Trichoderma asperellum SKT-1. Plant Pathol. J. 29:193-200.
Crossref

 
 

Gajera H, Domadiya R, Patel S, Kapopara M, Golakiya B (2013). Molecular mechanism of Trichoderma as bio-control agents against phytopathogen system – a review. Curr. Res. Microbiol. Biotechnol. 1:133-142.

 
 

Gal-Hemed I, Atanasova L, Komon-Zelazowska M, Druzhinina IS, Viterbo A, Yarden O (2011). Marine isolates of Trichoderma spp. as potential halotolerant agents of biological control for arid-zone agriculture. Appl. Environ. Microbiol. 77: 5100-5109.
Crossref

 
 

Gams W, Bissett J (1998). Morphology and identification of Trichoderma. In: Trichoderma and Gliocladium. Basic Biology, Taxonomy and Genetics,1. Kubicek CP, Harman GE (Eds.). Taylor and Francis Ltd., London, UK. pp. 3-34.

 
 

Gangadharan K, Jeyarajan R (1990). Mass multiplication of Trichoderma spp. J. Biol. Cont. 4:70-71.

 
 

Gazis R, Chaverri P (2010). Diversity of fungal endophytes in leaves and stems of rubber trees (Hevea brasiliensis) in Tambopata, Peru. Fungal Ecol. 4:94-102.

 
 

Gohil VP (1993). Chemical and biological control of sugarcane wilt under South Gujarat condition. Ph.D. thesis submitted to G.A.U., Navsari. pp. 1-120.

 
 

Harman GE (2006). Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96:190-194.
Crossref

 
 

Harman GE, Herrera-Estrella AH, Benjamin A, Matteo L (2012). Special issue: Trichoderma – from Basic Biology to Biotechnology. Microbiology 58:1-2.
Crossref

 
 

Harman GE, Howell CR, Viterbo A (2004). Trichoderma species- opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2:43-56.
Crossref

 
 

Harman GE, Jin X, Stasz TE, Peruzzotti G, Leopold AC, Taylor AG (1991). Production of conidial biomass of T. harzianum for biological control. Biol. Cont. 1:23-28.
Crossref

 
 

Hermosa R, Botella L, Keck E, Jiménez JA, Montero-Barrientos M, Arbona V, Gómez-Cadenas A, Monte E, Nicolás C (2011). The overexpression in Arabidopsis thaliana of a Trichoderma harzianum gene that modulates glucosidase activity, and enhances tolerance to salt and osmotic stresses. J. Plant Physiol. 168:1295-1302.
Crossref

 
 

Herrera-Estrella A, Chet I (2004). The biological control agent Trichoderma: from fundamentals to applications, In: Handbook of Fungal Biotechnology. Arora D (Ed.). Dekker, New York. 2:147-156.

 
 

Howell CR (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis. 87:4-10.
Crossref

 
 

Howell CR (1998). The role of antibiosis in biocontrol. In: Trichoderma & Gliocladium. Harman GE, Kubicek CP (Eds.). 2. Taylor & Francis, Padstow. pp. 173-184.

 
 

Howell CR, Hanson LE, Stipanovic RD, Puckhaber LS (2000). Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 90:248-252.
Crossref

 
 

Jaklitsch WM (2009). European species of Hypocrea Part I. The green-spored species. Stud. Mycol. 63:1-91.
Crossref

 
 

Jin X, Harman GE, Taylor AG (1991). Conidial biomass and desiccation tolerance of Trichoderma harzianum produced at different medium water potentials. Biol. Cont. 7:243-267.
Crossref

 
 

Katayama A, Matsumura F (1993). Degradation of organochlorine pesticides, particularly endosulfan, by Trichoderma harzianum. Environ. Toxicol. Chem. 12:1059-1065.
Crossref

 
 

Keswani C, Mishra S, Sarma B, Singh S, Singh H (2014). Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl. Microbiol. Biotechnol. 98:533-544.
Crossref

 
 

Koike N, Hyakumachi M, Kageyama K, Tsuyumu S, Doke N (2001). Induction of systemic resistance in cucumber against several diseases by plant growth-promoting fungi: lignification and superoxide generation. Eur. J. Plant Pathol. 107:523-533.
Crossref

 
 

Kopchinskiy A, Komoń M, Kubicek CP, Druzhinina IS (2005). TrichoBLAST: a multilocus database for Trichoderma and Hypocrea identifications. Mycol Res. 109:658-660.
Crossref

 
 

Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B (2009). Metabolic engineering strategies for the improvement of cellulose production by Hypocrea jecorina. Biotechnol. Biofuels 2:19.
Crossref

 
 

Kullnig-Gradinger CM, Szakacs G, Kubicek CP (2002). Phylogeny and evolution of the genus Trichoderma: a multigene approach. Mycol Res. 106:757-767.
Crossref

 
 

Lal B, Maharshi RP (2007). Compatibility of biocontrol agents Trichoderma spp. with pesticides. J. Mycol. Plant Pathol. 37:295-300.

 
 

Latorre BA, Lillo C, Rioja ME (2001). Eficacia de los tratamientos fungicidas para el control de Botrytis cinerea de la vid en función de la época de aplicación. Cienc. Inv. Agric. 28:61-66.

 
 

Levy NO, Meller HY, Haile ZM, Elad Y, David E, Jurkevitch E, Katan J (2015). Induced resistance to foliar diseases by soil solarization and Trichoderma harzianum. Plant Pathol. 64:365-374.
Crossref

 
 

Li C, Yang Z, Zhang R, Zhang D, Chen S (2013). Effect of pH on cellulase production and morphology of Trichoderma reesei and the application in cellulosic material hydrolysis. J. Biotechnol. 168:470-477.
Crossref

 
 

Lo CT, Liao TF, Deng TC (2000). Induction of systemic resistance of cucumber to cucumber green mosaic virus by the root-colonizing Trichoderma spp. Phytopathology 90:S47.

 
 

Lorito M, Woo SL, Harman GE, Monte E (2010). Translational research on Trichoderma: from omics to the field. Annu Rev Phytopathol. 48:395-417.
Crossref

 
 

Madhusudan P, Gopal K, Haritha V, Sangale UR, Rao SVRK (2010). Compatability of Trichoderma viride with fungicides and efficiency against Fusarium solani. J. Plant Dis. Sci. 5:23-26.

 
 

Maliszewska I, Aniszkiewicz L, Sadowski Z (2009). Biological synthesis of gold nanostructures using the extract of Trichoderma koningii. Acta Physica Pol. A 116:163-165.
Crossref

 
 

Manczinger L, Rákhely G, Vágvölgyi C, Szekeres A (2012). Genetic and biochemical diversity among Trichoderma isolates in soil samples from winter wheat fields of the Pannonian Plain. Acta Biol. Szegediensis 56:141-149.

 
 

Mantero-Barrientos M, Hermosa R, Nicolas C, Cardoza RE, Gutierrez S, Monte E (2008). Over expression of a Trichoderma hsp70 gene increases fungal resistance to heat and other abiotic stresses. Fungal Genet. Biol. 45:1506-1513.
Crossref

 
 

Martinez D, Larrondo LF, Putnam N, Sollewijn-Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2008). Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat. Biotechnol. 22:695-700.
Crossref

 
 

Meller HY, Haile MZ, David D, Borenstein M, Shulchani R, Elad Y (2013). Induced systemic resistance against grey mould in tomato (Solanum lycopersicum) by benzothiadiazole and Trichoderma harzianum T39. Phytopathology 104:150-157.

 
 

Monte E (2001). Understanding Trichoderma: between biotechnology and microbial ecology. Int. Microbiol. 4:1-41.

 
 

Montealegre J, Varnero MT, Sepulveda C (1993). A method for biomass production of Trichoderma harzianum strain V: Growth evaluation. Fitopathology 28:99.

 
 

Montero-Barrientos M, Hermosa R, Cardoza RE, Gutiérrez S, Monte E (2011). functional analysis of the Trichoderma harzianum nox1 gene, encoding an NADPH oxidase, relates production of reactive oxygen species to specific biocontrol activity against Pythium ultimum. Appl. Environ. Microbiol. 77:3009-3016.
Crossref

 
 

Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M (2013). Trichoderma in agriculture, industry and medicine: an overview. In: Trichoderma: biology and applications. Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M (Eds.). CABI, Nosworthy, Way, Wallingford, Oxon, UK, pp. 1-9.
Crossref

 
 

Mukherjee PK, Buensanteai N, Moran-Diez ME, Druzhinina IS, Kenerley CM (2012). Functional analysis of non-ribosomal peptide synthetases (NRPSs) in Trichoderma virens reveals a polyketide synthase (PKS)/NRPS hybrid enzyme involved in induced systemic resistance response in maize. Microbiology 158:155-165.
Crossref

 
 

Nallathambi P, Padmanaban P, Mohanraj D (2001). Fungicide resistance in sugarcane associated Trichoderma isolates. J. Mycol.

 
 

Oros G, Naar Z, Cserhati T (2011). Growth response of Trichoderma species to organic solvents. Mol. Inf. 30:276-285.
Crossref

 
 

Palanna KB, Palaiah B, Muthumilan M (2007). Effect of manures on growth, sporulation and antifungal activity of Trichoderma viride. Karnataka J. Agric. Sci. 20:861-863.

 
 

Pandey KK, Upadhyay JP (1998). Sensitivity of different fungicides to Fusarium udum, Trichoderma harzianum and Trichoderma viride for integrated approach of disease management. Veg. Sci. 2:89-92.

 
 

Pandya JR (2012). Isolation, mass multiplication and characterization of Trichoderma spp. under south Gujrat conditions. Ph.D. thesis submitted to N.A.U., Navsari. pp. 35-120.

 
 

Pandya JR, Sabalpara AN, Chawda SK, Waghunde RR (2012). Grain substrate evaluation for mass cultivation of Trichoderma harzianum. J. Pure Appl. Microbiol. 6:2029-2032.

 
 

Pandya JR, Sabalpara AN, Chawda SK (2011). Trichoderma: A particular weapon for biological control of phytopathogens. J. Agric. Technol. 7:1187-1191.

 
 

Papavizas GC, Dunn MT, Lewis JA, Beagle-Ristaino JE (1984). Liquid fermentation technology for experimental production of biocontrol fungi. Phytopathology 74:1171.
Crossref

 
 

Parab PB, Diwakar MP, Sawant UK, Kadam JJ (2008). Studies on mass multiplication, different methods of application of bioagent T. harzianum and their survival in rhizosphere and soil. J. Plant Dis. Sci. 3:215-218.

 
 

Patibanda AK, Upadhyay JP, Mukhopadhyay AN (2002). Efficacy of Trichoderma harzianum Rifai alone or in combination with fungicides against Sclerotium wilt of groundnut. J. Biol. Cont.16:57-63.

 
 

Perazzoli M, Moretto M, Fontana P, Ferrarini A, Velasco R, Moser C, Delledonne M, Pertot I (2012). Downy mildew resistance induced by Trichoderma harzianum T39 in susceptible grapevines partially mimics transcriptional changes of resistant genotypes. BMC Genomics. 13:660.
Crossref

 
 

Persoon CH (1794). Neuer Versuch einer systematischen Einteilung der Schwämme. Racodium Römer's Neues Magazin der Botanik. 1:123.

 

 

Piotrowski M, Volmer JJ (2006). Cyanide metabolism in higher plants: cyanoalanine hydratase is a NIT4 homolog. Plant. Mol. Biol. 61:111-122.
Crossref

 

Pramod KT, Palakshappa MG (2009). Evaluation of suitable substrates for on farm production of antagonist Trichoderma harzianum. Karnataka J. Agric. Sci. 22:115-117.

 
 

Prasad RD, Rangeshwaran R, Anuroop CP, Phanikumar PR (2002). Bioefficacy and shelf life of conidial and chlamydospore formulations of Trichoderma harzianum Rifai. J. Biol. Cont. 16:145-148.

 
 

Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009). The rhizosphere: a playground and battle-field for soil-borne pathogens and beneficial microorganisms. Plant Soil 2009, 321:341-361.
Crossref

 
 

Rahman MA, Begum MF, Alam MF (2009) . Screening of Trichoderma isolates as a biological control agent against Ceratocystis paradoxa causing pineapple disease of Sugarcane. Mycobiology 37:277-285.
Crossref

 
 

Ramanujam B, Sriram S (2009). Development of formulations of bioagents. In: Training manual of winter school on recent advances in biological control of plant diseases. NBAII, Bangalore, India. pp. 43-48.

 
 

Rey M, Delgado-Jarana J, Benítez T (2001). Improved antifungal activity of a mutant of Trichoderma harzianum CECT 2413 which produces more extracellular proteins. Appl. Microbiol. Biotechnol. 55:604-608.
Crossref

 
 

Rifai MA (1969). A revision of the genus Trichoderma. Mycol. Pap. 116:1-56.

 
 

Rini CR, Sulochana KK (2007). Substrate evaluation for multiplication of Trichoderma spp. J. Trop. Agric. 45:58-60.

 
 

Rubin EM (1997). Genomics of cellulosic biofuels. Nature 454:841-845.
Crossref

 
 

Sabalpara AN (2014). Mass multiplication of biopesticides at farm level. J. Mycol. Plant Pathol.14(44):1-5.

 
 

Sabalpara AN, John P, Waghunde RR, Pandya JR (2009). Antagonism of Trichoderma against sugarcane wilt pathogen (F. moniliformae). Am. Eurasian J. Sustain. Agric. 3:637-638.

 
 

Saju KA, Anandaraj M, Sarma YR (2002). On farm production of Trichoderma harzianum using organic matter. Indian Phytopathol. 55:277-281.

 
 

Saksirirat W, Chareerak P, Bunyatrachata W (2009). Induced systemic resistance of biocontrol fungus, Trichoderma spp. against bacterial and gray leaf spot in tomatoes. Asian J. Food Agro-Industry 2:S99-S104.

 
 

Salas-Marina MA, Silva-Flores MA, Uresti-Rivera EE, Castro- Longoria E, Herrera-Estrella A, Casas-Flores S (2011). Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur. J. Plant. Pathol. 131: 15-26.
Crossref

 
 

Salas-Marina MA, Isordia-Jasso M, Islas-Osuna MA, Delgado-Sánchez P, Jiménez-Bremont JF, Rodríguez-Kessler M, Rosales-Saavedra MT, Herrera-Estrella A, Casas-Flores S (2015). The Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens differentially modulate systemic disease resistance against different life style pathogens in Solanum lycopersicum. Front. Plant Sci. 23:77.
Crossref

 
 

Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssönen E, Bhatia A, Ward M, Swollenin MP (2002). A Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur. J. Biochem. 269:4202-4211.
Crossref

 
 

Samolski I, Rincón AM, Pinzón LM, Viterbo A, Monte E (2012). The qid74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiology 158:129-138.
Crossref

 
 

Samuels GJ (1996). Trichoderma: a review of biology and systematic of the genus. Mycol. Res. 100:923-935.
Crossref

 
 

Samuels GJ (2006). Trichoderma: Systematic, the Sexual State, and Ecology. 96:195-206.

 
 

Samuels GJ, Dodd S, Lu BS, Petrini O, Schroers HJ, Druzhinina IS (2006). The Trichoderma koningii aggregate species. Stud. Mycol. 56:67-133.
Crossref

 
 

Samuels GJ, Dodd SL, Gams W, Castlebury LA, Petrini O (2012). Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia 94:146-170.
Crossref

 
 

Samuels GJ, Ismaiel A (2009). Trichoderma evansii and T. lieckfeldtiae: two new T. hamatum-like species. Mycologia 101:142-152.
Crossref

 
 

Samuels GJ, Petrini O, Kuhls K, Lieckfeldt E, Kubicek CP (1998). The Hypocrea schweinitzii complex and Trichoderma sect. Longibrachiatum. Stud. Mycol. 41:1-54.

 
 

Sandhya C, Adapa LKK, Nampoothri M, Binod P, Szakacs G, Pandey A (2004). Extracellular chitinase production by Trichoderma harzianum in submerged fermentation. J. Basic Microbiol. 44:49-58.
Crossref

 
 

Sarrocco S, Guidi L, Fambrini S, Del'Innocenti E, Vannacci G (2009). Competition for cellulose exploitation between Rhizoctonia solani and two Trichoderma isolates in the decomposition of wheat straw. J. Plant Pathol. 91:331-338.

 
 

Sawant IS, Mukhopadhyay AN (1990). Integration of metalaxyl MZ with Trichoderma harzianum for the control of Pythium damping-off in sugarbeet. Indian Phytopathol. 43:535-541.

 
 

Schuster A, Schmoll M (2010). Biology and biotechnology of Trichoderma. Appl. Microbiol. Biotechnol. 87:787-799.
Crossref

 
 

Seaman A (2003). Efficacy of OMRI-approved products for tomato foliar disease control. New York State, Integrated Pest Management Program publication. 129:164-167.

 
 

Seidi V, Marchetti M, Schandl R, Allmaier G, Kubicek CP (2006). EPL1, the major secreted protein of Hypocrea atroviridis on glucose, is a member of a strongly conserved protein family comprising plant defense response elicitors. Febs J. 273:4346-4359.
Crossref

 
 

Sharma DD, Gupta VP, Chandrashekhar DS (1999). Compatibility of certain biocontrol agents with chemical pesticides and fertilizers. Indian J. Sericulture 38:79-82.

 
 

Sharma N, Trivedi PC (2005). Microbial bioagents: Economic multiplication and management of fungal nematode complex on cumin. Indian J. Biotechnol. 4:419-421.

 
 

Sharma P, Sharma M, Raja M, Shanmugam V (2014). Status of Trichoderma research in India: A review. Indian Phytopathol. 14(67): 1-19.

 
 

Shoresh M, Yedidia I, Chet I (2005). Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95:76-84.
Crossref

 
 

Smolinska U, Kowalska B, Kowalczyk W, Magdalena S (2014). The use of agro-industrial wastes as carriers of Trichoderma fungi in the parsley cultivation. Sci. Hortic. 179:1-8.
Crossref

 
 

Sriram S, Manasa SB, Savitha MJ (2009). Potential use of elicitors from Trichoderma in induced systemic resistance for the management of Phytophthora capsici in red pepper. J. Biol. Cont. 23:449-456.

 
 

Sujatha P, Kalarani V, Naresh KB (2013). Effective biosorption of Nickel(II) from aqueous solutions using Trichoderma viride. J. Chem. 1-7.
Crossref

 
 

Sushir MA, Pandey RN (2001). Tolerance of Trichoderma harzianum Rifai to insecticides and weedicides. J. Mycol. Plant Pathol. 31:102.

 
 

Tewari L, Bhanu C (2004). Evaluation of agro-industrial wastes for conidia based inoculum production of bio-control agent: Trichoderma harzianum. J. Sci. Indus. Res. 63:807-812.

 
 

Tjamos EC, Papavizas GC, Cook RJ (1922). In: Biological control of plant diseases. Progress and challenges for the future. Plenum Press, New York. P 222.

 
 

Tomer A, Singh R, Maurya M (2015). Determination of compatibility of Pseudomonas fluorescens and Trichoderma harizianum grown on deoiled cakes of neem and jatropha for mass multiplication of P. fluorescens and T. harizianum in vitro. 10:67-75.

 
 

Tripathi P, Singh PC, Mishra A, Puneet S, Chauhan, Dwivedi S, Thakur R, Deo B, Tripathi R (2013). Trichoderma: a potential bioremediator for environmental cleanup. Clean Technol. Environ. Policy 15:541-550.
Crossref

 
 

Upadhyay JP, Mukhopadhyay AN (2009). Biological control of Sclerotium rolfsii by Trichoderma harzianum in sugarbeet. Trop. Pest Manag. 32:216-220.

 
 

Vahabi K, Mansoori GA, Karimi S (2011). Biosynthesis of silver nanoparticles by fungus Trichoderma reesei: A route for large scale production of AgNPs. Insciences J. 1:65-79.
Crossref

 
 

Velivelli S, De Vos P, Kromann P, Declerck S, Prestwich PD (2014). Biological control agents: from field to market, problems, and challenges. Trends Biotechnol. 32:493-496.
Crossref

 
 

Verma M, Brar SK, Tyagi RD, Surampalli RY, Valero JR (2007). Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochem. Eng. J. 37:1-20.
Crossref

 
 

Vey A, Hoagland RE, Butt TM (2001). Toxic metabolites of fungal biocontrol agents. In: Fungi as biocontrol agents: Progress, problems and potential. Butt TM, Jackson C, Magan N (Eds.). CABI, Bristol, UK, pp. 311-346.
Crossref

 
 

Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K (2006). Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett. Appl. Microbiol. 43:143-148.
Crossref

 
 

Viterbo M, Harel B, Horwitz A, Chet I, Mukherjee PK (2005). Trichoderma mitogen-activated protein kinase signaling is involved in induction of plant systemic resistance. Appl. Environ. Microbiol. 71: 6241-6246.
Crossref

 
 

Viterbo A, Harel M, Chet I (2004). Isolation of two aspartyl proteases from Trichoderma asperellum expressed during colonization of cucumber roots. FEMS Microbiol. Lett. 238:151-158.

 
 

Wiest A, Grzegorski D, Xu B (2002). Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase. J. Biol. Chem. 277:20862-20868.
Crossref

 
 

Woo SL, Scala F, Ruocco M, Lorito M (2006). The molecular biology of the interactions between Trichoderma spp., pathogenic fungi, and plants. Phytopathology 96:181-185.
Crossref

 
 

Yoshioka Y, Ichikawa H, Naznin HA, Kogure A, Hyakumachi M (2012). Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seed-borne diseases of rice. Pest Manage. Sci. 68:60-66.
Crossref

 
 

Zeilinger S, Galhaup C, Payer K, Woo SL, Mach RL, Fekete C, Lorito M, Kubicek CP (1999). Chitinase gene expression during mycoparasitic interaction of Trichoderma harzianum with its host. Fungal Genet. Biol. 26:131-140.
Crossref