African Journal of
Agricultural Research

  • Abbreviation: Afr. J. Agric. Res.
  • Language: English
  • ISSN: 1991-637X
  • DOI: 10.5897/AJAR
  • Start Year: 2006
  • Published Articles: 6336

Full Length Research Paper

Assessment of soil salinity using electrical resistivity imaging and induced polarization methods

Ahzegbobor Philips Aizebeokhai
Department of Physics, College of Science and Technology, Covenant University, P. M. B. 1023, Ota, Ogun State, Nigeria.
Email: [email protected]

  •  Received: 30 September 2013
  •  Accepted: 10 October 2014
  •  Published: 06 November 2014

References

Aizebeokhai AP, Oyebanjo OA (2013). Application of vertical electrical soundings to characterize aquifer potential in Ota, Southwestern Nigeria. Int. J. Phys. Sci. 8(46):2077-2085.
 
Aizebeokhai AP, Oyeyemi KD (2014). Application of Geoelectrical Resistivity Imaging and VLF-EM for Subsurface Characterization in a Sedimentary Terrain, Southwestern Nigeria. Arabian J. Geosci.
Crossref
 
Amezketa E (2007). Soil salinity assessment using direct soil sampling from a geophysical survey with electromagnetic technology: A case study. Spanish J. Agric. Res. 5(1):91-101.
Crossref
 
Billman HG (1992). Offshore stratigraphy and Paleontology of Dahomey (Benin) Embayment. NAPE Bull. 70(02):121-130.
 
Corwin DL, Lesch SM (2003). Application of soil electrical conductivity to precision agriculture: theory, principles and guidelines. Agron. J. 95(3):455-471.
Crossref
 
Gebhardt H, Adekeye OA, Akande SO (2010). Late Paleocene to initial Eocene thermal maximum foraminifera biostratigarphy and paleoecology of the Dahomey Basin, southwestern Nigeria. Gjahrbuch Der Geologischem Bundesantalt 150:407-419.
 
Griffiths DH, Barker RD (1993). Two dimensional resistivity imaging and modelling in areas of complex geology. J. Appl. Geophys. 29:211-226.
Crossref
 
Jones HA, Hockey RD (1864). The geology of part of southwestern Nigeria. Geol. Survey Nig. Bull. 31:101.
 
Loke MH, Barker RD (1996). Practical techniques for 3D resistivity surveys and data inversion. Geophys. Prospect. 44:499-524.
Crossref
 
McKenzie RC, Chomistek W, Clark NF (1989). Conversion of electromagnetic induction readings to saturated paste extracts values in soils for different temperature, texture, and moisture conditions. Can. J. Soil Sci. 69:25-32.
Crossref
 
Obaje NG (2009). Geology and mineral resources of Nigeria. In: Brooklyn SB, Bonn HJN, Gottingen JR, Graz KS (ed), Lecture Notes in Earth Sciences, Springer. 6
Crossref
 
Ogbe FAG (1970). Stratigraphy of strata exposed in the Ewekoro quary, Western Nigeria. In: Dessauvagie TFJ, Whiteman AJ (ed), African Geology, University of Ibadan Press, Nigeria. pp. 305-324.
 
Okosun EA (1990). A review of the Cretaceous stratigraphy of the Dahomey Embayment, West Africa. Cretaceous Res. 11:17-27.
Crossref
 
Olabode SO (2006). Siliciclastic slope deposits from the Cretaceous Abeokuta Group, Dahomey (Benin) Basin, southwestern Nigeria. J. Afr. Earth Sci. 46:187-200.
Crossref
 
Omatsola ME, Adegoke OS (1981). Tectonic evolution and Cretaceous stratigraphy of the Dahomey Basin. Nig. J. Min. Geol. 18(01):130-137.
 
Rhoades JD, Corwin DL (1990). Soil electrical conductivity: Effects of soil properties and application to soil salinity appraisal. Commun. Soil Sci. Plant Anal. 21:837-860.
Crossref
 
Rhoades JD, Corwin DL, Lesch SM (1999). Geospatial measurements of soil electrical conductivity to assess soil salinity and diffuse salt loading from irrigation. In: Corwin DL, Loague K, Ellsworth TR (Eds.) Assessment of Non-point Source Pollution in the Vadose Zone. Geophysical Monograph 108, American Geophysical Union, pp. 197-215.
Crossref
 
Rhoades JD, Loveday J (1990). Salinity in irrigated agriculture. In: Stewart BJ, Nielsen DR (Eds.) Irrigation of Agricultural Crops. Agronomy Monograph 30, ASA, CSSA and SSSA, Madison WI, pp. 1089-1142.
 
Rhoades JD, Shouse PJ, Alves WJ, Manteghi MN, Lesch SM (1990). Determining soil salinity from soil electrical conductivity using different models and estimates. Soil Sci. Soc. Am. J. 54:46-54.
Crossref
 
Richards LA (1954). Diagnosis and improvement of saline and alkali soils. U.S. Department of Agriculture (U.S.D.A) Agricultural Handbook, Washington DC: P. 60.
 
Robert PC (2002). Precision agriculture: a challenge for crop nutrition management. Plant Soil, 247:143-149.
Crossref
 
Rodriguez OD, Torres MLG, Shevnin V, Ryjov A (2010). Estimation of soil petrophysical parameters based on electrical resistivity values obtained from lab and in-field electrical measurements. Geophys. J. Int. 51(1):5-15.
 
Shevnin V, Rodriguez OD, Mousatov A, Hennandez DF, Martinez Z, Ryjov A (2006). Estimation of soil petrophysical parameters from resistivity data: Application to oil contamination site characterization. Geophys. J. Int. 45(3):179-193.
Crossref
 
Shevnin V, Mousatov A, Ryjov A, Delgado-Rodríguez O (2007). Estimation of clay content in soil based on resistivity modeling and laboratory measurements. Geophys. Prospect. 55:265-275.
Crossref
 
Sudha K, Israil M. Mittal S, Rail J (2009). Soil characterization using electrical resistivity tomography and geotechnical investigations. J. Appl. Geophys. 67:74-79.
Crossref
 
Vanhala H (1997). Mapping oil-contaminated sand and till with the spectral induced polarization (SIP) method. Geophys. Prospect. 45:303-326.
Crossref
 
Williams BG, Baker GC (1982). An electromagnetic induction technique for reconnaissance surveys of soil salinity hazards. Aust. J. Soil Res. 20:107-118.
Crossref