Full Length Research Paper
References
Alan LK, Brian AL (2010). Molecular genetic approaches to maize improvement. 63th ed. 2010; Springer. |
|
Anonymous (2014). Climate summit, absent a change in course, scenarios for 2050 predict drought, heat waves. |
|
Anonymous (2012). FAO Statistical Databases. Food and Agriculture Organization of the United Nations. |
|
Bommert P, Namiko SN, David J (2013). Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nature Genet. 45:334-337 |
|
Brookes G, Barfoot P (2007). GM crops: the first ten years – global socio-economic and environmental impacts. ISAAA Brief P. 36. |
|
Cairns JE, Sanchez C, Vargas M, Ordo-ez R, Araus JL (2012). Dissecting maize productivity: ideotypes associated with grain yield under drought stress and well-watered conditions. J. Integr. Plant Biol. 54(12):1007-20. |
|
Cairns JE, Sonder K, Zaidi PH, Verhulst PN, Mahuku G, Babu R, Nair SK, Das B, Govaerts B, Vinayan MT, Rashid Z, Noor JJ, Devi P, Vicente F. san, and Prasanna BM. 2012. Maize production in a changing climate: Impacts, adaptation, and mitigation strategies. Adv. Agron. 114:1-65. |
|
Chapman SC (2011). Crop improvement, ideotyping and modeling under climate change. CIMAC 2011 Plant Industry/Climate Adaptation Flagship, Australia 2QAAFI, the University of Queensland, |
|
David BL, Graeme L, McLean G, Messina C, Michael J. Roberts WS (2013). The critical role of extreme heat for maize production in the United States. Nature Clim. Change. 3:497-501. |
|
Donald CM (1968). The breeding of crop ideotypes. Euphytica 17(3):385-403. |
|
Hochholdinger F, Tuberosa R (2009). Genetic and genomic dissection of maize root development and architecture. Plant Biol. 12:1-6. |
|
Hochholdinger F, woll K, Sauer M, Dembinsky D (2004). Genetic dissection of root formation in maize (Zea mays) reveals root-type specific developmental programs. Annals Bot. 93:359-368. |
|
Hong Xu, Tracy E, Evan G (2016). Climate Change and Maize Yield in Iowa. |
|
James C (2006). Global status of commercialized biotech/GM crops. 2006. ISAAA Brief no. 35. |
|
Jordan W, Dugas WA, Shouse PJ (1983). Strategies for crop improvement for drought- prone regions. Agric. Water Manage. 7:281-299. |
|
Jianfeng W, Chuanxiao X, Zhuanfang H, Jianjun W, Changlin L, Mingshun L, Degui Z, Li B, Shihuang Z, Xinhai L (2011). Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize (Zea mays L.) inbred lines. PLoS ONE. 6:12. |
|
Jonathan PL (2012). Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann. Bot. 112(2):347-57. |
|
Janick J (2004). Plant breeding reviews. Vol 24, John Wiley and Sons, Inc. Purdue University. |
|
Kondwani M, Madani K, Davtalab R, Ali M (2016). Climate Change Impacts on Maize Production in the Warm Heart of Africa. Water Resour. Manage. 30:5299-5312 |
|
Lopez-Reynoso JJ, Hallauer AR (1998). Twenty-seven cycles of divergent mass selection for ear length in maize. Crop. Sci. 38:1099-1107 |
|
Rebolledo MC (2014). Plant Ideotypes for climate change. CIAT. The 3,000 rice genomes project. GigaScience 3:7. |
|
Mark JJ, Pearce RB (1975). Ideotype of maize. Euphytica 24:613-623. |
|
Mendelsohn H, Kough J, Vaituzis Z, Matthews K (2003). Are Bt crops safe? Nat. Biotechnol. 21:1003-1009. |
|
Meng W, Yinpeng L, Wei Y, Janet F, Xiaodong Y (2013). Effects of climate change on maize production and potential adaptation measures: a case study in Jilin Province, China. Clim Res. 46:223-242. |
|
MI G, Chen F, Wu Q, Lai N, Yuan L, Zhang F (2010). Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. Sci. Chi. 53(12):1369-1373. |
|
Oseni TO, Masarirambi MT (2011). Effect of Climate Change on Maize (Zea mays).Production and Food Security in Swaziland. American-Eurasian J. Agric. Environ. Sci. 11:385-391. |
|
Prasanna BM, Vasal SK, Kassahun SK, Singh B (2001). Quality protein maize. Curr. Sci. 81:1308-1319. |
|
Raboy V (2006). Seed phosphorus and low-phytate crops. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and environment. CAB International, Wallingford. pp. 111-132. |
|
Rui Qi, Yuntao Ma, Baogang Hu, Phillipe De Reffye and Paul-Henry (2010). Optimization of source-sink dynamics in plant growth for ideotype breeding: A case study on maize. Comput. Electronics Agric. 71:96-105. |
|
Shakoor U, Rashid M, Saboor A, Khurshid N, Husnain Z, Rehman A (2017). Maize production response to climate change in Pakistan: A time series assessment. Sarhad J. Agric. 33(2): 320-330. |
|
Sharp RE (2002) Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant Cell Environ. 25:211-222. |
|
Sinclair TR, Muchow RC (2001). System analysis of plant traits to increase grain yield on limited water supplies. Agron. J. 93:263-270. |
|
Tilman D, Cassman KG, Matson PA, Naylor R, Polasky R (2002). Agricultural sustainability and intensive production practices. Nature 418:671-677. |
|
Tim W, Joachim Von B (2013). Climate change impacts on global food security. Science 341:508-513. |
|
Upadyayula N, Da-Silva HS, Bohn MO, Rocheford TR (2005). Genetic and QTL analysis of maize tassel and ear inflorescence architecture. Theor. Appl. Genet. 42:187-199. |
|
Xiang L, Takahashi T, Suzuki N, Kaiser HM (2014). Impact of climate change on maize production in Northeast and Southwest China and Risk Mitigation Strategies. APCBEE Procedia 8:11-20. |
|
Zare M, Choukan R, Bihamta MR, Majidi E, Kamelmanesh MM (2011). Gene action for some agronomic traits in maize (Zea mays L.). Crop Breed. J. 1(2):133-141. |
Copyright © 2025 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0