African Journal of
Agricultural Research

  • Abbreviation: Afr. J. Agric. Res.
  • Language: English
  • ISSN: 1991-637X
  • DOI: 10.5897/AJAR
  • Start Year: 2006
  • Published Articles: 6914

Full Length Research Paper

Maize ideotype breeding for changing environmental conditions

Khunsa Khakwani
  • Khunsa Khakwani
  • Maize Research Station, Ayub Agriculture Research Institute, Faisalabad, Pakistan.
  • Google Scholar
Muhammad Rafique
  • Muhammad Rafique
  • Maize Research Station, Ayub Agriculture Research Institute, Faisalabad, Pakistan.
  • Google Scholar
Ahsan Raza Malhi
  • Ahsan Raza Malhi
  • Maize Research Station, Ayub Agriculture Research Institute, Faisalabad, Pakistan.
  • Google Scholar
Muhammad Altaf
  • Muhammad Altaf
  • Maize Research Station, Ayub Agriculture Research Institute, Faisalabad, Pakistan.
  • Google Scholar
Saira Saleem
  • Saira Saleem
  • Maize Research Station, Ayub Agriculture Research Institute, Faisalabad, Pakistan.
  • Google Scholar
Muhammad Arshad
  • Muhammad Arshad
  • Maize Research Station, Ayub Agriculture Research Institute, Faisalabad, Pakistan.
  • Google Scholar


  •  Received: 18 January 2018
  •  Accepted: 21 February 2018
  •  Published: 15 March 2018

References

Alan LK, Brian AL (2010). Molecular genetic approaches to maize improvement. 63th ed. 2010; Springer.

 

Anonymous (2014). Climate summit, absent a change in course, scenarios for 2050 predict drought, heat waves. 

View

 

Anonymous (2012). FAO Statistical Databases. Food and Agriculture Organization of the United Nations.

View

 

Bommert P, Namiko SN, David J (2013). Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nature Genet. 45:334-337
Crossref

 

Brookes G, Barfoot P (2007). GM crops: the first ten years – global socio-economic and environmental impacts. ISAAA Brief P. 36. 

View

 

Cairns JE, Sanchez C, Vargas M, Ordo-ez R, Araus JL (2012). Dissecting maize productivity: ideotypes associated with grain yield under drought stress and well-watered conditions. J. Integr. Plant Biol. 54(12):1007-20.
Crossref

 

Cairns JE, Sonder K, Zaidi PH, Verhulst PN, Mahuku G, Babu R, Nair SK, Das B, Govaerts B, Vinayan MT, Rashid Z, Noor JJ, Devi P, Vicente F. san, and Prasanna BM. 2012. Maize production in a changing climate: Impacts, adaptation, and mitigation strategies. Adv. Agron. 114:1-65.
Crossref

 

Chapman SC (2011). Crop improvement, ideotyping and modeling under climate change. CIMAC 2011 Plant Industry/Climate Adaptation Flagship, Australia 2QAAFI, the University of Queensland, 

 

David BL, Graeme L, McLean G, Messina C, Michael J. Roberts WS (2013). The critical role of extreme heat for maize production in the United States. Nature Clim. Change. 3:497-501.
Crossref

 

Donald CM (1968). The breeding of crop ideotypes. Euphytica 17(3):385-403.
Crossref

 

Hochholdinger F, Tuberosa R (2009). Genetic and genomic dissection of maize root development and architecture. Plant Biol. 12:1-6.
Crossref

 

Hochholdinger F, woll K, Sauer M, Dembinsky D (2004). Genetic dissection of root formation in maize (Zea mays) reveals root-type specific developmental programs. Annals Bot. 93:359-368.
Crossref

 

Hong Xu, Tracy E, Evan G (2016). Climate Change and Maize Yield in Iowa. 
Crossref

 

James C (2006). Global status of commercialized biotech/GM crops. 2006. ISAAA Brief no. 35. 

 

Jordan W, Dugas WA, Shouse PJ (1983). Strategies for crop improvement for drought- prone regions. Agric. Water Manage. 7:281-299.
Crossref

 

Jianfeng W, Chuanxiao X, Zhuanfang H, Jianjun W, Changlin L, Mingshun L, Degui Z, Li B, Shihuang Z, Xinhai L (2011). Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize (Zea mays L.) inbred lines. PLoS ONE. 6:12.

 

Jonathan PL (2012). Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann. Bot. 112(2):347-57.

 

Janick J (2004). Plant breeding reviews. Vol 24, John Wiley and Sons, Inc. Purdue University.

 

Kondwani M, Madani K, Davtalab R, Ali M (2016). Climate Change Impacts on Maize Production in the Warm Heart of Africa. Water Resour. Manage. 30:5299-5312
Crossref

 

Lopez-Reynoso JJ, Hallauer AR (1998). Twenty-seven cycles of divergent mass selection for ear length in maize. Crop. Sci. 38:1099-1107
Crossref

 

Rebolledo MC (2014). Plant Ideotypes for climate change. CIAT. The 3,000 rice genomes project. GigaScience 3:7. 
Crossref

 

Mark JJ, Pearce RB (1975). Ideotype of maize. Euphytica 24:613-623.
Crossref

 

Mendelsohn H, Kough J, Vaituzis Z, Matthews K (2003). Are Bt crops safe? Nat. Biotechnol. 21:1003-1009.
Crossref

 

Meng W, Yinpeng L, Wei Y, Janet F, Xiaodong Y (2013). Effects of climate change on maize production and potential adaptation measures: a case study in Jilin Province, China. Clim Res. 46:223-242.

 

MI G, Chen F, Wu Q, Lai N, Yuan L, Zhang F (2010). Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. Sci. Chi. 53(12):1369-1373.

 

Oseni TO, Masarirambi MT (2011). Effect of Climate Change on Maize (Zea mays).Production and Food Security in Swaziland. American-Eurasian J. Agric. Environ. Sci. 11:385-391.

 

Prasanna BM, Vasal SK, Kassahun SK, Singh B (2001). Quality protein maize. Curr. Sci. 81:1308-1319.

 

Raboy V (2006). Seed phosphorus and low-phytate crops. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and environment. CAB International, Wallingford. pp. 111-132.

 

Rui Qi, Yuntao Ma, Baogang Hu, Phillipe De Reffye and Paul-Henry (2010). Optimization of source-sink dynamics in plant growth for ideotype breeding: A case study on maize. Comput. Electronics Agric. 71:96-105.
Crossref

 

Shakoor U, Rashid M, Saboor A, Khurshid N, Husnain Z, Rehman A (2017). Maize production response to climate change in Pakistan: A time series assessment. Sarhad J. Agric. 33(2): 320-330.
Crossref

 

Sharp RE (2002) Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant Cell Environ. 25:211-222.
Crossref

 

Sinclair TR, Muchow RC (2001). System analysis of plant traits to increase grain yield on limited water supplies. Agron. J. 93:263-270.
Crossref

 

Tilman D, Cassman KG, Matson PA, Naylor R, Polasky R (2002). Agricultural sustainability and intensive production practices. Nature 418:671-677.
Crossref

 

Tim W, Joachim Von B (2013). Climate change impacts on global food security. Science 341:508-513.
Crossref

 

Upadyayula N, Da-Silva HS, Bohn MO, Rocheford TR (2005). Genetic and QTL analysis of maize tassel and ear inflorescence architecture. Theor. Appl. Genet. 42:187-199.

 

Xiang L, Takahashi T, Suzuki N, Kaiser HM (2014). Impact of climate change on maize production in Northeast and Southwest China and Risk Mitigation Strategies. APCBEE Procedia 8:11-20.
Crossref

 

Zare M, Choukan R, Bihamta MR, Majidi E, Kamelmanesh MM (2011). Gene action for some agronomic traits in maize (Zea mays L.). Crop Breed. J. 1(2):133-141.