African Journal of
Agricultural Research

  • Abbreviation: Afr. J. Agric. Res.
  • Language: English
  • ISSN: 1991-637X
  • DOI: 10.5897/AJAR
  • Start Year: 2006
  • Published Articles: 6544

Full Length Research Paper

Exogenous ascorbic acid improved tolerance in maize (Zea mays L.) by increasing antioxidant activity under salinity stress

M. Billah
  • M. Billah
  • Molecular Breeding Laboratory, Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh.
  • Google Scholar
M. M. Rohman
  • M. M. Rohman
  • Molecular Breeding Laboratory, Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh.
  • Google Scholar
N. Hossain
  • N. Hossain
  • Molecular Breeding Laboratory, Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh.
  • Google Scholar
M. Shalim Uddin
  • M. Shalim Uddin
  • Molecular Breeding Laboratory, Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh.
  • Google Scholar


  •  Received: 09 March 2017
  •  Accepted: 14 April 2017
  •  Published: 27 April 2017

References

Abou-Leila B, Hussen MM, Leithy SZ, Metwally SA (2012). The combined effect of salinity and ascorbic acid on anatomical and physiological aspects of Jatropha plants. Austr. J. Basic Appl. Sci. 6:533-541.

 

Akram M, Ashraf MY, Ahmad R,Waraich EA, Ishfaq M (2010). Screening for salt tolerance in maize (Zea mays L.) hybrids at an early seedling stage. Pak. J. Bot. 42:141-154.

 
 

Alhasnawi AN, Kadhimi AA, Yusoff WMW, Zain CRCM, Isahak A, Alhasnawi AN (2015). Exogenous application of ascorbic acid ameliorates detrimental effects of salt stress in rice (MRQ74 and MR269) seedlings. Asian J. Crop Sci. 7:186-196.
Crossref

 
 

Arab L, Ehsanpour AA (2006). The effects of ascorbic acid on salt induced alfalfa (Medicago sativa L.) in vitro culture. Biokem 18(2):63-39.

 
 

Aravind P, Prasad MNV (2005). Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate glutathione cycle and glutathione metabolism. Plant Physiol. Biochem. 43:107-116.
Crossref

 
 

Arnon DI (1949). Copper enzyme in isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiol. 24:1-15.
Crossref

 
 

Asada K (1999). The water-water cycle in chloroplasts, scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:601-639.
Crossref

 
 

Ashraf M, McNeally T (1990). Improvement of salt tolerance in maize for selection and breeding. Plant Breed. 104:101-107.
Crossref

 
 

Beltagi SB (2008). Exogenous ascorbic acid (vitamin C) induced anabolic changes for salt tolerance in chickpea (Cicer arietinum L.) plants. Afr. J. Plant Sci. 2:118-123.

 
 

Bose J, Rodrigo-Moreno A, Shabala S (2013). ROS homeostasis in halophytes in the context of salinity stress tolerance. J. Exp. Bot. 65(5):1241-1257.
Crossref

 
 

Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72(1):248-254.
Crossref

 
 

Conklin PL (2001). Recent advances in the role and biosynthesis of ascorbic acid in plants. Cell Environ. 24:383-394.
Crossref

 
 

Cramer GR, Epstein E, Lãuchli A (1988). Kinetics of root elongation of maize in response to short-term exposure to NaCl and elevated calcium concentration. J. Exp. Bot. 39:1513-1522.
Crossref

 
 

Dolatabadian A, Jouneghani RS (2009). Impact of exogenous ascorbic acid on antioxidant activity and some physiological traits of common bean subjected to salinity stress. Not. Bot. Hort Agrobot. Cluj-Napoca 37(2):165.

 
 

Ebrahimian E, Bybordi A (2012). Effect of salinity, salicylic acid, silicium and ascorbic acid on lipid peroxidation, antioxidant enzyme activity and fatty acid content of sunflower. Afr. J. Agric. Res. 7(25):3685-3694
Crossref

 
 

Ejaz B, Sajid ZA, Aftab F (2012). Effect of exogenous application of ascorbic acid on antioxidant enzyme activities, proline contents, and growth parameters of Saccharum spp. hybrid cv. HSF-240 under salt stress. Turk. J. Biol. 36:630-640.

 
 

Eltelib HA, Fujikawa Y, Esaka M (2012). Overexpression of the acerola (Malpighia glabra) monodehydroascorbatereductase gene in transgenic tobacco plants results in increased ascorbate levels and enhanced tolerance to salt stress. South Afr. J. Bot. 78:295-301.
Crossref

 
 

Franceschi VR, Tarlyn NM (2002). L-ascorbic acid is accumulated in source leaf phloem and transported to sink tissues in plants. Plant Physiol. 130:649-656.
Crossref

 
 

Ghoulam C, Foursy A, Fares K (2002). Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ. Exp. Bot. 47:39-50.
Crossref

 
 

Gill SS, Tuteja N (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiol. Biochem. 48:909-930.
Crossref

 
 

Gul H, Rafiq A, Muhammad H (2015). Impact of exogenously applied ascorbic acid on growth, some biochemical constituents and ionic composition of guar (Cymopsis tetragonoloba) Subjected to salinity stress. J. Life Sci. 03(01):22-40.

 
 

Hakim MA, Juraimi AS, Hanafi MM, Ismail MR, Rafii MY, Islam MM, Selamat A (2014). The effect of salinity on growth, ion accumulation and yield of rice varieties. J.Anim. Plant Sci. 24(3):874-885.

 
 

Hameed A, Gulzar S, Aziz I, Hussain T, Gul B, Khan MA (2015). Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte. AoB Plant 7:1-37
Crossref

 
 

Hameed A, Hussain T, Gulzar S, Aziz I, Gul B, Khan MA (2012). Salt tolerance of a cash crop halophyte Suaeda fruticosa: Biochemical responses to salt and exogenous chemical treatments. Acta Physiol. Plant 34:2331-2340.
Crossref

 
 

Heath RL, Packer L (1968). Photoperoxidation in isolated chloroplast: Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys.125:189-198.
Crossref

 
 

Hoque MMI, Jun Z, Guoying W (2015). Evaluation of salinity tolerance in maize (Zea mays L.) genotypes at seedling stage. J. BioSci. Biot.4(1):39-49.

 
 

Hossain M, Ismail MR, Uddin MK, Islam MZ, Ashrafuzzaman M (2013). Efficacy of ascorbate-glutathione cycle for scavenging H2O2 in two contrasting rice genotypes during salinity stress. Austr. J. Crop Sci. 7:1801-1808.

 
 

Hossain MA, Hasanuzzaman M, Fujita M (2010). Upregulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiol. Mol. Biol. Plant 16:259-272.
Crossref

 
 

Hossain MA, Hossain AKMZ, Kihara T, Koyama H, Hara T (2005). Aluminum induced lipid peroxidation and lignin deposition are associated with an increase H2O2 generation in wheat seedlings. Soil Sci. Plant Nutr. 51:223-230.
Crossref

 
 

Huang C, He W, Guo J, Chang X, Su P, Zhang L (2005). Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. J. Exp. Bot. 56:3041-3049.
Crossref

 
 

Jaleel CA, Gopi R, Sankar B, Manivannan P, Kishorekumar A, Sridharan R, Panneerselvam R (2007). Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress. South Afr. J. Bot. 73:190-195.
Crossref

 
 

Katsuhara M, Otsuka T, Ezaki B (2005). Salt stress-induced lipid peroxidation is reduced by glutathione S-transferase, but this reduction of lipid peroxides is not enough for a recovery of root growth in Arabidopsis. Plant Sci. 169:369-373.
Crossref

 
 

Khan TA, MazidM, Mohammad F (2011). A review of ascorbic acid potentialities against oxidative stress induced in plants. J. Agrobiol. 28:97-111.
Crossref

 
 

Majeed A, Haq MA, Akhtar J, Basra SMA (2014). Screening of maize genotypes against poor quality water in solution culture. J. Agric. Res. 52(3):356-368.

 
 

Munns R (1993). Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Cell Environ. 16:15-24.
Crossref

 
 

Munns R (2002). Comparative physiology of salt and water stress. Cell Environ. 25:239-250.
Crossref

 
 

Munns R (2005). Genes and salt tolerance: bringing them together. New Phytol. 167:645-663.
Crossref

 
 

Nakano Y, Asada K (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867-880.

 
 

Nawaz K, Hussain K, Majeed A, Khan F, Afghan S, Ali K (2010). Fatality of salt stress to plants: Morphological, physiological and biochemical aspects. Afr. J. Biot. 9:5475-5480.

 
 

Neto AD, Prisco JT, Eneas-FilhoJ, Abreu CEBD, Gomes-Filho EA (2006). Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ. Exp. Bot. 56:87-94.
Crossref

 
 

Noctor G, Foyer CH (1998). Ascorbate and glutathione: keeping active oxygen under control. Ann. Rev. Plant Physiol. Plant Mol. Biol. 49:249-279.
Crossref

 
 

Ozgur R, Uzilday B, Sekmen AH, Turkan I (2013). Reactive oxygen species regulation and antioxidant defence in halophytes. Funct. Plant Biol. 40:832-847.
Crossref

 
 

Pignocchi C, Foyer CH (2003). Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. Curr. Opin. Plant Boil. 6:379-389.
Crossref

 
 

Rafique N, Raza SH, Qasim M, Iqbal N (2011). Pre-sowing application of ascorbic acid and salicylic acid to seed of pumpkin and seedling response to salt. Pak. J. Bot. 43:2677-2682.

 
 

Rohman M, Talukder MZA, Hossain MG, Uddin MS, Amiruzzaman M, Biswas A (2016). Saline sensitivity leads to oxidative stress and increases the antioxidants in presence of proline and betaine in maize (Zea mays L.) inbred. Plant Omics 9:35-47.

 
 

Sairam R, Srivastava G, Agarwal S, Meena R (2005). Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol. Plant 49:85-91.
Crossref

 
 

Shalata A, Mittova V, Volokita M, Guy M, Tal M (2001). Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. Physiol. Plant 112:487-494.
Crossref

 
 

Smirnoff N, Wheeler GL (2000). Ascorbic Acid in Plants: Biosynthesis and Function. BMG Crit. Rev. Biochem. Mol. Biol. 35:291-314.
Crossref

 
 

Tuna AL, Kaya C, Altunlu H, Ashraf M (2013). Mitigation effects of non-enzymatic antioxidants in maize (Zea mays L.) Plants under salinity stress. Aust. J. Crop Sci. 7:1181-1188.

 
 

Turan S, Tripathy BC (2013). Salt and genotype impact on antioxidative enzymes and lipid peroxidation in two rice cultivars during de-etiolation. Int. J. Cell Biol. 250:209-222.
Crossref

 
 

Venkatesh J, Park SW (2014). Role of L-ascorbate in alleviating abiotic stresses in crop plants. Bot. Stud. 55(1):38.
Crossref

 
 

Wang Z, XiaoY, Chen W, Tang K, Zhang L (2010). Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. J. Integr. Plant Biol. 52:400-409.
Crossref

 
 

Yildiztugay E, Ozfidan-Konakci C, Kucukoduk M (2013). Sphaerophysa kotschyana, an endemic species from Central Anatolia: antioxidant system responses under salt stress. J. Plant Res.126:729-742.
Crossref

 
 

Yu CW, Murphy TM, Lin CH (2003). Hydrogen peroxideinduces chilling tolerance in mungbeans mediated through ABA-independent glutathione accumulation. Funct. Plant Biol. 30:955-963.
Crossref

 
 

Zhao GQ, Ma BL, Ren CZ (2007). Growth, gas exchange, chlorophyll fluorescence, and ion content of naked oat in response to salinity. Crop Sci. 47(1):123-131.
Crossref