Full Length Research Paper
References
Abbas SR, Ahmad SD, Sabir SM, Shah AH (2014). Detection of drought tolerant sugarcane genotypes (Saccharum officinarum) using lipid peroxidation, antioxidant activity, glycine - betaine and proline contents. J. Soil Sci. Plant Nutr. 14(1):233-243. |
|
Aebi H (1984). Catalase in vitro. Method Enzymol. 105:121-126. |
|
Allen MM (1968). Simple conditions for growth of unicellular blue-green algae on plates. J. Phycol. 4:1-4. |
|
Andréia C, Gisele P, Silvia BR, Carolina WR, Fernanda L, Márcia MP (2012). Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant Protection. Genet. Mol. Biol. 35(4):1011-1019. |
|
Barrs HD, Weatherley PE (1962). A re-examination of the relative turgidity techniques for estimating water deficits in leaves. Aust. J. Biol. Sci. 15:413-428. |
|
Bates LS, Waldren RP, Teare ID (1973). Rapid determination of free proline for water stress studies. Plant Soil. 39:205-207. |
|
Bernfeld P (1955). Amylase α and β. Method Enzymol. 1:149-158. |
|
Beutler E, Duron O, Kelly BM (1963). Improved method for determination of blood glutathione. J. Lab. Clin. Med. 61:882. |
|
Boyer JS (1988). Cell enlargement and growth-induced water potentials. Physiol. Plant 73:311-316. |
|
Caverzan A, Passaia G, Rosa SB (2012). Carolina Werner Ribeiro, Fernanda Lazzarotto, Márcia Margis-Pinheiro, Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant Protection. Genet. Mol. Biol. 35(4):1011-1019. |
|
Chakraborty U, Pradhan B (2012). Wheat varieties under drought stress. Braz. J. Plant Physiol. P 24. |
|
Chance B, Maehly AC (1955). Assay of catalases and peroxidases.-In: Colowick, S.P., Kaplan, N.O. (ed.): Methods in Enzymology. Academic Press, New York 2:764-775. |
|
Chugh V, Kaur N, Gupta KA (2011). Evaluation of oxidative stress tolerance in maize (Zea mays L.) seedlings in response to drought, Indian J. Biochem. Biophys. 48(1):47-53. |
|
Cunhua S, Wei D, Xiangling C, Xinna X, Yahong Z, Dong S, Jianjie S (2010). The effects of drought stress on the activity of acid phosphatase and its protective enzymes in pigweed leaves. Afr. J. Biotechnol. 9(6):825-833. |
|
Deinlein U, Stephan AB, Horie T, Luo W, Xu GH, Schroeder JI (2014). Plant Stress Tolerance Mechanism. Trends Plant Sci. 19:371-379. |
|
Diaz-Vivancos P, Faize M, Barba-Espin G, Faize L, Petri C, Hernández JA, Burgos L (2013). Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase. Plant Biotechnol. J. 8:976-85. |
|
Ehsanpour AA, Amini F (2003). Effect of salt and drought stress on acid phosphatase activities in alfalfa (Medicago sativa L.) explants under in vitro culture. Afr. J. Biotechnol. 2(5):133-135. |
|
Ghane SG, Lokhande VH, Nikam TD (2012). Differential growth, physiological and biochemical responses of niger (Guizotia abyssinica Cass.) cultivars to water-deficit (drought) stress. Acta Physiol. Plant 34:215-225. |
|
Heath RL, Packer L (1968). Photoperoxidation in isolated chloroplasts, Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125:189-198. |
|
Hoerling N, Svensmark O (1976). Carboxyl esterase with different substrate specificity in human brain extracts. J. Neurochem. 27:523-528. |
|
Islam MR, Xue X, Mao S, Ren C, Enejie AE, Hua Y (2010). Effects of water-saving superabsorbent polymer on antioxidant enzyme activities and lipid peroxidation in oat (Avena sativa L.) under drought stress. J. Sci. Food Agric. 15, 91(4):680-686. |
|
Krasensky J, Jonak C (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 63(4):1593-1608. |
|
Lepeduš H, Cesar V, Krsnik-Rasol M (2004). Guaiacol Peroxidases in Carrot Root. Food Technol. Biotechnol. 42(1):33-36. |
|
Lowry OH, Rosebrough NJ, Farr AR, Randoll RJ (1951). Protein measurement with Folin- Phenol reagent. J. Biol. Chem. 193:265-275. |
|
Mannervik B, Carlberg I (1985). Glutathione reductase. Methods in Enzymology 113:484-490. |
|
Michelle D, Bingru H (2007). Changes in Antioxidant Enzyme Activities and Lipid Peroxidation for Bentgrass Species in Response to Drought Stress. J. Amer. Soc. Hort. Sci. 132(3):319-326. |
|
Myrene DR, Devaraj VR (2011). Specific and non-specific response to Hyacinth bean (Dolichos lablab) to drought stress. India J. Biotechnol. 10:130-139. |
|
Nezhadahmadi A, Prodhan ZH, Faruq G (2013). Drought Tolerance in Wheat, Hindawi Publishing Corporation. Sci. World J. 610721:12. |
|
Nicholls DG, Ferguson S (2001). Plant Responses to Drought Stress: From Morphological to Molecular Features. Bioenergetics Academic Press, London 3:109-111. |
|
Pang Q, Chen S, Dai S, Chen Y, Wang Y, Yan X (2010). Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophile. J. Proteome Res. 7, 9(5):2584-2599, |
|
Regier N, Streb S, Cocozza C, Schaub M, Cherubini P, Zeeman CS, Frey B (2009). Drought tolerance of two black poplar (Populus nigra L.) clones: contribution of carbohydrates and oxidative stress defence. Plant Cell Environ. 32:1724-1736. |
|
Rybka K, Nita Z (2015). Physiological requirements for wheat ideotypes in response to drought threat. Acta Physiol. Plant 37:97. |
|
Sadasivam S, Manickam A (1997). Vitamins. In: Biochemical methods. New Age International (P) Limited, New Delhi, 2nd Edition pp. 185-186. |
|
Selote DS, Khanna- Chopra R (2010). Antioxidant response of wheat roots to drought acclimation. Protoplasma 245:153-163. |
|
Shao HB, Chu LY, Lu ZH, Kang CM (2008). Primary antioxidant free radical scavenging and redox signalling pathways in higher plant cells. Int. J. Biol. Sci. 4:8-14 |
|
Sheoran S, Thakur V, Narwal S, Turan R, Mamrutha HM, Singh V, Tiwari V, Sharma I (2015). Differential Activity and Expression Profile of Antioxidant Enzymes and Physiological Changes in Wheat (Triticum aestivum L.) Under Drought. Appl. Biochem. Biotechnol. 177:1282-1298. |
|
Shigeru S, Takahiro I, Masahiro T, Yoshiko M, Toru Takeda, YY, Kazuya Y (2002). Regulation and function of ascorbate peroxidase isoenzymes. J. Exp. Bot. 53(372):1305-1319. |
|
Silva MA, Santos CM (2015). Physiological and biochemical responses of sugarcane to oxidative stress induced by water deficit and paraquat. Acta Physiol. Plant 37:172. |
|
Sinay H, Karuwal RL (2014). Proline and total soluble sugar content at the vegetative phase of six corn cultivars from Kisar Island Maluku, grown under drought stress conditions. Int. J. Adv. Agric. Res. 2:77-82. |
|
Sofo A, Scopa A, Nuzzaci M, Vitti A (2015). Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to |
|
drought and salinity stresses. Int. J. Mol. Sci. 16(6):13561-1378. |
|
Sood A, Pabbi S, Uniyal PL (2011). Effect of paraquat on lipid peroxidation and antioxidant enzymes in aquatic fern Azolla microphylla Kual. Russ J. Plant Physiol. 58:667-673. |
|
Sorkheh K, Shiran B, Rouhi V, Khodambashi M, Sofo A (2011). Regulation of the ascorbate-glutathione cycle in wild almond during drought stress. Russ J. Plant Physiol. 58(1):76-84. |
|
Tana W, Menga QW, Brestic M, Olsovskab K, Yanga X (2011). Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. J. Plant Physiol. 168:2063-2071. |
|
Tavakkoli E, Rengasamy P, McDonald GK (2010). High Concentration of Na+ and Cl− Ions in Soil Solution Have Simultaneous Detrimental Effects on Growth of Faba Bean under Salinity Stress. J. Exp. Bot. 61:4449-4459. |
|
Torres-Franklin ML, Contour-Ansel D, Zuily-Fodil Y, Pham-Thi AT (2008). Molecular cloning of glutathione reductase cDNAs and analysis of GR gene expression in cowpea and common bean leaves during recovery from moderate drought stress. J. Plant Physiol. 165:514-521. |
|
Turner NC, Kramer PJ (1980). Adaptation of plant to water and high temperature stress. Wiley Interscience Pub, New York. pp. 207-230. |
|
Velikova V, Yordanov I, Edreva A (2000). Oxidative stress and some antioxidant system in acid rain treated bean plants: Protective role of exogenous polyamines. Plant Sci. 151:59-66. |
|
Vishal C, Narinder K, Grewal MS, Anil GK (2013). Differential antioxidative response of tolerant and sensitive maize (Zea mays L.) genotypes to drought stress at reproductive stage. Indian J. Biochem. Biophys. 50:158-158. |
|
Wang YC, Lee CM, Lee LC, Tung LC, Hsieh-Li HM, Lee-Chen GJ, Su MT (2011). Mitochondrial dysfunction and oxidative stress contribute to the pathogenesis of Spinocerebellar Ataxia Type 12 (SCA12). J. Biol. Chem. 286(24):21742-21754. |
|
Yang H, Yang T, Baur JA, Perez E, Matsui T, Carmona JJ, Lamming DW, Souza-Pinto NC, Bohr VA, Rosenzweig A (2007). Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130:1095-1107. |
|
Yerranguntla RR, Zubaidha PK, Jakku NR, Kondhare D, Deshmukh S, Saiprakash SP (2012). Production of Biodiesel from Guizotia abyssinica seed oil using crystalline Manganese carbonate (MnCO3) a Green catalyst. Catal. Sustain. Energy pp. 22–27. |
Copyright © 2025 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0