African Journal of
Agricultural Research

  • Abbreviation: Afr. J. Agric. Res.
  • Language: English
  • ISSN: 1991-637X
  • DOI: 10.5897/AJAR
  • Start Year: 2006
  • Published Articles: 6688

Full Length Research Paper

Sensor-based algorithms to improve barley nitrogen efficiency in Queensland

Paul Theophile Epee Misse
  • Paul Theophile Epee Misse
  • The University of Queensland, Brisbane St Lucia, QLD 4072, Australia.
  • Google Scholar
Madan Gupta
  • Madan Gupta
  • The University of Queensland, Brisbane St Lucia, QLD 4072, Australia.
  • Google Scholar


  •  Received: 17 July 2017
  •  Accepted: 29 August 2017
  •  Published: 19 July 2018

References

Barley Australia (2016). Barley. 

View

 

Bausch WC (1993). Soil background effects on reflectance-based crop coefficients for corn. Rem. Sens. Environ. 46:213-222.
Crossref

 

BOM (2016). Australian Bureau of Meteorology. 

View

 

Bremner JM, Mulvaney C (1982). Nitrogen—total. Methods of soil analysis Part 2 Chemical and microbiological properties pp. 595-624.

 

Elvidge CD, Lyon RJ (1985) Influence of rock-soil spectral variation on the assessment of green biomass. Rem. Sens. Environ. 17:265-279.
Crossref

 

FAO (2016). FAOSTAT. Food and Agriculture Organization of the United Nations (FAO) Statistics Division.

 

Freeman K, Raun W, Johnson G, Mullen R, Stone M, Solie J (2003). Late-season prediction of wheat grain yield and grain protein. Comm. Soil Sci. Plant Anal. 34:1837-1852.
Crossref

 

Gu Y, Wylie BK, Howard DM, Phuyal KP, Ji L (2013). NDVI saturation adjustment: A new approach for improving cropland performance estimates in the Greater Platte River Basin, USA. Ecol. Indic. 30:1-6.
Crossref

 

Haboudane D, Miller JR, Pattey E, Zarco-Tejada PJ, Strachan IB (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 90:337-352.
Crossref

 

Huete A, Jackson R, Post D (1985). Spectral response of a plant canopy with different soil backgrounds. Remote Sens. Environ. 17:37-53.
Crossref

 

Jeuffroy MH, Bouchard C (1999). Intensity and duration of nitrogen deficiency on wheat grain number.

View

 

Kleman J, Fagerlund E (1987). Influence of different nitrogen and irrigation treatments on the spectral reflectance of barley. Remote Sens. Environ. 21:1-14.
Crossref

 

Lemaire G, Jeuffroy MH, Gastal F (2008). Diagnosis tool for plant and crop N status in vegetative stage: Theory and practices for crop N management. Eur. J. Agron. 28:614-624.
Crossref

 

Lukina E, Freeman K, Wynn K, Thomason W, Mullen R, Stone M, Solie J, Klatt A, Johnson G, Elliott R (2001). Nitrogen fertilization optimization algorithm based on in-season estimates of yield and plant nitrogen uptake. J. Plant Nutr. 24:885-898.
Crossref

 

Millard P (1988). The accumulation and storage of nitrogen by herbaceous plants. Plant Cell Environ. 11:1-8.
Crossref

 

Mullen RW, Freeman KW, Raun WR, Johnson GV, Stone ML, Solie JB (2003). Identifying an in-season response index and the potential to increase wheat yield with nitrogen. Agron. J. 95:347-351.
Crossref

 

Pe-uelas J, Isla R, Filella I, Araus JL (1997). Visible and near-infrared reflectance assessment of salinity effects on barley. Crop Sci. 37:198-202.
Crossref

 

Pettersson C, Eckersten H (2007). Prediction of grain protein in spring malting barley grown in northern Europe. Eur. J. Agron. 27:205-214.
Crossref

 

Pinter Jr P, Jackson R, Idso S, Reginato R (1981). Multidate spectral reflectance as predictors of yield in water stressed wheat and barley. Int. J. Rem. Sens. 2:43-48.
Crossref

 

Raun W, Solie J, Johnson G, Stone M, Lukina E, Thomason W, Schepers J (2001). In-Season Prediction of Potential Grain Yield in Winter Wheat Using Canopy Reflectance. Agron J. 93:131-138.
Crossref

 

Raun W, Solie J, Stone M, Martin K, Freeman K, Mullen R, Zhang H, Schepers J, Johnson G (2005). Optical Sensor‐Based Algorithm for Crop Nitrogen Fertilization. Comm. Soil Sci. Plant Anal. 36:2759-2781.
Crossref

 

Raun WR (2002). Improving Nitrogen Use Efficiency in Cereal Grain Production with Optical Sensing and Variable Rate Application. Agron. J. 94:815.
Crossref

 

Raun WR, Solie JB, Johnson GV, Stone ML, Mullen RW, Freeman KW, Thomason WE, Lukina EV (2002). Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agron. J. 94:815-820.
Crossref

 

Sembiring H, Lees H, Raun W, Johnson G, Solie J, Stone M, DeLeon M, Lukina E, Cossey D, La Ruffa J (2000). Effect of growth stage and variety on spectral radiance in winter wheat. J. Plant Nutr. 23:141-149.
Crossref

 

Teal R, Tubana B, Girma K, Freeman K, Arnall D, Walsh O, Raun W (2006). In-season prediction of corn grain yield potential using normalized difference vegetation index. Agron. J. 98:1488-1494.
Crossref

 

Tubana B, Arnall D, Walsh O, Chung B, Solie J, Girma K, Raun W (2008). Adjusting midseason nitrogen rate using a sensor-based optimization algorithm to increase use efficiency in corn. J. Plant Nutr. 31:1393-1419.
Crossref

 

Watson D, Thorne GN, French S (1963). Analysis of growth and yield of winter and spring wheats. Ann. Bot. 27:1-22.
Crossref

 

Whitmore A (1988). A function for describing nitrogen uptake and dry matter production by winter barley crops. Plant Soil 111:53-58.
Crossref

 

Wright DL, Rasmussen VP, Ramsey RD, Baker DJ, Ellsworth JW (2004). Canopy reflectance estimation of wheat nitrogen content for grain protein management. GIScience Rem. Sens. 41:287-300.

 

Zadoks JC (1974). A decimal code for the growth stages of cereals. Weed Res. 14:415-421.
Crossref