African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12278

Full Length Research Paper

Bioethanol production from date palm fruit waste fermentation using solar energy

Ahmed Boulal
  • Ahmed Boulal
  • Laboratoire de microbiologie appliquée, département de biologie, faculté sciences de la nature et de la vie, Université Oran1 Ahmed Ben Bella, 31100 Oran. Algérie.
  • Google Scholar
Mabrouk Kihal
  • Mabrouk Kihal
  • Laboratoire de microbiologie appliquée, département de biologie, faculté sciences de la nature et de la vie, Université Oran1 Ahmed Ben Bella, 31100 Oran. Algérie.
  • Google Scholar
Cherif Khelifi
  • Cherif Khelifi
  • Unité de Recherche en Energie Renouvelables en Milieu Saharien, URERMS, Centre de Développement des Energies Renouvelables, CDER, 01000, Adrar, Algeria.
  • Google Scholar
Boudjemaa Benali
  • Boudjemaa Benali
  • Unité de Recherche en Energie Renouvelables en Milieu Saharien, URERMS, Centre de Développement des Energies Renouvelables, CDER, 01000, Adrar, Algeria.
  • Google Scholar


  •  Received: 29 March 2016
  •  Accepted: 30 June 2016
  •  Published: 27 July 2016

Abstract

Every year, more than 236,807 tons, equivalent to 30% of date-palm fruits produced in Algeria, is lost during picking, storage, and commercialization processes. Gasification of this huge biomass can generate biogas such as bioethanol, biodiesel, gasoline and other useful substances. Bioethanol is becoming the main biofuel produced by chemical synthesis or anaerobic fermentation from biomass and is significant for industrial development, investment, and use. It is eco-friendly, moderately costly and cleaner than other gasses. Actually, due to modern biotechnologies, it is possible to valorise the common date-palm waste (CDPW) by bioconversion and to commercialize them in local and international markets in the form of new products with an acceptable added value such as bioethanol. CDPW is a renewable and sustainable resource of energy that is not greatly used in industries. The date is rich in biodegradable sugars, providing bioethanol after fermentation during 72 h at 30°C in the presence of Saccharomyces cerevisiae yeast and the distillation of date’s juice obtained. In the first experience, a solar batch fermenter (SBF) of 50L capacity, and a butane gas distiller using a cocotte (cooker) of 30L capacity was designed and constructed. The bioconversion systems led to the production of 250 mL/kg of ethanol at 90° after distillation of the CDPW juice at 78°. This is in comparison to the theoretical ethanol directly produced from sugar by chemical synthesis process. The 33% efficiency that was obtained appeared satisfactory and it encouraged the great scaling development of bioethanol based on CDPW biomass and other raw materials abundant in Algeria Sahara.

Keywords: Algerian Sahara, bioethanol, dates-palms waste valorization, distillation, fermentation, solar energy, Saccharomyces cerevisiae.