African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12125

Review

Aureobasidium pullulans, an economically important polymorphic yeast with special reference to pullulan

Rajeeva Gaur1*, Ranjan Singh1, Monika Gupta2 and Manogya Kumar Gaur3  
  1Department of Microbiology, Dr. Ram Manohar Lohia Avadh University, Faizabad- 224001, Uttar Pradesh, India. 2Department of Botany, University of Lucknow, Lucknow-226001, Uttar Pradesh, India. 3A.G.M. Environment (ETP and Biocompost), Balrampur Distillery, Bhabhanan, Uttar Pradesh, India.
Email: [email protected]

  •  Accepted: 08 October 2010
  •  Published: 22 November 2010

Abstract

 

Aureobasidium pullulans, popularly known as black yeast, is one of the most widespread saprophyte fungus associated with wide range of terrestrial and aquatic habitats, in temperate and tropical environment. It is a polymorphic fungus that is able to grow in single yeast-like cells or as septate, polykaryotic hyphae showing synchronous conditions, with budding cells. This fungus has been exploited potentially for commercial production of various enzymes (amylase, xylanase, pectinase, etc). Single cell protein, alkaloids and polysaccharide, especially pullulan, an exopolysaccharide, is a linear α-d-glucan connected with α-1,4 glycosidic bond mainly of maltotriose repeating units interconnected by α-1,6 linkages. Pullulan has been considered as one of the important polysaccharide for production of biodegradable plastics. More than 300 patents for applications have been developed. It is the only fungus which produce higher amount of pullulan and has been exploited all over the world. The fungus has excellent genetic make-up to produce various important metabolites at commercial production with limited species. Some of the A. pullulans have potential antagonistic activity against a number of phytopathogenic fungi used as bio-control agents of post-harvest diseases. It has been found to be tolerant to many metal ions which are common pollutants of soil and water. Several strains of this fungus have ability to degrade xenobiotic compounds. In the light of the above facts, this review article has emphasized on the orientation, morphology, biochemical characteristics, habitats and its economic potentials with special reference to pullulan. 

 

Key words: Aureobasidium pullulans, single cell protein, xenobiotic compounds, pullulan.

Abbreviation

Abbreviations: SCP, Single cell protein; FOS, fructo-oligosaccharides; UDP, uridine diphosphate; UDPG, uridine diphosphate glucose.