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One of the most interesting applications of the results of probability theory involves estimating 
unknown probability and making decisions on the basis of new (sample) information. Biomedical 
scientists often use the Bayesian decision theory for the purposes of computing diagnostic values 
such as sensitivity and specificity for a certain diagnostic test and from which positive or negative 
predictive values are obtained in other to make decisions concerning the well-being of the patient. 
Often times error rates are encountered and estimated from the results of trials of the screening test 
with a view to calculating the overall case rate for which an accurate estimate is rarely available. The 
concept of conditional probability takes into account information about the occurrence of one event to 
predict the probability of another event. It is on this premise that this article presents Bayes’ theorem as 
a vital tool. A brief intuitive development of this theorem and its application in diagnosis is given with 
minimum proof and examples.  
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INTRODUCTION  
 
An investigation by Stigler (1983) suggests that Bayes’ 
theorem was discovered by Nicholas Saunderson some 
time before Bayes. Bayes’ theorem is named after the 
British Mathematician Reverend Thomas Bayes’ (1702-
1761), who studied how to compute a distribution for the 
parameter of a binomial distribution (to use modern termi-
nology). In 1763, Bayes’ work was edited and presented 
(in a short paper which has become one of the most 
memoir in the history of science and one of the most 
controversial) after his death, as an Essay towards 
solving a problem in the Doctrine of chances.  

Bayes’ theorem (also known as Bayes’ rule or Bayes’ 
law) is a result in probability theory that relates condi-
tional probabilities. If A and B denote two events, P(A/B) 
denotes the conditional probability of A occurring, given 
that B occurs. The two conditional probabilities P(A/B) 
and P(B/A) are generally different. Bayes’ theorem gives 
a relation between P(A/B) and P(B/A). An important appli-  
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cation of Bayes’ theorem is that it gives a rule how to 
update or revise the strengths of evidence-based beliefs 
in light of new evidence a posterior. As a formal theorem, 
Bayes’ theorem is valid in all interpretation of probability. 
The use of Bayes’ theorem for evaluating laboratory tests 
and the principles and techniques of medical decision 
analysis are being introduced in approximately half of the 
medical schools (Elstein et al., 1985). 
 Further explanation of Bayes’ theorem will be 
developed with an understanding of its derivation from 
conditional probabilities and giving some versions of 
Bayes’ theorem. The treatment will be denoted exclu-
sively to an understanding of what the theorem is, what it 
means and what it can be used for. We shall review 
some principles and terminology of diagnostic test 
evaluation and go further to give diagnostic application of 
Bayes’ theorem in biomedical research using examples. 
Specifically, it will be shown that positive and negative 
predictive values can be computed from the sensitivity 
and specificity of diagnostic tests, an important charac-
teristic of such tests. Bayes’ theorem will be seen in 
terms of odd ratio (a measure of association for 2 x 2 
tables that are  not  functions  of 2χ   especially  in  cross- 
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sectional studies. Most importantly, expected error 
rates (false positive and false negative rates) will be 
investigated if a test is to be used in a screening 
program. The importance of the characteristics of 
diagnostic tests was indicated in a recent survey 
(Davson-Saunder et al.,1987) were 89% of the medical 
schools surveyed include this topic in their curriculum. 
Recent result on the evaluation of genetic testing with 
particular reference to the estimations of sensitivity, 
specificity, PPV and NPV will be made known. 
 
 
PROBABLITY 
 
For better understanding of Bayes’ theorem, it is 
important to introduce some notation from probability 
theory. Suppose we wish to study a certain population of 
individuals and suppose that each of these individuals is 
either diseased (D) or disease-free (D

c
). Because every 

individual in the population is in one of these two 
categories, these two categories (or events) are said to 
be jointly exhaustive. Because, an individual cannot be in 
both categories, the two categories are said to be 
mutually excusive. So the two conditions, D and D

c
 form 

mutually exclusive and jointly exhaustive events in our 
population. Now, suppose that we wish to predict the 
disease status of an individual to be randomly selected 
from this population, i.e. what is the likelihood that a 
diseased individual will be selected or that a disease-free 
individual will be selected? We will use a numerical 
measure of likelihood on a scale from zero to one called 
probability. The probability that an individual in the 
population is diseased, denoted by P(D), is the overall 
likelihood that the individual is diseased, sometimes 
called the prevalence rate of the disease; it is computed 
by dividing the number of diseased individuals in the 
population by the total of individual in the population: 
 

( )
number of diseased people

P D
population size

=  

 
P(D) is in  other words  taken to be the prior probability or 
marginal probability of D. It is “prior” in the sense that it 
does not take into account any information about D

C
.
  
 

Also for P(D
c
), the probability that an individual from the 

population is diseased-free is as follows: 
 

( )
c number of disease free people

P D
population size

−
=    

 
So P(D

c
) is the prior or marginal probability of B, and acts 

as a normalizing constant. Note that 
 
P(D) + P(D

c
) =1                                                            (1) 

 
Because the sum of these two fractions yield the number  

 
 
 
 
of diseased people plus the number of disease-free 
people divided by the total number of people, which is 
one (remember that the categories, diseased and 
disease- free are jointly exhaustive). If an event has a 
probability of 0, then that event is considered to be 
nonexistent. So, P(D)= 0 implies that no one in the 
population has the disease.  If an event has a probability 
of 1, then that event is considered to be certain to occur.  
Hence, P(D)=1 implies that everyone in the population 
has the disease. If P(D) =0.5, then a randomly selected 
individual from the population is just as likely to be 
diseased as to be disease-free. 

Suppose now that a certain number of individuals in 
this population are male (M). From the discussion above, 
we can compute the probability that a randomly selected 
individual from the population is male, P(M), by dividing 
the number of males by the total number of individuals in 
the population: 
 

( )
number of male

P M
population size

=  

 
Consider the probability that a male in this population is 
diseased. Technically, this is referred to as the condi-
tional probability that an individual in this population is 
diseased given that the individual is male and is denoted 
by P(D/M). Therefore, this conditional probability is the 
number of individuals in the population who are diseased 
and male divided by the total number of males in the 
population (relative frequency of male who are diseased).  
 
Mathematically, 
 

( ) ( )
( / ) ( ) 0

( )

P D and P M
P D M provided P M

P M
= ≠    

or   
 

( / ) ( )
( / )

( )

P M D and P D
P D M

P M
=  

 
where P(D/M)  is the conditional probability of D, given M. 
It is also called the posterior probability because it is 
derived from or depends upon the specified value of M. 
Where   
 

( )P D   and ( ) ( ) ( )P M P D P M= ×  

 

Also  ( ) ( / ) ( )P D and M P D M P M= ×  

 

Similarly, the proportion of females (F) who are diseased 
is as follows: 
 

( / ) , ( ) 0
number of diseased female

P D F provided P F
number of female

= ≠
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Table 1.  A   2×2   table of disease status versus sex.  
 

Sex Disease status 

Diseased Not Diseased Total 

Male e  f  e+f 

Female g  h  g+h 

Total e+g f +h e +f+g +h 

 

Using the notation of Table 1, Where e = number of diseased males; f = number of disease-free males; g = number of 
diseased females; h = number of disease-free females. 

 
 
 

Table 2. A 2×2 table of disease status versus sex. 

 

Sex Disease status 

Diseased Not Diseased Total 

Male 200 500 700 

Female 400 300 700 

Total 600 800 1400 
 
 
 

Also  
( / ) ( )

( / )
( )

P F D P D
P D F

P F
=  

 

It is called conditional probability of D given F. 
 

( ) ( )
( / ) , ( ) 0

( )

P D and P F
P D F provided P F

P F
= ≠  

 

Where ( ) ( ) ( / ) ( )P D and P F P D F P F= × ; and 

means intersection of D and F.  
Note that in the case of conditional probability, the 
population can be thought of as being reduced so that it 
includes only those individuals with the given condition, 
ie. in computing conditional probabilities attention is 
restricted to the subpopulation of individuals assuming 
the given  condition. Based on the above explanations, 
we will conclude that Bayes’ theorem relates the 
conditional and marginal probabilities of stochastic events 
A and B. 

These probabilities and conditional probabilities can 
easily be computed from a table that shows the 
population cross- classified according to sex and disease 
status; such a table is called a contingency table (Table 
1).  
 

( )
number of males

P M
population size

=  

 

= (e+f)/(e+f+g+h)  
 

( )
( )

number of diseased individuals
P D

population size
=   

  =(e+g)/(e+f+g+h) 
 
If we are interested in the disease risk only among males 
in the population, then we would ignore the g+h females 
and calculate as follows:  
 

( )
( / )

( )

number of diseased males
P D M

number of males
=  

=e/(e+f) 
 
To find proportion of diseased individuals who are 
females we would ignore the f+h disease-free individuals:   
 

( )
( / )

number of diseased females
P F D

number of diseased
=  

 
Furthermore, P(D

c
)=(f+h)/(e+f+g+h) 

 
P(M/D

c
)=f/f+h and P(F/D

c
)=h/f+h 

 
Example 1: Consider the population in the example below 
(Table 2):  
From the above table, the prevalence rate is as follows: 
 
P(D)=600/1400=.428 
 
The proportion of diseased individuals who are male is as 
follows: 
 
 P(M/D)=200/600=.3 
 
The proportion of disease-free individuals who are male 
is as follows:  



 

4810         Afr. J. Biotechnol. 
 
 
 
P(M/D

c
)=500/800=0.625. 

 
Consequently, one-third of diseased individuals are male; 
63% of the disease-free individuals are male. Finally, the 
proportion of males who are diseased is as follows:  

 
P(D/M)=200/700=0.286. 

 
From the discussion above, it was shown that if a 
contingency table showing the entire population cross-
classified according to sex and disease status is 
provided, then all conditional probabilities can be 
computed directly. However, it is not always the case 
that, that contingency table is available; sometimes only 
certain probabilities are available. For instances, suppose 
that the proportion of diseased individuals who are male, 
P(M/D), the proportion of diseased individuals who are 
female, P(F/D), and the prevalence rate, P(D) are known. 
Note that if P(D) is known, then P(D

c
) will also be known 

since P(D
c
)= 1-P(D) by equation 1. 

 
 
DERIVING BAYES’ RESULT FROM CONDITIONAL 
PROBABILITIES 

 
Now suppose we wish to know the proportion of males 
who are diseased, P(D/M). Bayes’ theorem solves the 
problem of finding this probability if we recall the fact that 
D is an event in form of A1 and M as another event B, 
such that  

 

1
1

( )
( / ) , ( ) 0

( )

P A and B
P A B provided P B

P B
= ≠  

 
and similarly the probability of another events A2 given B 
is 

 

2
2

( )
( / ) , ( ) 0

( )

P A and B
P A B provided P B

P B
= ≠   

 

Where
1 2

( ) ( ) ( )P B P A and B P A and B= +   

 

1 1 1 2 2 2( ) ( ) ( / ) ( ) ( ) ( / )P A and B P A P B A and P A and B P A P B A= × = ×  

 
This lemma is sometimes called the product rule for 
probabilities. If both sides of this equation is divided by 
P(B), provided  that  P(B)≠0  then  we  obtain  Bayes’  
theorem  as   
 

( / ) ( )
( / )

( )

P B A P A
P A B

P B
=  . 

 

In terms of P(D/M), this result will be written for only two 
events as   

 

 

 

 

( ) ( / )
( / )

( ) ( / ) ( ) ( / )
c c

P D P M D
P D M

P D P M D P D P M D
=

+
            (2) 

 
 Bayes’ rule is thus a way of computing a certain 
conditional probabilities, P(D/M),  exclusive from certain 
probabilities [P(D) and P(D

c
)] and certain conditional 

probabilities, [P(M/D) and P(M/D
c
)] that are known. If the 

prevalence rate [P(D)] and the proportions of the 
diseased and disease-free subpopulations that are male 
[P(M/D) and P(M/D

c
)] are known, then the proportion of 

males that are diseased [P(M/D)] can be computed using 
equation 2. 
In the same manner, the conditional probability of D

c
 

given M is  
 

( ) ( / )
( / )

( ) ( / ) ( ) ( / )

c c
c

c c

P D P M D
P D M

P D P M D P D P M D
=

+
         (3) 

 
 In terms of equation 2 it may be helpful to note that the 
term in the numerator, P(D)P(M/D), also appears in the 
denominator as part of a sum of two terms, the other term 
in that sum having exactly the same form but with D

c
 

replacing D. 
Example 2: By way of a numerical example, suppose we 
have  
 
P(D)= 0.4,P(M/D)=0.25,P(M/D

c
)=0.667. 

 
Then we can compute the proportion of males who are 
diseased, P(D/M), by using the above probabilities and 
equation 2,  
 

(0.40)(0.25)
( / ) 0.20

(0.4)(0.25) (0.6)(0.667)
P D M = =

+
 

 
Note that this result matches the value that we obtained 
in example 1 since the numbers were taken from that 
example. 
Bayes’ rule can be extended to the case of a set of 
mutually exclusive and jointly exhaustive events that 
exceed 2. For instance, the population can be classified 
into individuals who are married, divorced, or single.  The 
formula for three mutually exclusive and jointly 
exhaustive events e.g, A,B, and C, and arbitrary event E 
is as follow:  
 

( ) ( / )
( / )

( ) ( / ) ( ) ( / ) ( ) ( / )

P A P E A
P A E

P A P E A P B P E B P C P E C
=

+
     (4) 

 

For computing P(B/E) and P(C/E) using Bayes’ rule 
denominator would be exactly the same as above, the 
numerator would be P(B) P(E/B) and P(C) P(E/C), 
respectively. A proof and more formal development of 
Bayes’ rule can be found in most probability texts 
(Rosner, 1990). 
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Table 3.  Association between birth weight and maternal age: cross sectional study. 
 

Maternal age 
Birth weight 

B B  Total 

A 10 40 50 

A  15 135 150 

Total 25 175 200 
 

Source: Fleiss, 1987. 
 
 
 

ALTERNATIVE FORM OF BAYES’THEOREM 
 

Bayes’ theorem is often embellished by noting that  
 

( ) ( ) ( ) ( / ) ( ) ( / ) ( )
c c c

P B P A B P A B P B A P A P B A P A= ∩ + ∩ = +  

 

where 
c

A  is the    complement-tary event of A (often 
called “not A”). So the theorem can be restated as  
 

( / ) ( )
( / )

( / ) ( ) ( / ) ( )
c c

P B A P A
P A B

P B A P A P B A P A
=

+
           (5) 

 

More   generally, where {
i

A }   forms a  partition  of  the  e

vent   space,  
 

( / ) ( )
( / )

( / ) ( )

ii

i

j jj

P B A P A
P A B

P B A P A
=
∑

 

 

for any 
i

A  in the partition. 

 
 
BAYES’ THEOREM IN TERMS OF ODDS RATIO 
 
Some scientist presented a great many measures of 

association for 2 x 2 tables that are not functions of 
2χ  

(Goodman and Kruskal, 1954, 1959). Here Bayes’ 
theorem will be used in terms of odd ratio.  
 Frequently, one of the two characteristics being studied 
is antecedent to birth weight, a measure of the risk of 
experiencing the outcome under study when the 
antecedent factor is present is 
  

( / )

( / )
A

P B A

P B A
Ω =                                                              (6) 

 

Where 
A

Ω =odds that B will occur when A is present. 

Since P(B/A) may  be  estimated by 
 

11

1.

( / )
P

P B A
P

= and 12

1.

( / )
P

P B A
P

= . 

Therefore 
A

Ω may be estimated by  

 

 11 1. 11

12 1. 12

/
........................................

/
A

P P P
o

P P P
= =                                                       (7) 

 
Example 3:  Suppose that we are studying the 
association, if any between the age of the mother (A 
represents a maternal age less than or equal to 20 

years). A , a maternal age over 20 years) and the birth 
weight of her offspring (B represents a birth weight less 

than or equal to 2500 g; B , a birth weight over 2500 g). 
Let us suppose that the sample of 200 records has been 
selected and the data are shown below. 
From the example above, the estimated odds that a 
mother aged 20 years or less will deliver an offspring 
weighing 2500 g or less are, from Table 4 
 

0.05 1
0.25

0.20 4
A

O = = =                                                  (8) 

 
Thus for every four births weighing over 2500 g to 
mothers aged 20 years or less, there is one-birth 
weighing 2500 g or less. The information conveyed by 
these odds is exactly the same as that conveyed by the 
rate of how birth weight specific to young mothers, 
 

11

1.

0.05
( / ) 0.2

0.25

P
P B A

P
= = =  

 

But the emphasis differs. One can imagine attempting to 
educate prospective mothers aged 20 years or less. The 
impact of the statement, “One out of every five of you is 
expected to deliver an infant with a low birth weight,” may 
well be different from the impact of “For every four of you 
who deliver infants of fairly high weight, one is expected 
to deliver an infant of low birth weight.” When A is absent, 
the odds of B’s occurrence are defined as 
 

( / )
........................................

( / )
A

P B A

P B A
Ω =                                                             (9) 

 
which may be estimated as    
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Table 4. Joint proportions derived from table 3 above. 
 

 

Maternal Age 

Birth weight 

B B  
Total 

A 0.05(=P11) 0.20(=P12) .25(=P1.) 

A  
0.075(=P21) 0.675(=P22) .75(=P2.) 

Total .125(=P.1) 0.875(=P.2) 1. 
 

Source: Fleiss, 1987. 
 
 
 

Table 5. A  2×2  table  of disease status versus test result. 

 

 

Test result 

Disease status 

Diseased Not Diseased Total 

Test + e  f  e +f 

Result-  g  h  g +h 

Total e  +g f + h e+f+g+h 

 
 
 

21 2. 21

22 2. 22

/

/
A

P P P
O

P P P
= = . 

 
For our example, the estimated odds that a mother aged 
more than 20 years will deliver an offspring weighing 
2500 g or less are 
 

0.075
0.11

0.675
A

O = =  

 
Thus for every nine births weighing over 2500 g to 
mothers aged more than 20 years (as opposed to every 
four to younger mothers ), there is one birth weighing 
2500 g or less. 
 
 
INDICES OF DIAGNOSTIC TEST PERFORMANCE 
 
The basic notation and principles of diagnostic test 
evaluation have been delineated (Khamis, 1987). A brief 
review will be given in the section. 
 Consider a new test designed to discriminate between 
those with a particular disease (or condition) and those 
who are disease-free. Suppose a contingency table can 
be formed showing the cross-classification of all 
individuals in a population according to their disease 
status (sometimes called the gold standard) and their test 
result (Table 5).  

For notational purposes and as defined previously, let 
D represent the event that an individual is diseased, D

c
 

the event that an individual is disease-free, + the event 
that an individual tests positive, and – the event that an 
individual tests negative. Recall also from Table 3 that e 
represents the number of individuals who are diseased 

and test positive, f represents the number of individuals 
who are disease-free and test positive, and so on. 
 Suppose we take Sonographic Science as a case, the 
growth of ultrasound can, in large part, be attributed to 
new clinical applications. Researchers must demonstrate 
that proposed applications selectively identify patients 
with specific disease. Statistical parameters which are 
measures of the diagnostic value of the test (typically 
sensitivity, specificity, and accuracy) have been deve-
loped to judge the efficacy of diagnostic tests. The patient 
may or may not have disease and the ultrasound 
examination may or may not have positive findings. Four 
outcomes are possible: 
 

1. True-positive (TP): the ultrasound findings are positive 
and the patient has disease. 
2.  False -positive (FP): the ultrasound findings are 
positive and the patient does not have disease. 
3. True-negative (TN): the ultrasound findings are 
negative and the patient does not have disease. 
4. False-negative (FN): the ultrasound findings are 
negative and the patient has disease. 

The determination of disease is accomplished indepen-
dently by using an established procedure (a surgical 
biopsy). The perfect diagnostic test would identify all 
diseased persons with positive findings and all non 
diseased persons with negative findings .The sensitivity 
of the diagnostic test is the percentage of all subjects with 
disease that yield a positive test result. Mathematically,  
 

100
TP

Sensitivity
TP FN

= ×
+

                                     (10) 

 
Sensitivity describes how well the diagnostic test 

identifies subjects with disease. Minimizing false-negative  



 

 
 
 
 
improves the reliability of the diagnostic test. From the 
preceding sections, this is seen to simply the conditional 
probability, P(+/D)=e/(e+g).   

This is a measure of how sensitive the test is in 
detecting the disease. The test is in detecting the 
disease. The specificity of the test is the proportion of 
those not having the disease who test negative or how 
well the diagnostic test excludes non diseased subjects 
from having a positive test result. Minimizing false-
positives also improves the reliability of the diagnostic 
test. 
Mathematically, 
 

100
TN

Specificity
TN FP

= ×
+

                                    (11) 

 

From the above section, it is seen simply as the 
conditional probability P(-/D

c
)=h/(f+h). 

This is a measure of how specific the test is in detecting 
absence of the disease. Accuracy of the diagnostic test is 
the percentage of all subjects tested who are correctly 
assessed as having or not having disease. The equation 
for accuracy is, 
 

100
TP TN

Accuracy
All subjects tested

+
= ×                     (12) 

 

Following the explanation in Table 3, 
Accuracy=(e+h)/(e+f+g+h) while two measures, 
sensitivity and specificity, are just  conditional  
probabilities, the two measures of particular interest to 
biomedical scientist and clinicians for the purpose of 
predicting individuals disease status given that their test 
results known are the positive predictive value (PPV) and 
the negative predictive value(NPV) of the test. The PPV 
indicates the likelihood of disease if the test is positive or 
the proportion of those with a positive test result who are 
diseased i.e. the conditional probability  
P(D/+)=e/(e+f).The NPV is defined as the proportion of 
those with a negative test result who are disease-free,i.e. 
the conditional probability P(D

c
/-)=h/(g+h).  

 

The defining equations are  
 

100
TP

PPV
TP FP

= ×
+

                                              (13) 

 

While  100
TN

NPV
TN FN

= ×
+

                                 (14) 

 

Sensitivity, specificity, accuracy, and positive and 
negative predictive values are also expressed by 
fractions between 0 and 1 to indicate probability of 
various outcomes. In this format the factor 100 is 
eliminated in equations 11 through 14. Applications of 
these terms are given in the following example. 
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Example 4:

 
In Hedrick et al. (1995) carried out a study to 

obtain NPV, PPV, accuracy, sensitivity and specificity. 
They carried out an ultrasound examination with the 
following outcomes when compared with the diagnostic 
standard. 
True-positive (TP) =53  
False-positive (FP) =18 
True-negative (TN) =70 
False-negative (FN) =4 
Total number of subjects tested = 145. The results 
indicates that  
 

53
100 93%

57
Sensitivity = × =  

 

70
100 80%

88
Specificity = × =    

 

53 70
100 85%

145
Accuracy

+
= × =  

 

53
100 85%

71
PPV = × =  

 

70
100 95%

74
NPV = × =  

 
Example 5: Townsend et al. (1988) reported on a 
retrospective review of initial sonograms performed on 65 
twin gestations to evaluate the ability of sonography to 
distinguish monochorionic from dichorionic gestations 
based on the thickness of the membrane separating the 
fetuses. The results are shown as a contingency table 
(Table 6). In this table, the indicators of diagnostic 
accuracy are as follows: 
 

Sensitivity = P(+/D) = 39/42 = 93%, where P(+/D) means 
the probability of testing positive and having disease and 
93% here indicates a very high sensitivity. 
 

Specificity P(-/D
c
) = 15/23 = 65%. Also P(-/D

c
) means 

testing negative and having no disease. 
 

The predictive values are as follows: 
 

PPV = P(D/+) = 39/47 = 83%.  P(D/+) means having 
disease and testing positive. 
 

NPV = P(D
c
/-) = 15/18 = 83.3%. P(Dc/-) means having no 

disease and testing negative. 
 

Hence, a thick membrane (+) detected dichorionic 
gestation (D) with a sensitivity of 93%, and a thin 
membrane (-) detected monochorionic gestation D

c
 with a 

specificity of 65%.  The PPV of a thick membrane in 
predicting dichorionicity of 83%,  and  the  NPV  of  a  thin 



 

4814         Afr. J. Biotechnol. 
 
 
 

Table 6.  A  2×2  table for example 3. 
 

Ultrasound Exam. 
Result 

Dichorionicity(D). A 
condition 

Monochorionicity 
(D

1
).A condition 

 

Total 

Thick membrane (+) 39 8 47 

Thick membrane (-) 3 15 18 

Total 42 23 65 
 

Source: Townsend et al. (1988). 
 
 
 

membrane in predicting monochorionicity is 83.3%. In 
other words, the ultrasound examination result (whether it 
is + or -) is about 83% accurate for prediction purposes. 
 
 
AN APPLICATION OF BAYES’ THEOREM TO 
DIAGNOSTIC TEST EVALUATION 
 
It is often the case that clinicians can measure how often 
specific symptoms occur in diseased and disease-free 
people (for definitions of the sensitivity and specificity, 
see Yerushalmy,1947), but cannot directly measure the 
predictive value of a set of symptoms (i.e, the PPV and 
NPV ). Therefore, it would be beneficial if we could find a 
way to use the sensitivity and specificity, which are 
quantities that a biomedical researcher can estimate, to 
compute predictive values, which are quantities that 
he/she needs to make appropriate diagnoses or 
decisions. In other words, given the prevalence rate in 
the population, P(D), the sensitivity, P(+/D), and the 
specificity, P(-/D

c
), how can we compute the PPV, P(D/+), 

and the, P(D
c
/-)?. The answer is Bayes’ theorem. A 

frequent application of Bayes’ theorem is in evaluating 
the performance of a diagnostic test intended for use in a 
screening program (Fleiss, 1987). 
 Note that D and D

c 
are mutually exclusive and jointly 

exhaustive events. So, by Bayes’ theorem (equation 2 , 
using different symbols,  
 

( ) ( / )
( / )

( ) ( / ) ( ) ( / )
c c

P D P D
PPV P D

P D P D P D P D

+
= + =

+ + +
 

 

( ) ( / )
( / )

( ) ( / ) ( ) ( / )

c c

c

c c

P D P D
NPV P D

P D P D P D P D

−
= − =

− + −
 

 
By using an extension of the property in equation 1, it can 
be shown that P(+/D

c
) = 1-P(-/D

c
) = 1-specificity and  P(-

/D) = 1-P(+/D) = 1- sensitivity. Now the preceding 
formulas for PPV and NPV can be written in a more 
convenient form by substituting these expressions for  
P(+/D) = sensitivity, P(-/D

c
) = specificity, and P(D

c
) = 1-

P(D). 
 

( ) ( )

( ) ( ) (1 ( )) ( )

P D sensitivity
PPV

P D sensitivity P D specificity

×
=

× + − ×
        (15) 

(1 ( )) ( )

( ) (1 ) (1 ( ))

P D sensitivity
NPV

P D sensitivity P D sensitivity

− ×
=

× − + − ×
        (16) 

 
Equations 15 and 16 express the PPV and NPV of a test 
exclusively in terms of the prevalence rate and the 
diagnostic values of the test.  
Example 6: As a means of checking these formulas, we 
can use the data from example 5: P(D) = 42/65 = 0.65, 
Sensitivity = P(+/D) = 0.93 and Specificity = P(-/D

c
) = 

0.65 
Using equations 10 and 11, we can obtain the PPV and 
NPV as follows:  
 

0.65 0.93
0.83

(0.65) (0.93) (0.35 0.35)
PPV

×
= =

× + ×
 

 

0.35 0.65
0.833

(0.65 0.07) (0.35 0.65)
NPV

×
= =

× + ×
 

 
These values for PPV and NPV obtained from Bayes’ 
theorem match those from example 3 where they were 
obtained directly from the contingency table. 
Example 7: In a study (Khamis,1990),181 pregnant 
women were referred for a level II ultrasound examination 
at or around a gestation of 18 weeks with particular 
attention devoted to head size, head shape, and 
ventriculo-hemispheric ratio to diagnostic hydrocephalus 
and assessment of the cranial vault. Of the 181 
pregnancies, 12 fetuses were found to have spinal 
defects. The goal of this study was to examine the 
effectiveness of using ultrasound detection of a bullet- 
shaped head (flattening of the parietal regions with 
pointing of the frontal bones) to predict spinal defects. 
According to the article, the sensitivity of the bullet-
shaped was 75% and the specificity was 98.3%. Let 
correspond to the event that a fetus has spinal defects, + 
correspond to detection of a bullet–shaped head by 
ultrasound examination, and – correspond to lack of 
detection of a bullet–shaped head. The above information 
provides the following values: P(D) = 12/181=0.066, 
Sensitivity = P(+/D) = 0.75, Specificity = P(-/D

c
) = 0.983. 

If a clinician uses ultrasound examination to detect a 
bullet-shaped head in the fetus under the conditions 
described in the article, can the above values be used to 
estimate the likelihood of spinal defects  given  a  positive  



 

 
 
 
 
(or negative) test result?. Yes, if the test is positive, the 
probability of spinal defects is as follows (see also 
equation 15): 
 

0.66 0.75
( / ) 0.757

(0.066 0.75) (0.934 0.017)
PPV P D

×
= + = =

× + ×
 

 
If the test is negative, the probability of no spinal defects 
is as follows (see also equation 16): 
 

0.934 0.983
( / ) 0.982

(0.066 0.25) (0.934 0.983)

cNPV P D
×

= − = =
× + ×

 

 
A negative test result indicates no spinal defects with 
high accuracy (98.2%), but the estimated probability of 
spinal defects in the presence of a positive test result is 
only 75.7%. 
 
 

DRUG TESTING 
 
Example  8: In using Bayes’ theorem to evaluate the 
result of drug tests, suppose a certain drug test is 99% 
sensitive and 99% specific, that is, the test will correctly 
identify a drug user as testing positive 99% of the time, 
and will correctly identify a non-user as testing negative 
99% of the time. This would seem to be a relatively 
accurate test, but Bayes’ theorem will reveal a potential 
flaw. Let us assume a corporation decides to test its 
employees for opium use, and 0.5% of the employees 
use the drug. We want to know the probability that, given 
a positive drug test, an employee is actually a drug user. 
Let “D” be the event of being a drug user and D

c
 indicate 

being a non-user. Let “+” be the event of a positive drug 
test. We need to know the following: 
 
(a) P(D), or the probability that the employee is a 
drug user, regardless of any other information. This is 
0.005, since 0.5% of the employees are drug users. This 
is the priori probability of D. 
(b) P(D

c
), or the probability that the employee is not 

a drug user. This is 1-P(D), or 0.995. 
(c) P(+/D), or the probability that the test is positive, 
given that the employee is a drug user. This is 0.99, since 
the test is 99% accurate. 
(d) P(+/D

c
), or the probability that the test is positive, 

given that the employee is not a drug user. This is 0.01, 
since the test will produce a false positive for 1% of non-
users. 
(e)  P(+), or the probability of a positive test event, 
regardless of other information. This is 0.0149 or 1.49%, 
which is found by adding the probability that the test will 
produce a true positive result in the event of drug use (= 
99% ×  0.5% = 0.495%) plus the probability that the test 
will produce a false positive in the event of non-drug use 
(= 1% ×  99.5% = 0.995%).This is the prior probability of 
+. 

Okeh and Ugwu        4815 
 
 
 
Given this information, we can compute the posterior 
probability P(D/+) of an employee who tested positive 
actually being a drug user. 
 

( / ) ( ) ( / ) ( )
( / )

( ) ( / ) ( ) ( / ) ( )
c C

P D P D P D P D
P D

P P D P D P D P D

+ +
+ = =

+ + + +
….17 

0.99 0.005
0.3322

0.99 0.005 0.01 0.995

×
= =

× + ×
 

 
Despite the high accuracy of the test, the probability that 
an employee who tested positive actually did use drugs is 
only about 33%, so it is actually more likely that the 
employee is not a drug user. The rarer the condition for 
which we are testing, the greater the percentage of 
positive tests that will be false positives. Details on how 
to calculate error rates (false positive and false negative) 
will be discussed under the next subheading. 
 
 
ERROR   RATES 
 
Of greater concern than the test’s sensitivity and 
specificity, however, are the error rates to be expected if 
the test is actually used in a screening program. If a 
positive result is taken to indicate the presence, then the 
false positive rate, say PF+, is the  proportion of people 
among those responding positive, who are actually free 
of the disease, or P(D

c
/+) according to Bayes’ theorem 

 

( / ) ( )
( / ) ...............................18

( )

c c
c

F

P D P D
P P D

P
+

+
= + =

+
                          (18) 

 
It can also be written in the form,   
 

PF+=
( / )(1 ( ))

( )

cP D P D

P

+ −

+
 

 
Since P(D

c
)=1─P(D) 

 
The false negative rate, say PF-, is the proportion of 
people, among those responding negative on the test, 
who nevertheless have the disease, or P(D/─). Again by 
Bayes’ theorem, 
 

( / ( ( ) ( / ) ( )
( / )

( ) ( )

1 ( / ) ( )
..........................................................19

1 ( )

F

F

P D P D P D P D
P P D

P P

P D P D
P

P

−

−

− −
= − = =

− −

− +
=

− +

 

 
Since P(─/D) = 1─P(+/D) and P(-) = 1─P(+). We still 
need the overall rates P(+) and P(D) in order to evaluate 
these two error rates. Actually, we only need P(D), for the 
following reason. Note that,  
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Table 7. Results of a trial of a screening test. 
 

Screening Test Result 

Disease status + -- Total 

Present (D) 950 50 1000 

Absent (D
c
) 10 990 1000 

 

Source (8).  
 
 
 

( ) ......................................
c cD D D D

N N NN N
P

N N N N

++ + + +
+

+ = = = +                     (20) 

 

In equ.20, N+D denotes the number of people who have 

the disease and respond positive and c
D

N denotes the 

number of people who are free of the disease and 
respond positive. Multiplying and dividing the first of the 
two terms on the right-hand side of equ.20 by ND, the 
number of people with the disease, we find that  
 

( / ) ( )......21D D D

D

N N N
P D P D

N N N

+ += = +                           (21) 

 
Similarly, by multiplying and dividing the second term by 
ND

c
, the number of people without the disease, we find 

that  
 

( / ) ( )...................................
c c c

c

c cD D D

D

N N N
P D P D

N N N

+ += = +                  (22) 

 
Substituting the expressions from  eqns 21  and  22 in 
eqn 20, we find that  
 

( ) ( / ) ( ) ( / ) ( )............................
c c

P P D P D P D P D+ = + + +                  (23) 

 
This equation is a special case of the familiar result that 
an overall rate P(+), is a weighted average of specific 
rates P(+/D) and P(+/D

c
) with the weights being the 

proportions of people in the specific categories P(D) and 

P(D
c
). Since ( ) 1 ( )

c
P D P D= − , eqn 23 becomes  

 

( ) ( / ) ( ) ( / )1 ( ))

( / ) ( ) ( / ) ( / ).............................

c

c c

P P D P D P D P D

P D P D P D P D

+ = + + + −

= + + + − +
         (24) 

 
Substituting of eqns 24 and 18 yields, as the expression 
for the false positive rate. 
 

( / )(1 ( ))

( / ) ( )( ( / ) ( / ))

c

F c c

P D P D
P

P D P D P D P D
+

+ −
=

+ + + − +
      (25) 

 
Substitution of eqn 24 in eqn 19 yields, as the expression  

for the false negative rate, 
 

(1 ( / ) ( )

1 ( / ) ( )( ( / ) ( / )
F c c

P D P D
P

P D P D P D P D
−

− +
=

− + − + − +
       (26) 

 
Analysis of the false positive and false negative rates 
associated with screening tests have been performed in 
psychology (Meehl and Rosen, 1958; Daves,1962),  in 
Opthalmology (Vastola and Kokubu, 1962), and for a 
variety of Medical disorders (Cochrane and Holland, 
1971). We see from  eqns 25 and 26 that, in general, the  
two error rates are functions of the proportions P(+/D) 
and P(+/D

c
), which may be estimated from the results of 

a trial of the screening test, and of the overall case rate 
P(D) , for which an accurate estimate is rarely available. 
Nevertheless, a range of likely values for the error rates 
may be determined as in the following example. 
Example 9: Suppose that the test is applied to a sample 
of 1000 people known to have the disease and to a 
sample of 1000 people known not to have the disease. 
Suppose that this trial resulted in the frequencies shown 
in the Table 7, we would then have the estimates P(+/D) 
=   950/1000 =.95  and   P(+/D

c
) = 10/1000 = 0.01 

a pair of probabilities indicating a test that is sensitive 
[P(+/D) is close to unity ]and specific [P(+/D

c
) is  close to 

zero] to the disease being studied. Substitution of these 
two probabilities in eqn 22 gives, as the values for the 
false positive rate    
 

0.01(1 ( )) 0.01(1 ( ))
...............27

0.01 ( )(.95 0.01) 0.01 .94 ( )
F

P D P D
P

P D P D
+

− −
= =

+ − +
       (27) 

 
the final expression resulting by multiplying both the 
numerator and the denominator of the preceding 
expression by 100.   Substitution in eqn 23 gives, as the 
value for the false negative rate,  
 

(1 .95) ( ) 0.05 ( ) 5 ( )
..............................28

1 0.01 ( )(.95 0.01) .99 .94 ( ) 99 94 ( )
F

P D P D P D
P

P D P D P D
−

−
= = =

− − − − −

 

                                                                                     (28) 
 

Table 8 gives the error rates associated with various 
values of P(D), the overall case rate. Rarely will the case 
rate exceed 1% of the population.  

If the disease is not too prevalent- if it affects, say, less 
than 1% of the population, the false negative rate  will  be 
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Table 8. Error rates associated with screening test.  
 

P(D) False positive (PF+) False negative (PF-) 

1/million .9999 0 

1/100,000 .9991 0 

1/10,000 .9906 .00001 

1/1000 .913 .00005 

1/500 .840 .00010 

1/200 .677 .00025 

1/100 .510 .00051 
 

Source: Fleiss, 1987. 
 
 
 

quite small, but the false positive rate will be rather large. 
From one point of view, the test is a successful one: 
Since PF- is less than 5/10,000, therefore, of every 10,000 
people who respond negative and are thus presuming 
given a clean bill of health, no more than five should 
actually have been informed they were ill. From another 
point of view, the test is a failure: Since PF+ is greater 
than 50/100, therefore, of every 100 people who respond 
positive and thus presumably are told they have the 
disease or are at least advised to undergo further tests, 
more than 50 will actually be free of the disease. The final 
decision whether or not the test will depend on the 
seriousness of the disease and on the cost of further 
tests or treatment. Because the false positive rate is so 
great, however, it would be hard to justify using this 
screening test for any but the most serious diseases. 

On method of reducing the false positive or negative  
rate associated with a diagnostic screening procedure 
(but thereby increasing its cost ) is to repeat the test a 
number of times, and to declare the final result positive if 
the subject responds positive to each administration of 
the test or if he responds positive to a majority of the 
administrations. For some disorders, a better rule is to 
administer the test three times and to declare the final 
result positive if the subject responds positive to at least 
two of the three administrations. Only those subjects who 
respond positive to one of the first two administrations 
and negative to the other will have to be tested a third 
time. Those who respond positive to both of the first two 
administrations would be declared positive, and those 
who respond negative to both would be declared 
negative (Sandifer et al., 1968). 

A more accurate but more complex assessment of the 
performance of a screening procedure than the above is 
possible when disease severity is assumed to vary and 
not as here merely to be present or absent. The 
appropriate analysis was originally proposed (Neyman, 
1968) and later extended (Greenhouse and Mantel, 
1950), (Nissey-Meyer, 1964).           
 
 

CONCLUSION 
 
From the results, we conclude that a positive test result  

increases the disease risk relative to the prevalence rate 
often times. While negative test result reduces the risk of 
the disease relative to its prevalence rate majority of the 
time also. We conclude also that reducing error rates 
requires that one should repeat the screening test a 
number of times and to declare the final result positive if 
the subject responds positive to each or majority of the 
administration(s) of the test. More accurate but complex 
assessment of the performance of a screening procedure 
is to assume that disease severity varies and not to say 
that it is present or absent. This article has presented a 
brief intuitive development of probability and the state-
ment about Bayes’ theorem with emphasis on obtaining 
diagnostic values from which positive or negative 
predictive values are achieved with the view to making 
decisions about the well-being of the patient. This is why 
this theorem is an indispensable research tool in 
biomedical sciences. 
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