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Proteins are large molecules indispensable for the existence and proper functioning of biological 
organisms. They perform a wide array of functions including catalysis, structure formation, transport, 
body defense, etc. Understanding the functions of proteins is a fundamental problem in the discovery of 
drugs to treat various diseases. The structure of a protein can be determined by physical methods which 
are slow and expensive but owing to the dramatic increase in the numbers of proteins sent to the public 
data bank during the last few years, it is highly desirable to develop some rapid and effective 
computational methods to predict the structure of new proteins so as to expedite the process of deducing 
their function. All the structure prediction methods basically rely on the idea that there is a correlation 
between residue sequence and structure. The primary structure is unique for each protein and it is 
generally accepted that a protein’s primary structure is enough to determine its folding process to 
secondary, tertiary and quaternary structure. Despite recent efforts to develop automated protein 
structure determination protocols, structural genomic projects are slow in generating fold assignments 
for complete proteomes, and spatial structures remain unknown for many protein families. Alternative 
cheap and fast methods to assign folds using prediction algorithms continue to provide valuable 
structural information for many proteins. Protein structure determination and prediction has been a focal 
research subject in life sciences due to the importance of protein structure in understanding the 
biological and chemical activities of organisms/cell. This review comprehends the various recent 
advanced methods for protein structure predictions such as a two-stage method for assigning residues 
one of the three secondary structure states, prediction of homo-oligomeric proteins based on nearest 
neighbour algorithm, sequence–based hidden markov model, practical ab initio methods aimed at finding 
the native structure of the protein by simulating the biological process of protein folding, and 
metapredictors based on consensus form multiple methods.  
 
Key words: Structure prediction, data classification, Hidden Markov model, homo-oligomeric proteins, nearest 
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INTRODUCTION 
 
Proteins are polymer chains of repeating polypeptide 
units with side chains attached to each polypeptide unit. 
The side chains, also known as residues, are amino 
acids with different characteristics. There are 20 different 
amino acids in natural proteins. The sequence of amino 
acids in a protein chain is given by the primary structure. 
A typical protein contains 200 – 300 amino acids but this 
may increase up to approximately 30,000 in a single 
chain. The proteins have three local structural conforma- 
 
 
 
*Corresponding author. Email: sobha_kota@yahoo.co.in. 

tions: helices, sheets and other structural conformations 
such as loops, turns and coils. The secondary structure 
of proteins is the structural characterization of a protein 
with respect to these three local structural conformations.  

The number of identified protein sequences has 
dramatically increased in the recent past due to the 
extensive research in the field. However, the majority of 
these sequences are not accompanied by any informa-
tion about their function because of the slow and 
expensive nature of the experimental procedures for 
structure determination. So, one way to understand their 
function is to link them with known proteins in annotated 
databases,  whose  three-dimensional  structure  (fold)  is  
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known. Even this structural knowledge is still limited 
because the experimental process of structure deter-
mination is slow for most proteins and not possible for 
many. The concern of the scientists at present is to 
abridge the gap between sequence and structure 
knowledge, often termed the sequence-structure gap. It is 
the main factor driving the need for predictions of protein 
structure. Many pharmaceutical drugs act by selective 
binding to target proteins and knowledge of protein 
structures can aid the process of rational structure based 
drug design. Levinthal (1966, 1968) believed that even 
for a small protein, there would be a large number of 
possible structures, and that the process of finding the 
correct one cannot proceed by a random search of the 
possibilities. But according to Anfinsen (1973), the 
proteins can fold to their native structures spontaneously 
without the intervention of any agent and therefore 
opined that protein fold is coded in the amino acid 
sequence itself. Protein structure prediction is therefore a 
problem of much scientific interest and it is still not clear 
as to how structure is encoded in sequence. 

Computer methods for protein analysis address this 
problem since they study the relations within the amino 
acids sequence or structure. Since proteins have 
structural features which define functional similarities, the 
need for structure estimation methods is high. Protein 
computational analysis aims in structure estimation and 
includes two protein classification tasks: fold recognition 
and class prediction. Such methods are sequence-based 
or protein attribute-based. The availability of protein 
attributes’ data is lower than the sequence information, 
either primary or secondary and so the focus is on 
exploiting sequence data for structure prediction. First 
predictions were made in 1970s with a few dozen struc-
tures available. Currently structures of about 51,491 (as 
of June 24, 2008) proteins are identified (stored in and 
accessible from Protein Data Bank Berman et al., 2000) 
providing good amount of data that supports more 
reliable predictions with better accuracy.  
 
 
GENERAL PROTEIN STRUCTURE PREDICTION 
METHOD 
 
The structure prediction methods can broadly be cate-
gorized as either ab initio or knowledge-based. Methods 
which explain protein folding based on calculation and 
minimization of free energy are called ab initio methods 
(Hardin et al., 2002). These methods use the accepted 
theories of quantum mechanics and statistical thermo-
dynamics for prediction which in reality is just not 
possible because of the involvement of several thou-
sands of atoms for which the free energy calculations are 
to be made. Knowledge-based methods attempt to 
predict structure of the unknown using the information 
from the database of known 3D structures. Comparative 
modeling, also called Homology modeling, is one of the 
many   prediction  methods  and  yields  accurate  results  

 
 
 
 
given the best alignments of the target (unknown) 
sequence and one or more template (known) sequences. 
Though different software packages perform the same 
homology modeling in slightly different ways, the basic 
steps are the same and include the following in order: (1) 
Analysis of template structure(s) and generation of an 
average if many templates are available (In the latter 
case, more similar sequences are more strongly weight-
ed and finally a frame work of template atomic positions 
is calculated); (2) Generation of structure in two parts – 
first the core structure comprising the secondary structure 
elements and the second are the non-conserved loops; 
Structure prediction of non-conserved loops is difficult 
and is done with the aid of loop structure prediction 
algorithms (For details, the reader is advised to browse 
the internet for there are several sites). One such 
algorithm is the spare parts algorithm which makes use of 
a database of known loop structures from other proteins 
that may not necessarily be similar in sequence to the 
target. A spare part loop is selected from the database for 
each loop to be fitted into the gap in the modeled struc-
ture and is identified as the predicted loop. (These two 
steps complete the prediction of backbone atoms of the 
target sequence); (3) Side chains and their component 
atomic positions are predicted usually from a library of 
allowed side chain structures (Side chain rotamer library). 
With this step, the prediction of an overall model for the 
protein of interest is complete. But the predicted model 
can further be refined with the use of energy minimization 
soft wares without compromising the prediction accuracy 
of the model. Accuracy of a model is measured in terms 
of root mean square deviations between the α-carbon 
positions in the predicted structure and the actual 
structure of the target sequence. RMSDs of less than 
1.0Å represent very good predictions and these values 
vary inversely with the % similarity in sequence. When it 
is not possible to get a full atom model of the tertiary 
structure, then the secondary structure predictions known 
as three-state predictions viz., helical, strand or extended 
or coil become useful.  
 
 

Protein secondary structure prediction Methods 
 
Two early methods for the prediction of secondary 
structure were those of Chou and Fasman (1974) and 
Garnier-Osguthorpe-Robson (GOR) (1978). These 
methods work on the basis of propensity of amino acids 
for attaining a particular structure. In the Chou - Fasman 
method, if in a run of six residues, four are helix favouring 
and the average value of the helix propensity is greater 
than 1.0 and greater than the average strand propensity, 
then the prediction is made as helix. Propensity values of 
amino acids for a particular secondary structure are 
calculated by dividing the frequency with which the 
particular residue is observed in the relevant secondary 
structure by the frequency for all residues in that secon-
dary structure (These values are available in literature).  



 
 
 
 
The secondary structure determination problem has been 
addressed using three categories of computational 
approaches: 1) comparative modeling; 2) threading; 3) ab 
initio methods (Baker and Sali, 2001). The computational 
methods that are based on comparative modeling exploit 
the fact that evolutionarily related proteins have similar 
sequences (Altschul et al., 1997). Threading compares a 
target sequence against a library of structural templates 
and produces a list of scores (Rost et al., 1997). The fold 
with the best score is assumed to be the one adopted by 
the sequence. The ab initio methods use only the se-
quence information of the protein to determine the protein 
structure. The objective in the ab initio methods is to 
determine the minimum free energy of the system. The 
free energy of the system depends on different interac-
tions in the protein system such as ionic, non bonded, 
hydrogen-bonding and hydrophobic. The native con-
formation of the protein is the one corresponding to the 
coordinates of the atoms of the protein that gives the 
minimum free energy (Liwo et al., 1999; Bradley et al., 
2003; Klepeis and Floudas 2003). 

Among comparative modeling approaches to predict 
protein structures, the most successful ones include 
neural network models, database search tools, multiple 
sequence alignment, local sequence alignment, thread-
ing, Hidden Markov model-based methods, nearest 
neighbor methods, molecular dynamic simulation, and 
approaches combining different prediction methods. 
Neural networks are parallel, distributed information pro-
cessing structures and the method tries to solve the 
problem by training the network (Bohr et al., 1990; Rost, 
2001; Cai et al., 2002). 

A host of Computational methods are developed to 
predict the location of secondary structure elements in 
proteins for complementing or creating insights into expe-
rimental results. However, prediction accuracies of these 
methods rarely exceed 70% (Rost and Sander, 1993). 
 
 

Two stage method 
 
The two-stage method presented here is a comparative 
method using the structure data available in the Protein 
Data Bank (Berman et al., 2000). Here a novel two-stage 
method to predict the location of secondary structure 
elements in a protein using the primary structure data 
only is presented. In the first stage of the proposed 
method, the folding type of a protein is determined using 
a novel classification approach for multi-class problems. 
The second stage of the method utilizes data available in 
the Protein Data Bank and determines the possible 
location of secondary structure elements in a probabilistic 
search algorithm. It is shown that the average accuracy 
of the predictions is 74.1% on a large structure data set. 
 
 

Prediction of folding type 
 
It was  postulated  by  Nakashima  et  al.  (1986)  that  the  
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overall folding type of a protein depends on amino acid 
composition. Several methods are developed to exploit 
this postulate in the prediction of folding type of proteins 
(Chou, 1995; Bahar et al., 1997; Cai et al., 2001). These 
methods use statistical analysis and separate multi-
dimensional amino acid composition data into several 
folding types. The prediction of protein folding type is a 
typical multi-class data classification problem. Classifica-
tion of multi-dimensional data plays an important role in 
the decision to determine the main characteristics of a 
set. A support vector machine is a data mining method to 
classify data into different groups (Cai et al., 2001). 
Although this method can be efficient in classifying data 
into two groups, it is inaccurate and inefficient when the 
data needs to be classified into more than two sets. 
Mixed-integer programming allows the use of hyper 
boxes for defining boundaries of the sets that include all 
or some of the points in that set. Therefore, the efficiency 
and accuracy of multi-class data classification can be 
improved significantly compared to traditional methods 
(Turkay et al., 2005; Uney and Turkay, 2006). 
 
 

Prediction of the secondary structure 
 
Once the folding type of a protein is determined, the three 
state probabilities for each residue of the protein can be 
refined. For example, if a protein has an ‘all-α” folding 
type, then it is not possible for any residue of this protein 
to be in a “β-sheet” conformation. In order to exploit this 
fact in the two-stage method, the protein data set is 
divided into four subsets: “all-α”, “all-β”, “α/β” and α+β”. 
The folding type of each protein is obtained from the 
SCOP (Murzin et al., 1995) database and these four 
separate databases are used to calculate the frequency 
of occurrences of each amino acid in a α-helix, β- sheet 
or other structures. The basis for the algorithm is 
searching segments of its residue sequence in pool of 
known protein structures and predicting structure for each 
resi-due on the basis of frequency of occurrence. To 
determine the number of residues in each segment to be 
searched, two factors are considered: the segment 
should be long enough to have a legitimate reason to 
search considering interactions and the bonds formed 
between amino acids to shape their structures. The parti-
tioning of the protein chain into overlapping segments of 
oligo peptide chains was suggested by Anfinsen and 
Scheraga (1975). These authors used segments of nine 
residues in their free energy calculations. The use of 
overlapping segments with five residues is shown to be 
very effective in predicting the helical segments of 
proteins 

An important consideration in establishing databases 
for calculation of three state probabilities is the redundant 
data. Some proteins in organisms are coded by the same 
gene and are very similar in terms of residue sequence, 
structure, and function. These molecules are called 
“homologous” and can be considered to contain the same  
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information due to the very high level of similarity 
mentioned. While searching a segment of residue 
sequence of a protein in the database, occurrence of 
segment in homologous structures can bias the results. 
That is, although homologous structures contain the 
same information, all occurrences of segment in the 
database are being counted, which is similar to utilizing 
the same data more than once. When the probability is 
calculated for a particular segment being part of the 
structure that is the same with that of homologous for the 
residues in the segment, the probabilities are biased for 
homologous sequences. Therefore, it is necessary to 
exclude homologous structures from databases, which 
are carried out by queries in the database. Then, the 
probability for a particular residue to be in a secondary 
element for each residue segment is calculated according 
to its folding type. Secondary structure of the peptide 
hormone called Eclosion Hormone (EH) (a neuropeptide 
of 62 amino acid residues in insects controlling ecdysis) 
was predicted using the average distance map method 
(ADM) and was shown to contain an N-terminal helix 
which is active in the construction of globular structure  of 
the peptide. Subsequently, C-terminal structure was pre-
dicted by a method complementary to ADM and the 
functional residues were analysed using glycine-
substitution technique.  Finally, the 3D structure of the 
peptide was constructed by computer aided modeling 
and energy minimization using Insight-II/Discover soft-
ware (Fujita et al., 1998). 
 
 

Sequence-based protein structure prediction using a 
reduced state-space hidden Markov model 
 
This method (Lampros et al., 2007) describes the use of 
a hidden Markov model (HMM), with a reduced number 
of states, which simultaneously learns amino acid 
sequence and secondary structure for proteins of known 
three-dimensional structure and performs two tasks: 
protein class prediction and fold recognition. The protein 
data bank and the annotation of the SCOP database are 
used for training and evaluation of the proposed HMM for 
a number of protein classes and folds. Results demon-
strate that the reduced state–space HMM performs 
equivalently or even better in some cases, on classifying 
proteins than a HMM trained with the amino acid 
sequence. The major advantage of the proposed 
approach is that a small number of states are employed 
and the training algorithm is of low complexity and thus 
relatively fast. 

A review of sequence-based approaches reveals that 
hidden Markov models (HMMs) are those most common-
ly used and also demonstrate high performance. HMMs 
have been applied for multi-class protein fold recognition 
(Lindahl and Elofsson, 2000) employing the sequence 
alignment and modeling (SAM) software (Hughey and 
Krogh, 1996). Furthermore, secondary structure informa- 
tion can be incorporated  in  the  HMM  and  increase  the 

 
 
 
 
fold recognition performance (Hargbo and Elofsson, 
1999). Karchin et al. (2003) used the same approach and 
additionally they have evaluated different alphabets for 
backbone geometry and their effect on the classification 
performance. However, the main drawback of HMMs is 
the employment of large model architectures which 
require large data sets and high computational effort for 
training. As a consequence, in cases where these data 
sets are not available, e.g. small classes or folds, their 
performance deteriorates. Very recently, the gene encod-
ing eclosion hormone of the asian corn borer, Ostrinia 

furnacalis was sequenced and its molecular characte-
ristics along with expression analysis were elucidated 
(Wei et al., 2008). In this study, the 3D structure of Osf-
EH was modeled using HMMSTR prediction server and 
the hormone which is a 62 amino acid mature peptide is 
predicted to have four β-turns and three α-helices with 
the pattern of 2β-2α-2β-α.  
 
 

PREDICTION OF PROTEIN STRUCTURAL CLASS 
FOR THE TWILIGHT ZONE SEQUENCES 
 
The challenging problem of structural class prediction for 
the twilight zone sequences is addressed by a novel 
approach that aims to improve the prediction accuracy 
via designing a composite sequence representation that 
includes amino acid composition, physico-chemical pro-
perties and predicted secondary structure content 
(Kurgan and Chen, 2007). Their proposed LLSC-PRED 
method applies easy to comprehend and fast to train 
linear logistic regression classifier in comparison with the 
support vector machine based classifier. The sequence 
representation including 58 features together with the 
transparent prediction model aid in exposing subtle 
relationships between important physico-chemical 
sequence properties and the structural classes. 

This method is an accurate method for in-silico 
prediction of structural classes from low homology 
(twilight zone) protein sequences. The proteins charac-
terized by a lower, 20 – 30%, homology with sequences 
that are used to predict their structure are called the 
twilight zone proteins (Rost, 1999). More than 95% of all 
sequence pairs detected in the twilight zone have 
different structures (Rost, 1999), which significantly re-
duces the prediction accuracy. For instance, prediction of 
the secondary structure for homologous sequences by 
the state-of-the-art alignment-based methods yields 
about 80% accuracy, while for the twilight zone 
sequences it drops to only 65 – 68% (Lin et al., 2005) 
Similarly in case of structural class prediction, accuracies 
for highly homologous protein datasets reach over 90%, 
while they drop to about 57% in case of the twilight zone 
sequences (Kurgan and Homacian, 2006). 

Structural class categorizes various proteins into 
groups that share similarities in the local folding. 
Prediction of structural classes is based on identifying 
these  folding  patterns  based  on  thousands  of  already  



 
 
 
 
categorized proteins, and applying these patterns to 
millions of proteins with unknown structures but known 
amino acid (AA) sequences. (July 11, 2008 release 30 of 
the NCBI’s RefSeq database stores 5, 590,364 amino 
acid (protein) sequences from 5,395 organisms). One of 
the most accurate classifications of structural classes can 
be found in the expert-curated SCOP (Structural 
Classification of Proteins) database (Murzin et al., 1995) 
(as of 26, September 2007, release 1.73 of SCOP stores 
34,494 PDB entries; 97, 178 domains; Total no. of folds: 
1086; No. of super families: 1777;  No. of families: 3464). 
The basic structural unit of classification in SCOP 
database is either the entire sequence or a protein 
domain (structurally conserved fragment of the 
sequence). The database is organized as a hierarchy of 
known protein and protein domain structures where first 
level is based on the structural class: all-α, all-β, α/β and 
α+β. Structural class prediction is usually performed in 
two steps - transformation of AA sequences into a fixed-
length feature vectors and then the feeding of feature 
vectors to a classification algorithm to perform the 
prediction. Majority of the recent methods developed for 
prediction of structural classes include algorithms such as 
fuzzy clustering, neural net works, logistic regression, 
decision tree, Support vector machine (SVM) and the 
most recent complex classification models such as 
ensembles, bagging, boosting etc. All these different 
methods require atleast ∼30% homology between the 
query sequence and the template and are not suitable for 
low homology sequences. For the twilight zone proteins, 
the prediction accuracies with the above algorithms for 
secondary structure and structural classes drops 
significantly as mentioned above.  
 
 

PREDICTION OF HOMO-OLIGOMERIC PROTEINS 
BASED ON NEAREST NEIGHBOUR ALGORITHM 
 
The primary structure which is unique for each protein is 
believed to determine its own fold and combination with 
other proteins to make the appropriate secondary, tertiary 
and quaternary structure (Anfinsen et al., 1961; Anfinsen, 
1973). Proteins with quaternary protein structure are said 
to be oligomeric (or multimeric), and the individual chains 
are called subunits. Oligomeric proteins are either homo-
oligomeric, consisting of identical subunits or hetero-
oligomeric, consisting of different subunits. Arrangement 
of subunits in the oligomeric structure can also vary. An 
oligomeric protein is more than the sum of its parts and 
have important properties not shared with its separated 
subunits. A variety of bonding interactions including 
hydrogen bonding, salt bridges, and disulfide bonds hold 
the various subunits into a particular geometry. Klotz et 
al. (1975) reviewed a number of quaternary structure 
properties such as stoichiometric constitution, the geome-
tric arrangements of the subunits, the assembly energe-
tics, inter subunit communication, and their functional 
aspects. Some recent works have paid more  attention  to 
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analyzing protein–protein interactions and predicting 
interactions sites (Marcotte et al., 1999; Bock and Gough, 
2001; Glaser et al., 2001; Nooren and Thornton, 2003; 
Ofran and Rost, 2003). Results of the study by Garian 
(2001) using decision tree model and amino acid indices 
discriminating homo and non-homodimers at the level of 
primary sequences itself confirmed that the protein 
primary structure contains information on the quaternary 
structure of the same. Further studies by Zhang et al. 
(2003) using the support vector machine (SVM) and the 
covariant discriminant algorithms revealed that SVM is 
superior to both covariant discriminant algorithm and 
decision tree method as well. Nearest neighbour algo-
rithm (Friedman et al., 1975) with subsequence 
distribution (Fang, 1994; Fang et al., 2001) is applied to 
discriminate homo-oligomeric proteins from the protein 
primary structure (Song, 2007). This algorithm describes 
protein primary sequences by their subsequence 
distributions. When the length of subsequence increases 
to appropriate level (l = 3,4), all the four performance 
measures viz., overall accuracy (Q), true positive rate 
(TPR), false positive rate (FPR) and Matthews correlation 
coefficient (MCC) were found  to ascend quickly for the 
tests of the method on the  chosen data set ( a subset 
R1568 of Robert Garian’s R1639 ). The tests demonstrated 
that the residue order along protein sequences plays an 
important role in recognition of the homo-oligomers, and 
nearest neighbour algorithm method is a simple and 
effective tool for classification of homo-oligomeric 
proteins. It is further confirmed that protein primary 
sequence encodes quaternary structure information. 

The nearest neighbour algorithm tries to classify the 
new patterns into their class membership by comparing 
the features of the unknown new patterns with the 
features of the patterns which have already been 
classified (Friedman et al., 1975). It is particularly useful 
in the situations when the distributions of the patterns and 
the categories of the patterns are unknown. The method 
will weigh heavily the evidence derived from the nearby 
patterns and is attractive because of its simplicity and low 
probability of error. 
 
 
COMPLEX-TYPE-DEPENDENT SCORING FUNCTIONS 
IN PROTEIN–PROTEIN DOCKING 
 
Protein-protein interactions, the basis of many biological 
regulations, are dependent on their 3D structures. In the 
case of large macromolecular assemblies, the amount of 
experimental structures of  Protein-protein complexes is 
relatively quite small and cost expensive and therefore a 
combination of protein modeling and experimental 
structure determination increases knowledge of structure-
based analysis of the protein-protein interaction network  
(Tovchigreehko et al., 2002; Chance et al., 2002; Sali et 
al., 2003; Janin and Levitt, 2006). A major challenge in 
the field of protein–protein docking is to discriminate 
between the many wrong and few near-native  conforma- 
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tions, i.e. scoring. Wide usage of docking algorithms 
depends on their ability to generate potential structures 
and a good scoring function to distinguish the near-native 
structures from a large number of non-native ones. The 
presently used scoring functions surface include comple-
mentarity (Katchalski-Katzir et al., 1992; Walls and 
Sternberg, 1992; Ma et al., 2005), surface complemen-
tarity together with an electrostatic filter (Gabb et al., 
1997; Heifetz et al., 2002), knowledge- based statistical 
potential such as atomic contact energy (ACE) (Zhang et 
al., 1997), the residue pair potential (RP) (Moont et al., 
1999) and DFIRE (Liu et al., 2004). Some combinatorial 
functions are used in docking prediction (Fernandez-
Recio et al., 2003; Gray et al., 2003) but none proved to 
be robust enough to all types of protein-protein complex-
es. The complex type-dependent combinatorial scoring 
functions developed for protease/inhibitor, enzyme/ 
inhibitor, antibody/antigen and other complexes incorpo-
rate both physical and knowledge-based potentials. The 
weights of the scoring functions for different type com-
plexes were optimized by the multiple linear regression 
method (Li et al., 2007). The training set was constructed 
comprising only top 300 structures with ligand root mean 
square deviation less than 20Å. The study included 
bound-docking to examine the quality of the scoring 
function and was also extended to unbound-docking 
studies. 

The physico-chemical characteristics of the binding 
interface vary with different types of protein complexes 
and studies of Li et al. (2007) considered the biological 
function of the complex as the principal factor. Protease/ 
inhibitors were segregated from enzyme/ inhibitors 
because of distinctive differences between the two 
complexes. The protease/inhibitor complex has a more 
hydrophobic interface than the enzyme/inhibitor complex. 
The scoring functions were effectively optimized in order 
to distinguish the near-native structures from non-native 
ones for different types of protein-protein complexes. Li et 
al. (2007) divided the protein-protein complexes into 4 
categories and designed the scoring function with the 
regression method for each type and got 4 combinatorial 
functions that exhibited certain aptitude to select hit 
structures from all docked solutions. Results of this study 
take the scoring function development a step forward as 
the used scoring functions show relatively good abilities 
in distinguishing hit structures. 
 
 

CONCLUSIONS 
 
It is obvious that determining the structure of all identified 
proteins and deducing their function from the structures 
by physical means is extremely difficult as protein 
crystallization is not an easy task. In this context, the field 
of research encompassing development of computational 
approaches for determining structures based on amino 
acid sequence and comparing with appropriate templates 
of the protein data bank has come into  existence  and  is  

 
 
 
 
growing fast with several approaches developed and in 
recent past, many of the protein structures have been 
deposited in PDB based on computational methods. But 
the key features that structure does not always 
complement function, and the microenvironment of the 
protein determines the folding pattern and ultimately its 
3D structure should not be ignored. Simple biochemical 
and genetical methods are to be developed to confirm 
and ensure that the predicted protein structure by 
algorithms/bioinformatic tools is accurate enough in 
deducing the function of the protein under consideration. 
As and when a new protein is isolated and its sequence 
determined, then the structure of the protein  be elucida-
ted by computational approaches considering the cell 
environment from which the protein has been isolated 
and deduce the function by genetical and biochemical 
studies. 
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