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In Southwestern Nigeria (SWN), the high demand for maize has resulted in increased levels of maize 
cultivation. However, continuous maize cultivation is directly or indirectly affecting soil nutrient reserves. 
This study therefore assessed and compared the soil physical conditions, chemical contents, and 
rhizobacterial loads of soil samples collected in maize fields across the five (Guinea Savannah-GS, 
Derived Savannah-DS, Lowland Rainforest-LR, Freshwater Swampy Forest-FW, and Mangrove Forest-
MF) ecological zones (EZs) of SWN. Three (GS, DS, and FW) of the five EZs were sandy-loam soil. The 
soil pH, moisture content, and rhizobacterial loads fall within the agronomic standard but were observed 
to be weakly correlated when compared across the EZs. Available phosphorus, magnesium, manganese, 
iron, zinc, and copper varied from moderate to high across the five EZs. Soil organic carbon, nitrogen, 
potassium, calcium, and sodium were generally low in all the EZs. Of interest, the rhizobacterial loads 
depend on the soil's physical properties and chemical contents across the EZs. The study therefore 
uncovered that the soil nutrient reserves in maize fields in SWN vary and more favourably in savannah 
areas than swampy areas. Although some of the soils in SWN are fertile, the rhizobacterial loads of LR, 
FW, and MF are low. As a result of this, farmer’s awareness of best agricultural practices that will help 
improve soil fertility and nutrient status towards sustainable maize production in SWN should be 
prioritized. 
 
Key words: Soil nutrient, maize, soil fertility, plant growth promoting rhizobacteria (PGPR), soil properties, soil 
biomass. 

 
 
INTRODUCTION 
 
Soil is a dynamic, complex matrix and an essential part of 
the terrestrial ecosystem. It is a critical resource not only 
for agricultural production and food security but also for the 
maintenance of most life processes (Shahane and  Shivay, 

2021). Most importantly, soils store and supply nutrients to 
plants for them to reach their maximum growth (Furey and 
Tilman, 2021). Thus, soil is essential for plant cultivation to 
produce crops  that  serve  as  food  for  human  and  animal  
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consumption (Odelade and Babalola, 2019; Silver et al., 
2021). Technically, the potential of a soil to support plant 
growth depends on its nutrient status. Soil nutrients are 
important in crop production, but they must be optimized 
for plant growth and maximum yield (Shahane and Shivay, 
2021). In addition, soil nutrients play a central role in the 
transport and reaction of water, solutes, and gases in soils. 
Their knowledge is very important in understanding soil 
behavior under applied stresses and transport phenomena 
in soils, hence for soil conservation and the planning of 
appropriate agricultural practices (Olorunfemi et al., 2018). 
However, in many areas of the world, soil nutrients 
reserves are declining (Borrelli et al., 2020). Apata et al. 
(2009) reported that the decline of soil nutrients led to poor 
agricultural outputs, particularly in sub-Saharan Africa. 
Agboola and Ojeleye (2007) also pointed out that poor 
crop growth occurs in the tropics due to the soil's 
inadequate capacity to hold water.  

In Africa, the decline in soil nutrients is a major problem 
facing not only commercial farming but also small-scale 
farming (Liliane and Charles, 2020). Similarly, in sub-
Saharan Africa (SSA), a reduction in soil fertility is 
gradually becoming a threat to agricultural sustainability in 
terms of plant development, yield, and health (Odelade 
and Babalola, 2019). Zingore et al. (2015) reported 
different soil quality constraints for crop production in SSA, 
and these problems, according to their significance in 
terms of area affected, are: aluminium toxicity > low cation 
exchange capacity > soil erosion > high phosphorus 
fixation > vertice properties > salinity > sodicity. These 
constraints are an indication of degraded soil and 
significantly reduce the productivity of the soil. In Nigeria, 
there is evidence of soil-based food security crises with 
respect to maize production due to its utility for sustainable 
livelihood (FAOSTAT, 2022; Wossen et al., 2023). Briefly, 
Nigeria cultivates maize on 6.5 million hectares of land 
spread across various agro-ecological zones, primarily 
through smallholder farming (Onumah et al., 2021; PWC, 
2021; FAOSTAT, 2022; Aramburu-Merlos et al., 2024). It 
is widely used in Nigerian breweries, flour mills, 
pharmaceutical, food manufacturing, and animal feed 
industries, in addition to being used for human use. About 
80% of the grain produced from maize is used for human 
consumption and animal feed, with the remaining 20% 
going toward the industrial processing of various goods 
(Onumah et al., 2021), also 10% of the nation's daily 
caloric intake is estimated to come from maize, with a per 
capita consumption of roughly 35 kg/person annually. In 
addition to providing farmers with a substantial source of 
cash income, the crop has a major impact on the growth 
of the agro-industrial sector, particularly in the livestock 
feed sector (Alene et al., 2009; Wossen et al., 2017). The 
increasing demand and consumption of maize have, 
however, made attempts to increase its output 
unsatisfactory because of variations in the soil fertility 
quality of Nigerian maize fields (Abiala et al., 2013). For 
example,   the   yields   in   Ibadan,  representing  the  forest  
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zone, and Mokwa in the southern guinea savanna were 
much lower than in the savanna of the northern guinea 
savanna. This comparison between the forest and 
savanna zone field trials conducted for four years showed 
high yield in the savanna and low yield in the forest zone 
due to poor soil fertility that was much more pronounced in 
the forest zone than in the savanna ecological zones (IITA, 
2009). This is an indication that soil management 
strategies are critical in a maize field’s prior planting. 

Among the soil management strategies, monitoring soil 
nutrients is important to ascertain soil nutrient status prior 
to the application of any management strategy. The soil's 
physical properties, chemical contents, and rhizobacteria 
loads are the main drivers and soil indicators that should 
be considered for monitoring soil nutrients (Shahane and 
Shivay, 2021). Up until now, most initiatives to monitor soil 
quality for maize production in SWN have been based on 
either soil physical and chemical properties alone 
(Agboola and Corey, 1976; Adeyemo et al., 2019) or 
rhizobacteria only (Abiala et al., 2015). There is no study 
in SWN where the soil physical properties, chemical 
contents, and rhizobacterial loads have been used 
together to ascertain soil quality for maize growth in 
Nigeria. In addition, assessment of soil physical and 
chemical dynamics as well as the rhizobacteria loads in 
maize fields of SWN have been limited to either one or two 
EZs (Agboola and Corey, 1976; Adeoye and Agboola, 
1984; Oyedele et al., 2009; Akinde et al., 2020) out of five 
EZs in SWN, and there is no way this could give proper 
evidence of the distribution and variation of the soil 
physical properties, chemical contents, and rhizobacterial 
loads in maize fields of SWN. On this note, we based our 
hypothesis on analyzing the relationships among the soil 
physical properties, chemical contents, and rhizobacterial 
load across the five EZs in SWN. In this study, we 
investigated the ecological differences in soil physical 
properties, chemical contents, and rhizobacterial loads 
across the EZs because of their importance in determining 
soil quality for maize production in SWN. 

 
 
MATERIALS AND METHODS 

 
Field survey, study area, selection of site and collection of soil 
samples 

 
With the permission of the maize farmers, soil samples were 
collected in different maize fields across the ecological zones (GS, 
DS, LR, FW and MF), where maize had been grown for 5 to 10 years 
by local farmers in SWN. Four study areas of about 20 km were 
randomly selected and surveyed in each ecological zone. In each 
study area, five sites about 100 m apart were randomly selected for 
sampling. In each maize field, rhizosphere soils at a depth of 5 to 15 
cm were collected randomly and mixed together to form a composite 
soil sample for each maize field and subsequently pooled together to 
form composite soil for each ecological zone (Figure 1). For each EZ, 
composite soil samples were in four replicates across the five EZs, 
making a total of 20 samples for this study. In addition, at each 
ecological zone, a mini-questionnaire was used to gather  information  
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Figure 1. Study areas in ecological zones of Southwestern Nigeria.  

 
 
 
on maize cultivation practices by maize farmers, specifically to 
ascertain the use of chemical fertilizers or organic manures (poultry 
or animal). For this study, our interest is channeled towards the EZs, 
not the study areas. 
 
 
Profile of soil pH and moisture content 
 
Exactly 25 g (field moist soil) from each EZ were taken into a clean, 
dry 150 mL beaker, and 50 mL of distilled water was added. The 
contents were thoroughly mixed using a magnetic base stirring 
machine (Nuova II, stirrer {thermolyne}). The pH of the suspension 
was measured with a pH meter (pHo p(R)-pH Tester CE from Hanna 
Instruments, Italy. For moisture content, 50 g of fresh soil samples 
were measured separately in clean moisture cans; the  weight  of  the 

moisture can and the soil were taken together before and after oven 
drying to a constant weight at 105 ± 3°C for 24 h. The moisture 
content of the soil was recorded and calculated. Both soil pH and soil 
moisture content were measured in three replicates. 
 
 
Determination of particle size of the soil samples 
 
The particle size of the soil samples was carried out with slight 
modifications using the method described by Beretta et al. (2014). 
Each composite sample (51 g) was weighed out and transferred to a 
big container in a high-speed shaker. Then, 25 mL of freshly 
prepared 5% sodium hexametaphosphate (calgon) and 400 mL of 
tap water were added to the sample in the sample in the container. 
The container was shaken for 2 h in a mechanical shaker for particle  
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Table 1.  Field survey information on the farming practices with emphasis on the maize cultivars, NPK fertilizer, plant manure and 
animal manure across the agro-ecological zones in SWN.  
 

Ecological zones Maize cultivars 
NPK Fertilizer 

Plant manure Animal manure 
Before Now 

GS SW 1 -/+ - + - 

DS SW 1, TC4 -/+ - + +/- 

LR SW 1, TC4 -/+ - + - 

FW SW 1, OBA S-2 + + + - 

MF SW 1, OBA S-2 -/+ + + +/- 
 

SW1 = Suwan – 1 - Y, TC4 = TZL Composite 4 C2, OBA S-2 = Oba Super 2, + Presence, - Absence, -/+ Irregular. GS = Guinea savannah, 
DS = derived savannah, LR = lowland rain forest, FW = freshwater swampy forest. MF = Mangrove forest. + Presence, - Absence, -/+ 
Irregular. 

 
 
 
separation. Samples were then transferred into a 1 L measuring 
cylinder and made to mark by adding tap water before stirring with a 
paddle for 1 min.  The soil hydrometer (Model: ASTM-E100 152H-
62, Serial Number:  0252, G.H. ZEAL, UK) was introduced into the 
cylinder, and the first reading was taken (B) after 4 min and 48 s (silt 
and clay). The second reading (A) was taken 5 h later for clay. The 
following formula was used to deduce the sand, silt, and clay 
percentages. Soil textural determination was made by plotting clay, 
sand, and silt percentages onto the textural triangle for the soil 
classification of the USDA (Gee and Or, 2002).  
 
 
Clay (%) = [(A (gL-1) × 100) / 50 g] - 1  
Silt + Clay (%) = [(B (gL-1) × 100) / 50 g] -1  
 
 
where 1 = calgon correction, Silt (%) = [(Silt + Clay) – Clay]%, and 
Total sand (%) = [100 – (Silt + Clay)]%. 
 
 
Chemical contents of collected soil samples 
 
Soil total nitrogen (N) was determined by the macro-Kjedahl method 
(Bremner and Mulvaney, 1982) and Technicon Autoanalyser (1971), 
organic carbon by chromic acid digestion (Heanes, 1984). 
Phosphorus and exchangeable cations (Ca, Mg, K, and Na) 
measurements were done by Mehlich 3 extraction (Mehlich, 1984), 
and phosphorus was determined colometrically using the Technicon 
AAII Auto-Analyzer, while the cations (Zn, Cu, Mn, and Fe) were 
determined using an atomic absorption spectrophotometer (Model 
Buck 200A). 
 
 
Enumeration of bacterial loads based on EZ  
 

A serial-dilution-pour plate technique was used to isolate bacteria 
(Reynolds, 2005; Abiala et al., 2015) on nutrient agar (NA; Oxoid 
Chemicals, Loughborough, United Kingdom). Inoculated Petri plates 
were incubated at 28 ± 2°C for 24 h and counted accordingly. Isolates 
differing in morphological appearance on NA were selected and 
streaked onto new plates until pure cultures were obtained. Pure 
cultures of bacterial isolates were maintained on NA slants and 
stored at 4°C.  
 
 
Statistical analyses 
 
Experimental treatments were compared using SAS software version 
9.1  (2009);   SAS  Institute,  Cary,  NC,  USA).  For  each  experiment, 

three replicated data sets were subjected to the analysis of variance 
(ANOVA) technique according to the experimental design to find out 
the significance of the treatments. ANOVA was also used to 
determine the effect of treatments and errors associated with the 
experiment. Mean comparison was used and carried out by protected 
LSD (P = 0.05; Students-Newman-Keuls Test), where the error mean 
square served as the standard error of differences between the 
means. The principal component analysis (PCA) was run in R (vegan 
package) using the variable correlation matrix so that they all had 
equal weights (R Core Team 2015). 

 
 
RESULTS AND DISCUSSION 

 
Chemical and organic fertilizers on maize field of SWN 

 
The use of plant manure predominated in all the study 
areas across the EZs, while the use of animal manure was 
recorded for DS and MF. Apart from a few farmers in FW 
and MF that were consistent in the use of NPK chemical 
fertilizer, other farmers across the EZs were not using NPK 
chemical fertilizer on a regular basis (Table 1). In Nigeria, 
the high cost of NPK chemical fertilizer, health 
implications, import restrictions, and, at times, scarcity of 
NPK chemical fertilizer have discouraged many farmers 
from using NPK chemical fertilizer (Apeh, 2018; Demi and 
Sicchia, 2021; Penuelas et al., 2023). As a result of this, 
all the farmers in the study areas are gradually adapting to 
the use of plant and animal manures as the cheapest and 
most readily available source of organic fertilizer, knowing 
fully well that they are also environmentally friendly and 
sustainable. According to Bopche et al. (2024), adding 
organic matter, specifically, manure from poultry, has the 
ability to enhance soil structure, promote microbial activity, 
and gradually release nutrients for sustainable crop output. 

 
 
Soil physical properties in maize fields of SWN 
 

The pH of the soil samples from the study areas ranged 
from acidic to neutral (Figure 2). The soil of DS had the 
highest  average  pH,  followed  by  MF,  GS, LR,  and  FW.   
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Figure 2. pH of collected soil samples based on ecological zones. Means followed by the same letter (s) are not 
significantly different (P ≤ 0.05) according to Student-Newman- Keuls Test. The results shown are means ± standard 
error (n=5). 

 
 
 
This variation in pH may perhaps be attributed to 
differences in ecozones and litter accumulation from leaf 
drops. FW soils were uniquely acidic in comparison to 
other EZs, with an average pH of 5.6 (Ayodele and 
Omotosho, 2008; Chodak et al., 2015). This suggests that 
the low soil pH of 5.6 in FW soils could be attributed to the 
topography affecting the swampy areas and continuous 
cultivation, thus lowering the soil pH. This is in line with the 
work of Abdulrashid et al. (2024) on the assessment of soil 
physical and chemical properties in the parklands of 
northern Nigeria. Furthermore, we determined the soil 
moisture content (Figure 3) based on the composite soil 
for each EZ. Sandy-loam predominates across the EZs 
(Table 2), which suggests their support for maize growth. 
MF had the highest moisture content, while FW had the 
lowest (Adeyemo et al., 2019). According to Zhou et al. 
(2019), the sandy-like-loamy soil in the MF may have 
promoted nutrient leakage through the many macropores 
in this type of soil during the planting season. These results 
are in line with the findings of  Adugna  and  Abegaz  (2016) 

and Azeez et al. (2020), who reported substantial sand 
content in their various investigations of forest soils. 
According to Azeez et al. (2020), the quantity and size of 
soil particles affect porosity and bulk density, which 
account for nutrient leaching and retention. This suggests 
that soil physical qualities have a major impact on soil 
fertility. 
 
 
Soil chemical contents varied across the maize fields 
in the EZs of SWN 
 
Soil samples collected were pooled together for each EZ 
and chemical contents were determined. DS had the 
highest organic carbon and nitrogen, followed by FW, 
whereas MF had the lowest (Table 3). Soil available 
phosphorus in DS was extremely high compared to other 
EZs (Table 3). Similarly, DS had the highest exchangeable 
cations (calcium, magnesium, potassium, sodium and 
ECEC). Moreso, DS, had the highest extractable  zinc  and  
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Figure 3. Moisture content (%) of collected soil samples based on ecological zones. Means followed 
by the same letter (s) are not significantly different (P ≤ 0.05) according to Student-Newman- Keuls 
Test. The results shown are means ± standard error (n=5). 

 
 
 

Table 2. Physical properties of collected soil samples based on study areas. 
 

Ecological  zone   Texture 
Particle  size 

Clay (%) Silt (%) Sand (%) 

GS Sandy-loam 13 (±0.33)c 14 (±0.67)b 73 (±0.67)b 

DS Sandy-loam 19 (±0.33)b 14 (±0.67)b 67 (±0.87)c 

LF Sandy-clay-loam 21 (±0.57)a 18 (±0.33)a 61 (±0.57)c 

FW Sandy-loam 15 (±0.44)c 14 (±0.67)b 71 (±0.88)b 

MF Sand-Sandy-loam 9 (±0.58)d 6 (±0.33)c 85 (±1.20)a 
 

GS = Guinea savannah, DS = Derived savannah, LR = Lowland rain forest, FW = Freshwater swampy forest. MF = 
Mangrove forest. Values followed by different letters within a column indicate significant differences according to the 
Student-Newman-Keuls multiple-range test (α = 0.05). 

 
 
 
copper, while manganese and iron were observed to be 
low (Zhou et al., 2019). LF showed unique high 
concentration of manganese, followed by GS, FW, and MF 
(Table 3). Notably, the concentration of iron was generally 
high in all the EZs with the exception of DS (Table 3). With 
the exception of available phosphorus, our study revealed 
that soil nutrients were partly below the established critical 
level (Table S1) for soil fertility in SWN (FMANR, 1990). 
Thus, based on chemical nutrients status, soils sampled 
from maize fields were not really adequate to enhance 
maize growth in certain EZs such as LF, FW and MF. This 
could possibly  be  due  to  lack  of  fertilizer  availability  as 

possible cause? As well as continuous maize cropping 
itself exhausting the soil when coupled with low-nutrients 
parents materials. The organic carbon which is an 
indicator of the soil organic matter differs among the 
different EZs in this study. Eludoyin and Wokocha (2011) 
attest to the fact that the soils in EZs of SWN varied in their 
chemical properties. Apart from DS, the soil organic 
carbon in the EZs was low (Zhou et al., 2019). Maize 
growth would generally perform better in DS compared to 
other EZs. This is due to the fact that DS had adequate if 
not enough organic carbon, available P, N, exchangeable 
cations   and  extractable  micronutrient  concentration  that  
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Table 3. Chemical contents of collected soil samples based on the ecological zones. 
 

Chemical contents 
Ecological zones 

GS DS LF FW MG 

% OC 1.14 (±0.05)b 1.60 (±0.01)a 1.20 (±0.05)b 1.46 (±0.01)b 0.89 (±0.01)c 

% N 0.11 (±0.01)b 0.16 (±0.01)a 0.12 (±0.02)b 0.15 (±0.03)a 0.09 (±0.01)c 

Mehlich P (µg/g Soil) 17.27 (±0.08)c 177.50 (±7.26)a 27.53 (±0.36)b 14.22 (±0.30)c 37.62 (±0.29)b 

      

Exchangeable Cations      

Ca (cmol+/ kg) 8.20 (±0.03)a 10.91 (±0.02)a 7.17 (0.04)a 3.97 (±0.04)b 7.29 (±0.19)a 

Mg (cmol+/ kg) 1.63 (±0.02)a 1.64 (±0.01)a 1.52 (±0.01)a 1.03 (±0.01)a 0.68 (±0.01)b 

K (cmol+/ kg) 0.43 (±0.01)a 0.53 (±0.01)a 0.40 (±0.02)a 0.28 (±0.01)a 0.23 (±0.01)b 

Na (cmol+/ kg) 0.16 (±0.01)a 0.17 (±0.01)a 0.16 (±0.02)a 0.13 (±0.01)a 0.16 (±0.02)a 

ECEC (cmol+/ kg) 10.41 (±0.50)a 13.5 (±0.29)a 9.25 (±0.25)a 5.41 (±1.40)b 8.36  (±1.80)a 

      

Extractable micronutrients (ppm)      

Zn (ppm) 33.30 (±0.30)b 85.87 (0.20)a 44.45 (±0.30)b 21.72 (±0.90)c 37.37 (±1.20)b 

Cu (ppm) 1.27 (±0.04)b 44.45 (±1.03)a 1.60 (±0.06)b 0.62 (±0.05)b 0.60 (±0.03)b 

Mn (ppm) 181.29 (±1.07)a 21.72 (1.27)b 188.17 (±1.87)a 139.1 (±1.86)a 46.96 (±0.58)b 

Fe (ppm) 144.31 (±0.70)a 37.37 (±0.47)a 163.14 (±0.53)a 147.92 (±0.34)a 182.70 (±0.88) 
 

% C = Percentage of organic carbon, % N = percentage of nitrogen, P = Phosphorus, Ca = Calcium, Mg = Magnesium, K = Potassium, Na = Sodium, 
Zn = Zinc, Cu = Copper, Mn = Manganese, Fe = Iron. GS = Guinea savannah, DS = Derived savannah, LR = Lowland rain forest, FW = Freshwater 
swampy forest. MF = Mangrove forest. Ppm = part per million. Values followed by different letters within a row indicate significant differences according 
to the Student-Newman-Keuls multiple-range test (α = 0.05). 

 
 
 
can support maize growth. This therefore suggests that the 
low organic carbon have the potentials to influence 
exchangeable cations (K, Ca and Mg), CEC, total nitrogen, 
P and clay content suggesting the dependence of soil 
nutrient lands on organic matter in tropical soils. Soils of 
the savannah region are physically fragile because the 
topsoil contains a large proportion of sand, causing weak 
aggregation and low levels of organic matter (Salako et al. 
2002). Soils of the LF, FW and MF EZs were also observed 
to be low in organic carbon, perhaps due to continuous 
rainfall that may leach organic matter and macro and 
micronutrients. In addition, this could be as a result of soil 
exposure to continuous cropping and lack of protection of 
soil against changes in climatic factors. In Nigeria, growing 
food crops is hampered by low soil fertility, which results in 
decreased yields in variable lands in the tropics that are 
noticeable even after one or two years of cultivation 
(Wawire et al., 2021). 

This suggests that if adequate care is not taken, soil for 
arable crop in SWN will continue to be degraded and this 
will directly have ecological effects on mankind. So, 
directly or indirectly, the low fertility status of the studied 
soils will continue to hinder maize production as maize has 
a strong exhausting effect on the soil. Woodruff (1949) 
stated that whenever virgin soils are brought under 
cultivation and cropping, organic carbon content generally 
declines because the amount of organic materials returned 
to the soil decreases sharply and erosion and leaching 
increases. Similarly, extensive use of chemical fertilizers 
and pesticides in the absence of organic matter 

amendments can deplete soil organic matter and soil 
biodiversity, also resulting to nutrient depletion. This 
suggests that the availability of ample litter cover, organic 
inputs, root growth and decay, and abundant burrowing 
fauna may be responsible for the variation in this study. 
Remarkably, relatively high organic carbon was observed 
in the soil of DS (1.6%) (Jibril and Yahaya, 2010), which is 
in-line with the soil nutrient critical level for SWN (FMANR, 
1990). Over 50% of the EZs were deficient in nitrogen 
content (Table 3 and Table S1) compared with the 
established 0.15% critical level of soil fertility in SWN 
(FMANR, 1990). Although, in Nigeria, maize is a high 
nitrogen demanding crop, however, the nitrogen deficiency 
in soil always show up when soil contain less than 1% of 
organic matter (Sobulo and Osiname, 1985).  This can be 
attributed to the removal of aboveground biomass due to 
grazing, logging, firewood collection, and deterioration of 
soil physical parameters. On a similar note, during the 
annual dry season, the usual slash-and-burn land clearing 
practices could have caused the complete oxidation of the 
litter and humified organic materials, with loss of nitrogen 
as oxides into atmosphere (Jones and Wild, 1975; 
FMANR, 1990). 

The high available phosphorus within and across the 
EZs (Table 3) were similar to the report of Eghball and 
Power (1999). All the maize farmers in the EZs, as 
observed from the field information obtained in this study, 
had engaged in the use of plant and partly animal manure, 
which may have contributed to the increase in available 
phosphorus (Liang et al., 2020). Interestingly, DS 
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Figure 4. Rhizobacteria load based on source of collection (Rhizosphere / Soil) at 10-6 CFU/g soil. Means 
followed by the same letter (s) are not significantly different (P ≤ 0.05) according to Student-Newman-
Keuls Test. The results shown are means ± standard error (n=5). 

 
 
 
had extremely high available P that was 6-fold higher than 
other EZs. The extremely high available phosphorus 
observed in DS soil sample could be a result of consistent 
use of poultry manure. Our study, therefore, supports the 
reports of Adeleye and Ayeni (2009) and Ayeni (2011) that 
poultry manure may have enhanced the soil phosphorus. 
Ayeni (2010) have also demonstrated that the use of 
animal manures and agricultural wastes improves soil 
fertility maintenance.  Regarding potassium content (Table 
3), DS had the highest (0.53 cmol+/kg) while FW and MF 
were lowest. The calcium contents were within the 
expected standard (>1.6) across the EZs (Table 3) but GS, 
FW and MF had low calcium contents compared to others. 
Potassium and calcium were moderately high (Eludoyin 
and Wokocha, 2011), whereas magnesium and sodium 
were adequate and significantly (P < 0.05) varied from low 
to medium quantity across the EZs (Table 3) based on the 
soil nutrient critical level for SWN (Agboola and Ayodele, 
1985; FMANR, 1990). Even though potassium and 
calcium were observed to be dominant among the 
exchangeable cations, their effect may not be significant in 
comparison to the low content of magnesium and sodium 
that can limit maize growth (Kang, 1981). Apart from 
copper, which was generally low in MF in comparison to 
other EZs (Table 3), more than 80% of the soils in the EZs 
showed high zinc, manganese and iron and were 
considered adequate (Agboola and Ayodele, 1985; 
FMANR, 1990) for maize growth far beyond the 
observation reported by Ayodele and Omotosho (2008). 

Maize is a staple and popular food for the populace of 
Nigeria, and mostly intercropped with crops like cassava, 
vegetables and yam in subsistence farming due to the 
decrease in virgin land (Aweto et al., 1992). Therefore, 
nutrient depletion observed in soils of maize fields  in  SWN 

may be associated with the history of continuous 
intercropping of cassava and maize in most of the EZs. 
This finding reaffirms the report of Aweto et al. (1992) that 
continuous intercropping of cassava and maize appeared 
to have a greater degrading effect on soil in terms of soil 
organic matter, total nitrogen, and available phosphorus. 
Similarly, extensive use of chemicals as fertilizer to 
improve plant health and productivity and for control of 
pathogens has disturbed the ecological balance of soil and 
has led to the depletion of nutrients (Molina-Santiago and 
Matilla, 2020). Further physical and chemical degradation 
of soil in maize fields of SWN will not only increase food 
insecurity, but it will also degrade soil biodiversity beyond 
restoration. 
 
 
Variation in rhizobacterial loads in maize fields across 
the EZs in SWN 
 
Despite the acknowledged importance of rhizobacteria in 
SWN for plant growth (Abiala et al., 2015), little is known 
about their ecological variation especially in maize fields of 
SWN. Based on the composite soil from each ecological 
zone, GS and DS had the highest rhizobacterial loads 
(Figure 4). We attribute the high rhizobacterial loads in GS 
and DS to the high level of soil nutrients found in that EZ 
(Akinde et al., 2020; Trivedi et al., 2020). Rhizobacterial 
loads in the EZs compared favourably with most 
agricultural soils (Orole and Adejumo, 2011). Studies have 
shown that microbial load changes with host specificity, 
geographical distribution, plant age, and tissue type 
(Kobayashi and Palumbo, 2000). Several factors may be 
responsible for the variation of the rhizobacteria loads. For 
example,  nutritional  status  of   the   maize   cultivars,  soil 
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Table 4. Correlation coefficient between selected physico-chemical properties and 
rhizobacteria load. 
 

Correlation pH MC RB OC N 

pH 1.00     

MC - 0.36 1.00    

RB 0.40 - 0.30 1.00   

OC 0.14 0.10 0.05 1.00  

N 0.05 0.23 0.06 0.96 1.00 
 

pH, MC = Moisture Content, RB = Rhizobacteria, OC = Organic Carbon, N = Nitrogen. 

 
 
 
structure, micronutrient status of the soil, and root 
morphology, physiology, age, or emergence (Akinde et al., 
2020) may have directly or indirectly influenced the 
variation observed in bacterial load in this study. 
 
 
Relationship between soil physical and chemical 
factors and rhizobacterial population 
 
The soil pH, moisture content, organic carbon and nitrogen 
were selected to ascertain their relationship with 
rhizobacteria across the EZs (Table 4) because they are 
essential factors in crop production (Zhou et al., 2019). The 
soil pH and moisture content negatively correlated (r = -
0.36); this negative correlation is a common observation 
due to climate and hydrological differences (Minasny et al., 
2017). On the other hand, the soil pH was positively 
correlated with rhizobacteria (r = 0.4). Sangakkara et al. 
(1993) stated that larger bacterial population in maize 
rhizosphere are due to optimum soil pH (Higa and 
Wididana, 1989), which also influences uptake of nutrients 
into the maize tissues (Oyekanmi et al., 2008). This implies 
that EZs with appropriate soil pH and adequate 
rhizobacteria population should experience good soil 
quality (Abiala et al., 2015), further supporting the 
increased soil fertility of DS among the EZs. The soil 
moisture content was negatively correlated with the 
rhizobacteria (r = -0.30). This suggests that the low 
bacterial population experienced by GS and FW could be 
as a result of shortage of water, probably due to irregularity 
in rainfall during the collection of the soil samples. Also, 
excess soil water due to flooding may have affected the 
bacterial population in the rhizosphere of the maize field in 
LR, FW and MF. In contrast, the correlation between 
organic carbon and rhizobacteria was not as strong as 
expected (r = 0.05), this suggests that organic carbon had 
no influence. Nitrogen was also only weakly correlated 
with rhizobacteria. Previous studies have shown that both 
nitrogen and organic carbon are important in sustaining 
soil quality, crop production, and environmental protection  
(Akinde et al., 2020). However, we found that over 60% of 
the studied soils in the EZs of SWN had adequate nitrogen, 
while low organic carbon was exhibited  across  the  board. 

The variation observed may be associated with plant and 
animal manure/residue inputs (Han et al., 2015; Wakelin 
et al., 2016; Zhou et al., 2019) across the EZs because this 
would also affect the rhizobacteria (Trivedi et al., 2016). 

Next, we further considered the relationship among 
physicochemical factors and rhizobacteria using PCA 
(Figure 5). The PC1 and PC2 accounted for 51 and 27% 
of the variance, respectively. The rhizobacteria loads 
positively correlated with soil pH as well as the available 
phosphorus and zinc (Lagos et al., 2015). On the same 
PCA, rhizobacterial loads negatively correlated with soil 
moisture content (Trivedi et al., 2016). The PCA also 
indicates that both MF and DS have higher rhizobacterial 
loads, soil pH, available phosphorus, and zinc than the 
other three zones on PC2, but MF and DS differ in contents 
of sand, organic carbon, nitrogen, iron, calcium, 
manganese and magnesium on PC1. More so, among the 
EZs, the soil physicochemical properties and rhizobacteria 
loads negatively drifted away from FW. Thus, this 
suggests that the soil physicochemical properties and 
rhizobacteria loads have the potentials to vary based on 
each EZ. 
 
 
Conclusions   
 
Generally, the study revealed variation in soil nutrient 
reserves across the ecological zones in southwestern 
Nigeria according to Federal Ministry of Agriculture and 
Natural Resources Agronomic Guidelines. In comparison 
to the Federal Ministry of Agriculture and Natural 
Resources Agronomic Guidelines, 70% of the collected 
soil samples have declined in their chemical nutrients 
which may have directly affect the rhizobacterial loads. 
Moreso, the rhizobacterial loads trend with the soil 
physical properties and chemical contents across the 
ecological zones. Based on the ecological zones, only the 
soil of DS maintained adequate soil physical properties, 
chemical contents and rhizobacterial loads. Thus, to the 
best of our knowledge, this is the first report that revealed 
differences in soil physical properties, chemical contents 
and rhizobacterial loads across the five EZs because of 
their   importance   in   determining   soil   quality   for  maize  
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Figure 5. Principal component analysis (PC1 and PC2) showing relationship effect 
between soil physico-chemical properties and rhizobacteria loads across the EZs. MC = 
Moisture Content, N = Nitrogen, K = Potassium, OC = Organic Carbon, P = Potassium, 
RB = Rhizobacteria, CY = Clay, ST = Silt, SD = Sand, Na = Sodium, Ca = Calcium, Mn = 
Manganese, Zn = Zinc, Mg = Magnessium, Fe = Iron, GS = Guinea savannah, DS = 
Derived savannah, LR = Lowland rain forest, FW = Freshwater swampy forest, MF = 
Mangrove forest. 
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SUPPLEMENTARY DATA 
 
Table S1: Criteria for soil test interpretation and soil fertility classes in Southwestern Nigeria. 
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