
African Journal of Biotechnology Vol. 6 (8), pp. 1048-1054, 16 April 2007 
Available online at http://www.academicjournals.org/AJB 
ISSN 1684–5315 © 2007 Academic Journals 
 
 
 
 
 

Full Length Research Paper 
 

Optimization of cellulase and �-glucosidase induction 
by sugarbeet pathogen Sclerotium rolfsii 

 
Tarek A. A. Moussa* and Nagwa A. Tharwat 

 
Department of Botany, Faculty of Science, University of Cairo, Giza 12613, Egypt 

 
Accepted 15 January, 2007 

 
The ability to produce cellulose degrading enzymes by sugarbeet pathogen Sclerotium rolfsii Sacc. in 
liquid synthetic media with carboxymethy cellulose (CMC) as inducer was studied. Several cultural 
conditions were examined to assess their effect in optimizing enzymes production. Shaking cultures 
gave higher yields of cellulases compared with static ones. Aspargine supplement was the best 
nitrogen source, especially at 3.0 g/l concentration, in promoting enzyme production. Variation of 
cellulose/xylan ratio in the culture medium showed that cellulose and xylan induced both cellulases 
synthesis but cellulose being the most effective specific substrate. The influence of different inhibitors 
on enzymes production by S. rolfsii was also studied. Cyclohexmide and ethidium bromide inhibited 
protein synthesis by S. rolfsii. Moreover, glucose repressed cellulase synthesis in S. rolfsii.  
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INTRODUCTION 
 
The cellulase system in fungi is considered to comprise 
three hydrolytic enzymes: endo-(1,4)-�-D-glucanase (sy-
nonyms: endoglucanase, endocellulase, carboxymethyl 
cellulase [EC 3.2.1.4]), which cleaves �-linkages at ran-
dom, commonly in the amorphous parts of cellulose; exo-
(1,4)-�-D-glucanase (synonyms: cellobiohydrolase, exo-
cellulase, microcrystalline cellulase, avicelase [EC 
3.2.1.91], which releases cellobiose from either the non-
reducing or the reducing end, generally from the cry-
stalline parts of cellulose; and �-glucosidase (synonym: 
cellobiase [EC 3.2.1.21]), which releases glucose from 
cellobiose and short-chain cellooligosaccharides (Bhat 
and Bhat, 1997). 

Sclerotium rolfsii is a plant pathogen that has been iso-
lated from a wide variety of host species, primarily ann-
uals and herbaceous perennials, but saplings of some 
woody plants may also be attacked. S. rolfsii survives on 
dead plant material in the soil as sclerotia, which later 
germinate and attack host plants, causing necrosis by 
attacking cell walls (Ludwig and Haltrich, 2002; Sachsleh- 
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ner et al., 1997).  
In a number of fungi, these various endoglycanases 

can be quite specifically induced. During the growth of 
Trichoderma reesei and T. harzianum on xylan-based 
media, xylanase activities with low levels of endoglu-
canase are formed. Growth on cellulose or on hetero-
geneous native substrates containing both xylan and 
cellulose results in the production of both endo-glucanase 
and xylanase. This unspecific effect of cellulose could be 
explained by xylan impurities found in commercially avail-
able cellulose preparations (Hrmovà et al., 1986; Senior 
et al., 1989). 

Cellulases have a wide range of applications. Potential 
applications are in food, animal feed, textile, fuel, chemi-
cal industries, paper and pulp industry, waste manage-
ment, medical/pharmaceutical industry, protoplast pro-
duction, genetic engineering and pollution treatment 
(Beguin and Anbert, 1993; Coughlan, 1985; Mandels, 
1985).  

The objective of this investigation is to study the pro-
duction of cellulases by S. rolfsii Sac. isolated from dis-
eased sugarbeet roots (El-Abyad et al., 1988) as well as 
the influence of different cultural conditions on enzyme 
production by this species in the laboratory. This organi-
sm is known as an excellent producer of cellulolytic enzy- 



 
 
 
 
mes (El-Abyad et al., 1996, 1997; Kurosawa et al., 1989; 
Lachke and Deshpande, 1988; Moussa, 1994).  
 
 
MATERIALS AND METHODS 
 
Micro-organism and culture conditions  
 
S. rolfsii Sacc. was isolated from diseased sugarbeet roots (El-
Abyad et al., 1988) and maintained on a medium described by 
Johnson and Curl (1972) and composed of (g/l): dextrose, 30; 
KH2PO4, 1; MgSO4.7H2O, 0.5; KCl, 0.5; KNO3, 2; agar, 20; and 1 
ml/l of each of stock solutions (1 g/l) of FeSO4.7H2O, MnSO4.7H2O, 
ZnSO4.7H2O and thiamine. 
 
 
Effect of the state of culture on enzymes production  
 
S. rolfsii was cultivated in 250 ml Erlenmeyer flasks with 100 ml 
medium described by Haltrich et al. 1994 and containing the 
following (g/l): peptone, 80; NH4NO3, 2.5; MgSO4.7H2O, 1.5; 
KH2PO4, 1.2; KCl, 0.6 and trace element solution at 0.3 ml/l. The 
concentration of carboxymethyl cellulose (CMC) was 200 mg/l for 
production of cellulases. The flasks were inoculated with 5 mm plug 
cut out from the margin of a 5 day-old culture. Incubation was 
carried out at 25 ± 2˚C under static and shaking at 100 rpm for 11 
days. The culture filtrates were dialyzed against distilled water over 
night at 4°C and freeze-dried. The concentrated filtrates were used 
as enzyme source. 

 
 

Effect of different nitrogen sources and its concentrations on 
enzymes induction 
 
Cultivation of S. rolfsii was performed on a medium of Haltrich et al. 
(1994) described above but modified as follows. The NH4NO3 was 
replaced by different nitrogen sources at equimolar nitrogen of 
KNO3, (NH4)2SO4, NaNO3 or DL-asparagine. The flasks were 
inoculated with 5 mm plug cut out from the margin of a 5 day-old 
culture. Incubation was carried out at 25 ± 2˚C under shaking at 100 
rpm for 11 days. The culture filtrates were dialyzed, freeze-dried 
and used as enzyme source. 

From the previous experiment the best nitrogen source was DL-
asparagine and used in different concentrations based on equimo-
lar nitrogen of NH4NO3 (0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 and 7.0 g/l) 
were studied. 
 
 
Effect of different ratios of cellulose and xylan on enzymes 
induction 
 
Cultivation of S. rolfsii was performed on medium described pre-
viously. Carbon sources (carboxymethyl cellulose and Brich wood 
xylan, Sigma, USA) were added at the ratios as mg/100 ml [C5 
(cellulose, 20), C4X1 (cellulose, 16; xylan, 4), C3X2 (cellulose, 12; 
xylan, 8), CX (cellulose, 10; xylan, 10), C2X3 (cellulose, 8; xylan, 
12), C3X4 (cellulose, 12; xylan, 16) and X5 (xylan, 20)]. The flasks 
were inoculated with 5 mm plug cut out from the margin of a 5 day-
old culture. Incubation was carried out at 25 ± 2˚C under shaking at 
100 rpm for 11 days. The culture filtrates were desalted, concen-
trated and used as enzyme source. 
 
 
Induction and repression of enzymes 
 
For induction and repression of cellulases, S. rolfsii was grown on 
standard  medium  using  glucose (10 g/l) for four days. The myceli- 
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um was harvested and rinsed with sterile distilled water, and then 
transferred to basal medium without nitrogen plus different com-
pounds: CMC, 120 mg/l + 10 g/l glucose; CMC, 120 mg/l + 0.2 mg/l 
cycloheximide, CMC, 120 mg/l + 0.2 mg/l ethidium bromide; control 
(glucose 10 g/l). The culture solids (mycelium and undegraded 
cellulose) were separated from the culture fluids by filtration and 
then centrifugation at 7000 rpm for 20 min. The culture filtrates 
were dialyzed, freeze-dried and used as enzyme source. 
 
 
Enzyme assay 
 
Cellulase activity was determined at 40˚C by using carboxymethyl 
cellulose (sodium salt, Sigma, USA) as a substrate, in 50 mM ace-
tate buffer, pH 4.5. Reducing sugars released were assayed by the 
Somogyi method (Somogyi, 1952) modified from Nelson procedure 
(Nelson, 1944) with glucose as standard. One unit of enzyme 
activity was defined as the amount of enzyme required to liberate 1 
µmol/min of reducing sugar expressed as glucose equivalents. 
�-glucosidase was assayed at 40˚C using p-nitrophenyl-�-D-

glucopyranoside as a substrate, in 50 mM acetate buffer, pH 4.5. 
One unit of enzyme activity was defined as the amount of enzyme 
required to liberate 1 µmol of p-nitrophenol /min.  
 
 
Protein estimation 
 
The protein was measured in the culture supernatant, and estima-
ted by the Bradford method (Bradford, 1976) with bovine serum 
albumin as the standard. 
 
 
Statistics 
 
All the results are average of at least three replicates. The data 
were analyzed by the One-Way ANOVA followed by Tukey-Kra-
mer's multiple comparison tests (p� 0.05) (SPSS, 1999). 
 
 
RESULTS 
 
The results in Figure 1 showed that the influence of cul-
ture state on cellulose degrading enzymes production by 
S. rolfsii. Static cultures (Figure 1A) gave lower levels of 
enzyme as compared with shaken ones. In agitated cultu-
res (Figure 1B), maximal activity for cellulase was at ninth 
day and tenth day for �-glucosidase of growth period. 
The rate of cellulase production was five times in shaking 
cultures than in static ones, while, �-glucosidase was se-
ven times in shaking cultures than in static ones (Figures 
1A and 1B). 

In Figure 2A and B shows the effect of the nitrogen 
source on cellulose degrading enzymes produced by the 
fungus S. rolfsii. S. rolfsii cultivated on asparagine promo-
ted the highest yields of cellulose degrading enzymes 
followed by potassium nitrate, ammonium nitrate, sodium 
nitrate. Negligible amount of cellulase was observed 
when cultivated on ammonium sulphate as sole nitrogen 
source. 

The different concentrations of asparagine produced 
different amounts of cellulose degrading enzymes. The 
amount of enzymes correlated with asparagine concen-
tration till 3.0 g/l and then decreased with subsequent 
increase in asparagine concentrations (Figure 2C). 
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Figure 1. Effect of culture state on cellulose degrading enzymes produced 
by sugar beet pathogen S. rolfsii, [A] static culture and [B] shaking culture. 
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Figure 2. Effect of different nitrogen sources and its concentrations on the production of cellulose 
degrading enzymes by S. rolfsii. [A and B] different nitrogen sources, [C] asparagine concentrations. 
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Figure 3. Effect of cellulose/xylan ratio (mg/100 ml) on the induction of cellulose degrading 
enzymes by S. rolfsii. [A] cellulase, [B] �-glucosidase. 
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Figure 4. Induction and repression of cellulose degrading enzymes synthesis in S. rolfsii. [A] cellulase, [B] 
�-glucosidase. 

 
 
 

The data represented in Figure 3 showed that, by 
varying the relative concentration of cellulose and xylan 
in the culture medium, both were able to induce and syn-
thesis of cellulose degrading enzymes. The maximum 
production of cellulose degrading enzymes was when 
cultivated S. rolfsii on pure cellulose and decreased with 
decreased cellulose concentration (Figures 3A and B).  

The inducible synthesis of the cellulase system of S. 
rolfsii was determined by adding cyclohexamide or ethi-
dium bromide to induction media to inhibit protein synthe-
sis, although there was no growth there were very low 
level of enzymes produced (Figure 4). It may be conclu-
ded that in S. rolfsii cellulase syntheses are repressed by 
easily  metabolized  sugars  such  as  glucose. It is widely  
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accepted for filamentous fungi that cellulase and �-glu-
cosidase production are regulated by induction and 
repression (Figures 4A and B). 
 
 
DISCUSSION 
 
Since the polymeric substrates are unable to enter the 
cells by crossing the plasma membrane, the cells receive 
the signal for an accelerated synthesis of secreted glyca-
nases by means of low-molecular weight fragments, usu-
ally disaccharides, derived from the polysaccharides. The 
fragments are formed by the action of small amounts of 
the enzymes produced constitutively (Biely, 1993; Bajpai, 
1997). Thus, for example, cellobiose is an inducer of 
cellulose-degrading enzymes (Canevascini et al., 1979; 
Eberhart et al., 1977; Eriksson and Hamp, 1978; Mandels 
and Reese, 1957), and xylobiose is an inducer of xylan-
degrading enzymes (Biely et al., 1980; Nakanishi et al., 
1976). 

Purkarthofer et al. (1993) stated that a shaking speed 
of 120 rpm provided the optimal conditions for enzyme 
formation. At a decreased shaking speed of 100 rpm, the 
fungus showed poor growth, and enzyme production was 
reduced dramatically, at higher shaking speeds of 150 - 
250 rpm enzyme production was adversely affected. The 
lower xylanase activity produced at the slower shaking 
speed was ascribed to poor oxygen transfer within the 
medium, whereas the lower xylanase production at hig-
her shaking speeds was thought to be due to greater 
hyphal branching, mycelial fragmentation and early spo-
rulation (Purkarthofer et al., 1993). Shear stress within 
the medium, which is directly related to the stirrer speed, 
has a marked influence on xylanase production by Ther-
momyces lanuginosus SSBP (Reddy et al., 2002; Singh 
et al., 2000). 

The nitrogen source used in the production medium is 
one of the major factors affecting enzyme production and 
level. In a study carried out with Trichoderma harzianum, 
NaNO3 and peptone were the best nitrogen sources in 
production medium (Abdel-Satar and El-Said, 2001), 
whilst NH4NO3 was used in a study with Schizophyllum 
commune, and (NH4)2HPO4 was found suitable in another 
study with T.  lanuginosus RT9 (Haltrich et al., 1993; Hoq 
et al., 1994). The effect of various organic nitrogen com-
pounds on the production of xylanase by T. lanuginosus 
strains showed that all sources promoted growth of the 
fungus, but yeast extract had the most pronounced effect 
(Singh et al., 2003).  

The production of both cellulases in media with xylan or 
cellulose as sole carbon source may be due to substrates 
contamination or substrate cross-specificity that can ran-
ge from absolute for one polymer to about the same affi-
nity for both of them (Ferreria-Filho, 1994; Hrmovà et al., 
1986; Senior et al., 1989). Nevertheless, concurrent for-
mation of cellulase and xylanase has been observed in 
several fungi using natural and synthetic substrates 
(Hrmovà et  al., 1991; Royer and Nakas, 1990; Sachsleh- 

 
 
 
 
ner et al., 1998). There are suggestions of an interaction 
between xylanase and cellulase induction (Royer and 
Nakas, 1990), although the xylanolytic and cellulolytic 
systems in some filamentous fungi are likely to be under 
separate regulatory control (Bajpai, 1997; Hrmovà et al., 
1991; Kulkarni et al., 1999). In S. rolfsii there was a high 
cross induction of cellulolytic and xylanolytic enzymes, in 
Aspergillus terreus it was mainly induced by the res-
pective synthetic dimmers (Hrmovà et al., 1991). This un-
specific effect of cellulose could be attributed to xylan 
impurities found in commercially available cellulose pre-
parations (Hrmovà et al., 1986; Senior et al., 1989). 

Xylanases are generally produced together with cellula-
ses during growth of the fungus on macromolecular subs-
trate derived from plant polysaccharides, which inevitably 
always contain cellulose and xylan. The resulting xylana-
se to cellulase ratio has been shown to be directly pro-
portional to the xylan/cellulose ratio in the growth subs-
trate (Senior et al., 1989). These data seem consistent 
with results from induction studies, which showed that 
xylanase and cellulase biosynthesis in Trichoderma ree-
sei is differentially regulated (Hrmovà et al., 1986). In 
contrast, the efficient xylanase induction in T. longibra-
chiatum required the simultaneous presence of xylo- as 
well as cello-oligosaccharides (Royer and Nakas, 1990). 

A generally accepted view on the regulation of synthe-
sis of enzymes degrading polymeric substrates is that low 
constitutive levels of polysaccharide hydrolases interact 
with the polymer and produce small soluble ‘signal’ frag-
ments, which enter the cell and induce the synthesis of 
the corresponding enzyme, thus permitting utilization of 
polysaccharide. 

Studies using inhibitors of protein synthesis have sug-
gested that cellulase formation is regulated at the transla-
tional level (Nisizawa et al., 1972). Evidence based on 
the measurement of mRNA levels documented that the 
formation of cellulase occurs at the pre-translational level 
(Kolbe and Kubicek, 1990; Messner et al., 1991) and the 
cellulase gene transcription occurs within 20 min, after 
the addition of inducer (El-Gogary et al., 1989).  

The active growth of the fungus is crucial in cellulolysis. 
When growth was inhibited, cellulolysis remained weak, 
although cellulase enzymes were present in culture broth. 
Vaheri, (1983) proposed the participation of an oxidative 
reaction which is believed to disrupt the hydrogen bonds 
in crystalline cellulose, rendering it susceptible to attack 
by endoglucanase. He found that this activity was asso-
ciated with cell wall in young cells of T. reesei in both 
induced and non-induced conditions. Thus, activities 
associated with growing cells appear to play a crucial role 
in the degradation of crystalline cellulose. 

Carbon catabolite repression is another regulatory 
mechanism known to control cellulase production in bac-
teria and fungi. In this case, the end product of cellulose 
hydrolysis interacts with a cellular protein and form a 
complex which interacts with a particular gene at the tran-
scription  level  and  represses cellulase synthesis (Lewin 



 
 
 
 
and Genes, 1987). The carbon catabolite repres-sion was 
reported in Escherichia coli (Pastan and Adhya, 1976), 
Saccharomyces cerevisiae (Entian et al., 1985) and Clos-
tridium thermocellum (Johnson et al., 1985). However, 
Canevascini et al. (1979) reported that the cellulase syn-
thesis is regulated by both induction and catabolite repre-
ssion in Sporotrichum thermophile. 

The proof for carbon catabolite repression is based on 
the fact that no cellulase is formed during the growth of a 
microorganism on glucose, glycerol and other carbon 
sources related to glycolytic metabolism. Because there 
is no clear evidence that either glucose or a catabolite in 
fact controls the transcription of cellulase genes, Kubicek 
recommended not to use the term "catabolite repression" 
(Canevascini et al., 1979). The involvement of end pro-
duct inhibition during crystalline cellulose hydrolysis by a 
rumen fungus Neocallimastix frontalis RK21 was demon-
strated (Kubicek, 1992).  
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