Morphological characterization of the pollens of the selected species of Genus Prunus Linn. from Northern Pakistan

Syed Aneel Gilani ${ }^{1 *}$, Rizwana Aleem Qureshi', Amir M. Khan ${ }^{1}$ and Daniel Potter ${ }^{2}$
${ }^{1}$ Department of Plant Sciences, Quaid-i-Azam University Islamabad Pakistan.
${ }^{2}$ Department of Plant Sciences, University of California Davis 95616, USA.

Accepted 8 April, 2010

Abstract

A total of 6 species of Prunus were studied for the morphological characterization of the pollens through the scanning electron microscopy (SEM). The species were collected from various parts of Northern Pakistan. The species included Prunus armeniaca L., Prunus bokhariensis Royle ex C.K. Schn, Prunus avium L., Prunus persica (L.) Batsch, Prunus domestica L. and Prunus cornuta (Wall. ex. Royle) Steudel. In the SEM of the pollens, variations were found in the shape and exine sculpturing. The pollen class ranged from trizonocolpate to obtus-triangular, and the exine sculpturing varies from striate-scabrate-reticulate. The pollen shape varied from triangular-acute-convex to triangular-obtuseconvex to circular in polar view and elliptic-acuminate-acute to elliptic-acuminate-obtuse in the equatorial view. All these variations were very useful in the identification of the species with respect to their pollen shape and class.

Key words: Palynology, scanning electron microscopy, Prunus species, Northern Pakistan.

INTRODUCTION

Rosaceae is a family of about 100 genera and 3,000 species. Members of Rosaceae occur in a variety of habitats throughout the world but the family is best developed in the Northern hemisphere (Judd et al, 1999) where it is also of tremendous economic importance. The vast majority of fruits of the North temperate regions including species of Malus Mill (Apples), Pyrus L. (pears), Fragaria L. (strawberries), Rubus L. (raspberries and blackberries) and Prunus L. (peaches, plums, cherries, apricots and almonds) are produced by species of Rosaceae. The family also includes many ornamentals, cultivated primarily for their beautiful flowers, such as species of Rosa L. (roses), Potentilla L. (chinquefoil), Sorbus L. (mountain ash) and Spiraea L. (bridal wreath) (Potter, 2003). Family Rosaceae is not yet published in the Flora of Pakistan and there is a lot of taxonomic work yet to be done for the proper classification and placement of different genera under different sub-families.

[^0]Most of the Prunus are edible as fruits along with few with medicinal importance. Apricot (Prunus armeniaca) kernel oil is used as an adulterant or substitute for almond oil and in medicine for earache and a variety of ailments (Chopra et al., 1956; Gupta, 1969). In Yunani system of medicine, it is used as antiarrohetic, emetic, anthelmintic, in liver diseases, piles, earache, deafness, as an expectorant, remedy for dry throat, lung diseases and abscesses (Prasad, 1999). It is also regarded as sedative for the respiratory centre, tonic and antispasmodic, a remedy for severe colds and bronchial asthma (Lily and Judit, 1980). The presence of pentacyclic triterpene acid along with its glycoside and antibacterial and antioxidant activity of triterpene acid and crude extract has been reported (Rashid et al., 2005). Stewart (1972) listed a total of 26 species including 23 species, 2 subspecies and 1 variety from West Pakistan. Prunus has both wild and cultivated species. Prunus is found in tropical to temperate and sometimes in moist temperate regions.

In the present study, scanning electron microscopy (SEM) was conducted to find out the morphological characterization of the pollens of the different species of

Table 1. Pollen shapes and exine sculpturing in the Prunus species.

Plant species	Shape of pollen (Polar view)	Shape of pollen (Equatorial view)	Sculpturing of exine surface	Pollen class	Number of colpi
Prunus bokhariensis	Triangular-obtuse- convex-circular	Elliptic-acuminate- acute	Striate	Trizonocolpate Obtus-triangular	3
Prunus domestica	Triangular-obtuse-convex	Elliptic-acuminate- acute	Striate	Trizonocolpate Obtus-triangular	-
Prunus armeniaca	Triangular-obtuse-convex	Elliptic-acuminate- acute	Striate	Trizonocolpate Obtus-triangular	-
Prunus avium	Triangular-obtuse- convex- (straight)	Elliptic-acuminate- obtuse	Striate	Trizonocolpate Obtus-triangular	-
Prunus persica	Triangular-obtuse-convex	Elliptic-obtuse- convex-(circular)	Striate	Trizonocolpate Obtus-triangular	-
Prunus cornuta	Triangular-obtuse- (straight)	Rectangular- obtuse-convex	Striaate	Trizonocolpate Obtus-triangular	-

Prunus Linn. in Northern Pakistan.

MATERIALS AND METHODS

Study location

This study was undertaken at the Department of Plant Sciences Quaid-I-Azam University Islamabad and Department of Plant Sciences, Wickson Hall University of California Davis USA. SEM was done on FEI-Phillips XL-30 S FEG SEM microscope in the Material Sciences Facility at Kemper Hall at the University of California Davis, USA. The plant samples were collected from the field in the Northern areas of Pakistan and from different Herbaria including Herbaria at Quaid-i-Azam University Islamabad, Pakistan Museum of Natural History, (PMNH), Islamabad, and John Tucker Herbarium at University of California Davis. Pakistan is located on the North Western side of South Asia. Its geographical extension lies between 24° and 37° north and longitude 61° and 78° east. The area of Pakistan is about 7, 93, $000 \mathrm{sq} . \mathrm{km}$ and it is the second largest nation in the South Asia, India being the largest (Bano et al., 1995). In the present study, the Prunus species were collected from the Northern parts of Pakistan namely Murree, Galiat, Abbottabad, and Manshera including Prunus domestica L., Prunus avium L., Prunus persica (L.) Batsch, Prunus armeniaca L., Prunus bokhariensis Royle, and Prunus cornuta (Wall. ex. Royle) Steudel.

Pollen morphological characterization

For the pollen morphological characterization different aspects of the pollens were studied including the shape, length, width, length and width ratio, number of colpi, arbitary distance between the ridges, arbitary distance between the furrows, width of ridges, width of furrows, presence or absence of spines and exine sculpturing in the polar and equatorial view.

SEM analysis

For SEM evaluation, properly dried pollens of each of the 6 species were placed on the double-sided transparent tape on the surface of the polished Aluminum stub. The samples on the aluminum stub were sputter coated with gold (Au) layer $225 \mathrm{~A}^{\circ}$ thick (for two
minutes in sputter). The pollen grains were studied in the FEIPhillips XL-30 S FEG SEM Microscope at 5 KV and photographed between 1000-6279 x for the whole grain and at 10,000 x for the exine sculpturing patterns, respectively. The length and the width of the pollen grain along with length/width (L/W) ratio, distance between two ridges, width of ridge, distance between two furrows, width of furrow, length of equatorial ridge, distance between two colpi in the triangular pollen and the diameter of the colpi in the triangular pollen were measured. The measurements were made in micrometer ($\mu \mathrm{m}$).

RESULTS

Palynology

The pollen class is trizonocolpate mostly elliptic trizonocolpate in the equatorial view and obtuse-triangular in the polar view. The pollen is tricolpate without spines. The shape of the pollens varies from triangular-acute-convex to triangular-obtuse-convex. P. avium has triangular-obtuse-convex-straight in the polar view while P. cornuta has triangular-obtuse-straight in the polar view (Table 13). The sculpturing of the exine is mostly striate (Figure 1).

P. bokhariensis Royle

Shape of pollen is triangular-obtuse-convex-circular inpolar view while the shape of pollen in equatorial view is elliptic-acuminate-acute. Pollen class is trizonocolpate-obtus-triangular (Figure 2B). Sculpturing of exine surface is striate. Number of colpi is three (that is tricolpate) while the spines are absent. The horizontal distance (width) is $25.13 \pm 0.745 \mu \mathrm{~m}$ and the vertical distance (length) is $26.31 \pm 0.849 \mu \mathrm{~m}$. The length - width ratio in P. bokhariensis in the polar view is $1.04 \mu \mathrm{~m}$. The arbitrary distance between the ridges is $0.51 \pm 0.008 \mu \mathrm{~m}$ and

Table 2. Pollens in the polar view (measurements in $\mu \mathrm{m}$).

Species	Horizontal distance $($ length $)(\mu \mathrm{m})$	Vertical distance $(\mathbf{w i d t h})(\mu \mathrm{m})$	L/W ratio $(\mu \mathrm{m})$	OD. b/w two ridges $(\mu \mathrm{m})$	OD. b/w two furrows $(\mu \mathrm{m})$	Width of ridge $(\mu \mathrm{m})$	Width of furrow $(\mu \mathrm{m})$
Prunus avium	31.46 ± 0.040	34.17 ± 0.10	1.08	0.6 ± 0.008	0.52 ± 0.02	0.37 ± 0.005	0.32 ± 0.01
	$(31.4-31.54)$	$(34-34.36)$		$(0.59-0.62)$	$(0.49-0.57)$	$(0.36-0.38)$	$(0.3-0.35)$
P. domestica	35.87 ± 0.07	31.44 ± 0.56	0.87	0.54 ± 0.009	0.54 ± 0.04	0.43 ± 0.03	0.41 ± 0.01
	$(35.78-36.08)$	$(30-32.46)$		$(0.52-0.56)$	$(0.4-0.62)$	$(0.39-0.52)$	$(0.39-0.45)$
P. bokhariensis	25.137 ± 0.74	26.315 ± 0.84	1.04	0.51 ± 0.008	0.505 ± 0.02	0.45 ± 0.01	0.32 ± 0.01
	$(23.08-26.27)$	$(23.79-27.47)$		$(0.5-0.54)$	$(0.48-0.57)$	$(0.4-0.48)$	$(0.3-0.37)$
P. persica	50.14 ± 0.39	37.66 ± 0.42	0.66	0.51 ± 0.03	0.62 ± 0.04	0.46 ± 0.02	0.43 ± 0.01
	$(40-42.5)$	$(36.5-39.28)$		$(0.41-0.65)$	$(0.5-0.75)$	$(0.39-0.55)$	$(0.4-0.48)$
P. armeniaca	35.29 ± 0.32	36.17 ± 0.19	1.00	0.35 ± 0.01	0.47 ± 0.01	0.35 ± 0.02	0.22 ± 0.01
	$(34.95-35.94)$	$(35.84-36.5)$		$(0.32-0.38)$	$(0.45-0.49)$	$(0.31-0.39)$	$(0.2-0.25)$
P. cornuta	21.00 ± 0.18	21.065 ± 0.05	1.00	0.41 ± 0.005	0.62 ± 0.009	0.31 ± 0.008	0.14 ± 0.04
	$(20.6-21.5)$	$(20.95-21.2)$		$(0.4-0.42)$	$(0.6-0.64)$	$(0.3-0.33)$	$(0.17-0.2)$

OD: Arbitary distance; L/W: length/width; b / w : between.

Table 3. Pollens in the equatorial view (measurements in $\mu \mathrm{m}$).

Species	Horizontal distance (length) $(\mu \mathrm{m})$	Vertical distance (width) $(\mu \mathrm{m})$	L/W ratio $(\mu \mathrm{m})$	OD. b/w two ridges $(\mu \mathrm{m})$	OD. b/w two furrows $(\boldsymbol{\mu m})$	Width of ridge $(\mu \mathrm{m})$	Width of furrow ($\boldsymbol{\mu \mathrm { m }})$
P. avium	29.94 ± 0.66	26.73 ± 0.43	0.89	0.58 ± 0.01	0.51 ± 0.01	0.34 ± 0.02	0.24 ± 0.006
	$(28-31.26)$	$(25.7-27.92)$		$(0.55-0.62)$	$(0.48-0.59)$	$(0.29-0.44)$	$0.22-0.26$
P. domestica	36.25 ± 0.13	32.15 ± 0.62	0.88	0.77 ± 0.11	0.63 ± 0.04	0.41 ± 0.01	0.38 ± 0.01
	$(26.12-36.67)$	$(32.95-41.48)$		$(0.48-0.98)$	$(0.51-0.74)$	$(0.39-0.46)$	$(0.34-0.43)$
P. bokhariensis	24.4 ± 0.15	22.26 ± 0.37	0.91	0.55 ± 0.01	0.51 ± 0.005	0.3 ± 0.003	0.33 ± 0.01
	$(24.1-24.62)$	$(21.55-22.84)$		$(0.53-0.59)$	$(0.5-0.52)$	$(0.3-0.31)$	$(0.31-0.36)$
P. cornuta	25.99 ± 0.84	13.53 ± 0.07	0.52	0.43 ± 0.01	0.56 ± 0.01	0.34 ± 0.006	0.31 ± 0.008
	$(25.07-27.69)$	$(13.41-13.68)$		$(0.42-0.47)$	$(0.54-0.59)$	$(0.33-0.35)$	$(0.3-0.33)$
P. persica	35.27 ± 0.56	25.21 ± 0.56	0.71	0.51 ± 0.01	0.55 ± 0.02	0.46 ± 0.01	0.32 ± 0.01
	$(34.3-36.7)$	$(21.61-26.55)$		$(0.49-0.56)$	$(0.5-0.59)$	$(0.43-0.49)$	$(0.3-0.35)$
P. armeniaca	32.33 ± 0.37	29.21 ± 0.47	0.90	0.43 ± 0.01	0.51 ± 0.008	0.33 ± 0.01	0.32 ± 0.01
	$(31.46-33.15)$	$(28.23-29.1)$		$(0.41-0.46)$	$(0.5-0.54)$	$(0.31-0.36)$	$(0.28-0.36)$

OD: Arbitary distance; L/W: length/width; b / w : between.
ranges between $0.5-0.54 \mu \mathrm{~m}$ and the arbitrary distance between the furrows is $0.50 \pm 0.021 \mu \mathrm{~m}$ and ranges between $0.48-0.57 \mu \mathrm{~m}$. The width of ridges is $0.45 \pm$ $0.017 \mu \mathrm{~m}$ with ranges between $0.4-0.48 \mu \mathrm{~m}$, while the width of furrow is $0.32 \pm 0.016(\mu \mathrm{~m})$ with ranges between 0.3-0.37 $\mu \mathrm{m}$. The length - width ratio in P. bokhariensis in the equatorial view is $0.91 \mu \mathrm{~m}$. The arbitrary distance between the ridges is $0.55 \pm 0.017 \mu \mathrm{~m}$ and ranges between ($0.53-0.59 \mu \mathrm{~m}$) and the distance between the furrows is $0.51 \pm 0.005 \mu \mathrm{~m}$ ranging between $0.5-0.52$ $\mu \mathrm{m}$. The width of ridges is $0.3 \pm 0.003 \mu \mathrm{~m}$ ranging between $0.3-0.31 \mu \mathrm{~m}$, while the width of furrows is 0.33 $\pm 0.014 \mu \mathrm{~m}$ with ranges between $0.31-0.36 \mu \mathrm{~m}$.

P. domestica L.

Shape of pollen is triangular-obtuse-convex in the polar view while the shape of pollen is elliptic-acuminate-acute in the equatorial view. Pollen class is trizonocolpate-obtus-triangular. The sculpturing of exine surface is striate. The number of colpi is three while the spines are absent (Figure 2A). The horizontal distance (width) in the polar view is $35.87 \pm 0.072 \mu \mathrm{~m}$ and the vertical distance (length) in the polar view is $31.44 \pm 0.566 \mu \mathrm{~m}$. The length - width ratio in P. domestica in the polar view is $0.87 \mu \mathrm{~m}$. The arbitrary distance between the ridges is 0.54 ± 0.009 $\mu \mathrm{m}$ with ranges between $0.52-0.56 \mu \mathrm{~m}$, and the arbitrary

Figure 1. Exine sculpturing in Prunus species. (A) P. domestica, (B) P. persica, (C) P. bokhariensis, (D) P. avium, (E) P. armeniaca and (F) P. cornuta at 10,000 X for determining the exine sculpturing patterns.

Figure 2. Scanning electron microphotograph polar view of A. Prunus domestical and B. Prunus bokhariensis.
distance between the furrows is $0.54 \pm 0.009 \mu \mathrm{~m}$ ranging between $0.4-0.62 \mu \mathrm{~m}$. The width of ridges is 0.43 ± 0.03 $\mu \mathrm{m}$ and ranges between $0.39-0.52 \mu \mathrm{~m}$, while the width of furrow is $0.41 \pm 0.012 \mu \mathrm{~m}$ with ranges between 0.39 $0.45 \mu \mathrm{~m}$. The horizontal distance (width) in the equatorial view is $36.25 \pm 0.136 \mu \mathrm{~m}$ while the vertical distance (length) in the equatorial view is $32.15 \pm 0.623 \mu \mathrm{~m}$. The length - width ration in the equatorial view is $0.88 \mu \mathrm{~m}$. The arbitrary distance between the furrows is $0.63 \pm$ $0.047 \mu \mathrm{~m}$ with ranges between $0.51-0.74 \mu \mathrm{~m}$ and the arbitrary distance between the ridges is $0.77 \pm 0.115 \mu \mathrm{~m}$ ranging between $0.48-0.98 \mu \mathrm{~m}$. The width of furrow is $0.38 \pm 0.016 \mu \mathrm{~m}$ with ranges between $0.34-0.43 \mu \mathrm{~m}$ while the width of ridge is $0.41 \pm 0.012 \mu \mathrm{~m}$ ranging between (0.39-0.46 $\mu \mathrm{m}$).

P. armeniaca L.

Shape of pollen is triangular-obtuse-convex in polar view, while the shape is elliptic-acuminate-acute in equatorial view. The sculpturing of exine surface is striate. The pollen class is trizonocolpate-obtus-triangular and the number of colpi is three (tricolpate). The spines are absent (Figure 3B). The horizontal distance (width) in the polar view is $35.29 \pm 0.321 \mu \mathrm{~m}$ while the vertical distance (length) is $36.17 \pm 0.190 \mu \mathrm{~m}$. The length-width ratio in P. armeniaca in the polar view is 1.00 . The arbitrary distance between the ridges is $0.35 \pm 0.017 \mu \mathrm{~m}$ with ranges between $0.32-0.38 \mu \mathrm{~m}$ and the arbitrary distance between the furrows is $0.47(\pm 0.011 \mu \mathrm{~m})$ ranging between 0.45-0.49 $\mu \mathrm{m}$. The width of furrow is $0.22 \pm$

Figure 3. Scanning electron microphotograph equatorial view of A. Prunus avium and B. Prunus armeniaca.
$0.014 \mu \mathrm{~m}$ and ranges between $0.2-0.25 \mu \mathrm{~m}$ while the width of ridges is $0.35 \pm 0.023 \mu \mathrm{~m}$ and ranges between $0.31-0.39 \mu \mathrm{~m}$. The horizontal distance (width) in the equatorial view is $32.33 \pm 0.377 \mu \mathrm{~m}$ while the vertical distance (length) is $29.21 \pm 0.471 \mu \mathrm{~m}$. The length - width ratio in the equatorial view is 0.90 . The arbitrary distance between the ridges is $0.43 \pm 0.011 \mu \mathrm{~m}$ with ranges between $0.41-0.46 \mu \mathrm{~m}$ and the arbitrary distance between the furrows is $0.51 \pm 0.008 \mu \mathrm{~m}$ ranging between $0.5-0.54 \mu \mathrm{~m}$. The width of furrow is $0.32 \pm 0.019 \mu \mathrm{~m}$ and ranges between $0.28-0.36 \mu \mathrm{~m}$ while the width of ridge is $0.33 \pm 0.011 \mu \mathrm{~m}$ and ranges between ($0.31-0.36 \mu \mathrm{~m}$).

P. avium L.

The shape of pollen in the polar view is triangular-obtuse-convex- (straight) polar view while the shape of pollen in the equatorial view is elliptic-acuminate-obtuse. The sculpturing of exine surface is striate. The pollen class is trizonocolpate-obtus-triangular. The number of colpi is three (tricolpate) while the spines are absent (Figure 3A). The horizontal distance (width) in the polar view is 31.46 $\pm 0.040 \mu \mathrm{~m}$, while the vertical distance (length) is $34.17 \pm$ $0.104 \mu \mathrm{~m}$. The length - width ratio in P. avium in the polar view is $1.08 \mu \mathrm{~m}$. The arbitrary distance between the ridges is $0.6 \pm 0.008 \mu \mathrm{~m}$ and ranges between $0.59-0.62$ $\mu \mathrm{m}$ and the arbitrary distance between the furrows is 0.52 ± 0.025 with ranges between $0.49-0.57 \mu \mathrm{~m}$. The width of furrow is $0.32 \pm 0.015 \mu \mathrm{~m}$ and ranges between $0.3-0.35$ $\mu \mathrm{m}$ while the width of ridges is $0.37 \pm 0.005 \mu \mathrm{~m}$ and ranges between $0.36-0.38 \mu \mathrm{~m}$. The horizontal distance (width) in the equatorial view is $29.94 \pm 0.668 \mu \mathrm{~m}$ while the vertical distance (length) is $26.73 \pm 0.432 \mu \mathrm{~m}$. The length - width ratio in the equatorial view is $0.89 \mu \mathrm{~m}$. The arbitrary distance between the ridges is $0.58 \pm 0.012 \mu \mathrm{~m}$
with ranges between $0.55-0.62 \mu \mathrm{~m}$ and the arbitrary distance between the furrows is $0.51 \pm 0.019 \mu \mathrm{~m}$ ranging between $0.48-0.59 \mu \mathrm{~m}$. The width of furrow is $0.24 \pm$ $0.006 \mu \mathrm{~m}$ and ranges between $0.22-0.26 \mu \mathrm{~m}$ while the width of the ridges is $0.34 \pm 0.025 \mu \mathrm{~m}$ and ranges between (0.29-0.44 $\mu \mathrm{m}$).

P. persica (L.) Batsch

The shape of pollen is triangular-obtuse-convex in the polar view while the shape of pollen is elliptic-obtuse-convex- (circular) in the equatorial view. The pollen class is trizonocolpate-obtus-triangular while the sculpturing of exine surface is striate. The number of colpi is three (tricolpate) while the spines are absent (Figure 4A). The horizontal distance (width) in the polar view is $41.31 \pm$ $0.393 \mu \mathrm{~m}$ while the vertical distance (length) is $27.66 \pm$ $0.421 \mu \mathrm{~m}$. The length - width ratio in P. persica in the polar view is $0.66 \mu \mathrm{~m}$. The arbitrary distance between the ridges is $0.51 \pm 0.037 \mu \mathrm{~m}$ ranging between $0.41-0.65 \mu \mathrm{~m}$ and the arbitrary distance between the furrows is $0.62 \pm$ $0.04 \mu \mathrm{~m}$ with ranges between $0.5-0.75 \mu \mathrm{~m}$. The width of furrow is $0.43 \pm 0.014 \mu \mathrm{~m}$ and ranges between $0.4-0.48$ $\mu \mathrm{m}$ while the width of ridges is $0.46 \pm 0.027 \mu \mathrm{~m}$ and ranges between ($0.39-0.55 \mu \mathrm{~m}$). The horizontal distance (width) in the equatorial view is $35.27 \pm 0.566 \mu \mathrm{~m}$ while the vertical distance (length) is $25.21 \pm 0.565 \mu \mathrm{~m}$. The length - width ratio in the equatorial view is $0.71 \mu \mathrm{~m}$. The arbitrary distance between the ridges is 0.51 ± 0.016 and ranges between $0.49-0.56 \mu \mathrm{~m}$ and the arbitrary distance between the furrows is $0.55 \pm 0.020 \mu \mathrm{~m}$ and ranges between $0.5-0.59 \mu \mathrm{~m}$. The width of furrow is $0.32 \pm$ $0.011 \mu \mathrm{~m}$ with ranges between $0.3-0.35 \mu \mathrm{~m}$ while the width of ridges is $0.46 \pm 0.012 \mu \mathrm{~m}$ and ranges between $0.43-0.49 \mu \mathrm{~m}$.

Figure 4. Scanning electron microphotograph polar view of A. Prunus persica and B. Prunus cornuta.

P. cornuta (Wall. ex. Royle) steudel

The shape of pollen is triangular-obtuse- (straight) in the polar view while the shape of pollen is rectangular-obtuse-convex in equatorial view. The pollen class is trizonocolpate-obtus-triangular while the sculpturing of exine surface is striate. The number of colpi is three (tricolpate) while the spines are absent (Figure 4B). The horizontal distance (width) in the polar view is $21.00 \pm$ $0.185 \mu \mathrm{~m}$ while the vertical distance (length) is $21.065 \pm$ $0.056 \mu \mathrm{~m}$. The length - width ratio in P. cornuta in the polar view is $1.00 \mu \mathrm{~m}$. The arbitrary distance between the ridges is $0.41 \pm 0.005 \mu \mathrm{~m}$ with ranges between $0.4-0.42$ $\mu \mathrm{m}$ and the arbitrary distance between the furrows is 0.62 $\pm 0.009 \mu \mathrm{~m}$ with ranges between $0.6-0.64 \mu \mathrm{~m}$. The width of furrow is $0.14 \pm 0.047 \mu \mathrm{~m}$ and ranges between 0.17 $0.2 \mu \mathrm{~m}$ while the width of the ridges is $0.31 \pm 0.008 \mu \mathrm{~m}$ and ranges between $0.3-0.33 \mu \mathrm{~m}$. The horizontal distance (width) in the equatorial view is 25.99 ± 0.849 $\mu \mathrm{m}$ while the vertical distance (length) is 13.53 ± 0.078 $\mu \mathrm{m}$. The length - width ratio in the equatorial view is 0.52 $\mu \mathrm{m}$. The arbitrary distance between the ridges is 0.43 $\pm 0.016 \mu \mathrm{~m}$ ranging between $0.42-0.47 \mu \mathrm{~m}$ and the arbitrary distance between the furrows is $0.56 \pm 0.014 \mu \mathrm{~m}$ ranging between $0.54-0.59 \mu \mathrm{~m}$. The width of furrow is $0.31 \pm 0.008 \mu \mathrm{~m}$ and ranges between 0.3-0.33 $\mu \mathrm{m}$ while the width of ridges is $0.34 \pm 0.006 \mu \mathrm{~m}$ and ranges between (0.33-0.35 $\mu \mathrm{m}$).

DISCUSSION

The Prunus species were collected from the Northern parts of Pakistan. The species included the main species that are being domesticated for fruits and commercial purposes and species growing in the wild including P.
armeniaca, P. avium, P. bokhariensis, P. domestica, P. persica and P. cornuta which is the only specie not domesticated and fruit is not edible, the other species have the edible fruit and are domesticated. There is a lot of variation in the pollen morphological characterization. The main aspect studied were the shape of pollen in the polar and equatorial view, horizontal distance (width), vertical distance (length) in the polar and equatorial view, length / width ratio, arbitrary distance between the ridges, arbitrary distance between the furrows in the polar and equatorial view, width of ridges, width of furrows in the polar and equatorial view, sculpturing of the exine surface, number of colpi, presence or absence of spines, and presence or absence of pores. Arazani et al. (2005) discussed the shapes and morphological characterization of P. armeniaca through scanning electron microscopy and explained the pollen grain shape in two groups according to their shape, that is, elliptic trizonocolpate and obtuse-triangular.

The morpho-physiological observations on pollen of P. cerasus cultivars was done by Miaja et al. (1998) who also studied the pollen structure of the different cultivars of P. cerasus using SEM for the morpho-physiological observations and so the shape of pollen can give a better idea in differentiating different cultivars and also among different species. The pollen morphology of the Prunus has mostly trizonocolpate to elliptic trizonocolpate shape common in the equatorial view and obtuse-triangular in the polar view. The pollen is tricolpate without spines. Under these two shapes, there is a variation regarding the shape of colpi in the outline and the variation within the trizonocolpate and obtuse triangular shapes of pollen in the polar and equatorial view. The sculpturing of the exine is striate among all these species. Youshihiro and Hiroaki (1989) discussed the morphometric analysis of pollen exine patterns in roses from family Rosaceae
through scanning electron microscopy and described the pollens as tricolpate as found in Prunus and the exine sculpturing also striate as already discussed. The pollen class is trizonocolpate, mostly elliptic trizonocolpate in the equatorial view and obtuse-triangular in the polar view. The pollen is tricolpate without spines. The shape of the pollens varies from triangular-acute-convex to triangular-obtuse-convex. P. avium has the triangular-obtuse-convex-straight shape in the polar view while P. cornuta has triangular-obtuse-straight in the polar view. The sculpturing of the exine is mostly striate. The pollens shape varies in the different species of Prunus in the polar and equatorial view. In P. bokhariensis the shape of pollen in polar view is triangular - obtuse - convex circular. The shape of pollen in the equatorial view is elliptic - acuminate - acute, the sculpturing of exine is striate. The pollen class is trizonocolpate - obtuse triangular and the pollen is tricolpate. The shape of pollen of P. domestica in polar view is triangular - obtuse convex. The shape of pollen of P. domestica in equatorial view is elliptic - acuminate - acute. The sculpturing of exine is striate and the pollen class is trizonocolpate-obtusetriangular. In the present study, the shape of pollen in P. armeniaca in the polar view is triangular - obtuse convex and the shape of pollen in the equatorial view is elliptic - acuminate - acute. The sculpturing of the exine is striate. The pollen class is trizonocolpate - obtuse triangular. The shape of pollen in P. avium is triangular obtuse - convex - (straight) in the polar view, while the shape in the equatorial view is elliptic - acuminate obtuse. The sculpturing of exine is striate. The pollen class is trizonocolpate - obtuse - triangular. The shape of pollen in P. persica is triangular - obtuse - convex, and the shape of pollen in the equatorial view is elliptic obtuse - convex - circular. The sculpturing of exine is striate. The pollen class is trizonocolpate - obtuse triangular. The shape of pollen in P. cornuta in the polar view is triangular - obtuse - (straight), and the shape of pollen in the equatorial view is rectangular - obtuse convex. The sculpturing of exine is striate. The pollen class is trizonocolpate - obtuse - triangular.

The maximum length in the equatorial view is $36.25 \pm$ $0.13 \mu \mathrm{~m}$ found in P. domestica and the minimum length is $24.4 \pm 0.15 \mu \mathrm{~m}$ found in P. bokhariensis in the equatorial view. The maximum width is $32.15 \pm 0.62 \mu \mathrm{~m}$ in P. domestica and the minimum width is $13.53 \pm 0.07 \mu \mathrm{~m}$ in P. cornuta in the equatorial view. The maximum length width ratio is $0.91 \mu \mathrm{~m}$ found in P. bokhariensis and the minimum length width ratio is $0.52 \mu \mathrm{~m}$ found in P. cornuta in the equatorial view. The maximum length in the polar view is $50.14 \pm 0.39 \mu \mathrm{~m}$ found in P. persica while the minimum length is $21.00 \pm 0.18 \mu \mathrm{~m}$ found in P. cornuta in the polar view. The maximum width is $37.66 \pm 0.42 \mu \mathrm{~m}$ while the minimum width is $21.065 \pm 0.05 \mu \mathrm{~m}$ found in P. cornuta in the polar view. The maximum length width ratio is $1.08 \mu \mathrm{~m}$ found $\mathrm{n} P$. avium and the minimum ratio is $0.66 \mu \mathrm{~m}$ found in P. persica in the polar view. The maximum arbitary distance between the furrows in the
equatorial view was $0.77 \pm 0.11 \mu \mathrm{~m}$ found in P. domestica and the minimum distance was $0.43 \pm 0.01 \mu \mathrm{~m}$ found both in P. armeniaca and P. cornuta. The maximum arbitary distance between the furrows in the polar view was $0.6 \pm 0.008 \mu \mathrm{~m}$ found in P. avium and the minimum distance was $0.35 \pm 0.01 \mu \mathrm{~m}$ found in P. armeniaca. The maximum arbitary distance between the ridges in the equatorial view was $0.63 \pm 0.04 \mu \mathrm{~m}$ found in P. domestica and the minimum distance was 0.51 ± 0.01 $\mu \mathrm{m}$ found in P. avium, P. bokhariensis and P. armeniaca. The maximum arbitary distance between the ridges in the polar view was $0.62 \pm 0.04 \mu \mathrm{~m}$ found in P. persica and P. cornuta while the minimum distance was $0.47 \pm 0.01 \mu \mathrm{~m}$ found in P. armeniaca. The maximum width of ridge in the equatorial view was $0.46 \pm 0.01 \mu \mathrm{~m}$ found in P. persica while the minimum width was $0.3 \pm 0.003 \mu \mathrm{~m}$ found in P. bokhariensis. The maximum width of ridge in the polar view was $0.46 \pm 0.02 \mu \mathrm{~m}$ found in P. persica while the minimum width was $0.31 \pm 0.008 \mu \mathrm{~m}$ found in P. cornuta. The maximum width of furrow in the equatorial view was $0.38 \pm 0.01 \mu \mathrm{~m}$ found in P. domestica while the minimum width was $0.31 \pm 0.008 \mu \mathrm{~m}$ found in P. cornuta. The maximum width of furrow in the polar view was 0.43 $\pm 0.01 \mu \mathrm{~m}$ found in P. persica while the minimum width was $0.14 \pm 0.04 \mu \mathrm{~m}$ found in P. cornuta. The overall results showed that the species discussed here belong to a single genus Prunus having many similar characters and a few variations.

Conclusion

The results suggests that overall, the pollen class of the Prunus species discussed here belongs to trizonocolpate mostly elliptic trizonocolpate in the equatorial view and obtuse-triangular in the polar view. The pollen is tricolpate without spines. The shape of the pollens varies from triangular-acute-convex to triangular-obtuse-convex. The sculpturing of the exine is striate among these species. The common characters suggest that all these species are under a single genus Prunus and not to split the species into different genera other than Prunus.

ACKNOWLEDGEMENTS

We are grateful to colleagues at the Department of Plant Sciences Quaid-i-Azam University Islamabad Pakistan and University of California Davis USA.

REFERENCES

Arazani K, Nejatian MA, Karimzadeh G (2005). Apricot (Prunus armeniaca) Pollen morphological characterization through SEM, using the multivariate analysis. New Zealand J. Crop Hortic. Sci., 33: 381-388.
Bano F, Malik S, Shah M, Nakaike T (1995). A note on topography, climate, geology \& ecology of Pakistan. In cryptogams of Himalayas. 3: 193-197.

Chopra RN, Nayar L, Chopra IC (1956). Glossary of Indian Medicinal Plants. CSIR New Delhi.
Gupta SPS (1969). Wealth of India. A Dictionary of Indian raw material and industrial products. CSIR New Delhi.
Judd WS, Christopher SC, Elizabeth AK, Peter FS, Michael JD (1999). Plant Systematics. A Phylogenetic Approach. 2: 365-372. Sinauer Associates, Inc. Publishers Sunderland, Massachusetts USA.
Lily MP, Judit M (1980). Medicinal Plants of East \& South East Asia; Attributed properties and uses. The MIT press Cambridge, Massachusetts.
Miaja ML, Radicati L, Porporato M, Caramiello R, Fossa V, Vallania R (1998). Morpho-physiological observations on the pollen of sour cherry (Prunus cerasus L.) cultivars. Acta Hort. (ISHS) 514: XXV Int. Hortic. Congress, pp. 311-320.
Potter D (2003). Molecular Phylogenetic studies in Rosaceae. pp. 319351 in: Sharma AK and Sharma A eds., Plant Genome: Biodiversity and Evolution, Vol. I, Part. A: Phanerogams. Science Publishers, Inc., Enfield (NH) USA \& Plymouth, UK.
Prasad D (1999) A new glycoside from the roots of Prunus armeniaca. Fitoterapia, 70(3): 266-268.

Rashid F, Nazia B, Rehana A, Shahana UK (2005). Triterpene acid and its glycoside from Prunus armeniaca, and antibacterial and antioxidant activities of fruit extracts. J. Trop. Med. Plants, 6(1): 3135.

Stewart RR (1972) Flora of Pakistan, An annotated catalogue of the vascular plants of west Pakistan ans Kashmir pp. 360-364, Fakhri Printing Press Karachi.
Youshihiro U, Hiroaki T (1989). Morphometric analysis of pollen exine patterns in roses. J. Jpn. Soc. Hort. Sci. 58(1): 211-220.

[^0]: *Corresponding author. E-mail: aneelgilani@gmail.com. Tel: 92-51-90643005, 92-321-5850175.

