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Plant genetic resources are essential for agri-food security in the world and conservation of genetic 
diversity. Cryopreservation is an in vitro culture technique used for long-term plant conservation, by 
freezing the tissue at low temperatures usually with liquid nitrogen (-196ºC). During cryopreservation, 
cell division and metabolic activity of the explants are quiescent. There are different cryopreservation 
techniques used for many species and recently it has been observed that the use of aluminum 
cryoplates or foils increase plant survival and regeneration. The explants are exposed to a lot of stress 
in the different stages of cryopreservation, especially during chemical or physical dehydration and 
during thawing. Cryopreserved plants are exposed to physical, chemical and physiological cell damage 
and oxidative stress. The principal cause of plant cell mortality is membrane rupture due to ice crystal 
formation. The cryoprotective substances prevent ice formation and optimal dehydration is necessary 
for plant survival and regeneration. Different cryopreservation stages could alter genetic stability, 
especially during plant regeneration by the use of plant growth regulators. DNA alteration during in 
vitro culture depends on different factors, mainly cryopreservation technique and plant species. 
Molecular markers are used to detect variations in the DNA of cryopreserved plants. A successful 
cryopreservation protocol depends on survival, regeneration and genetic stability of plant materials. 
 
Key words: Cryopreservation, plant genetic resources, cryogenic damage, plant regeneration, genetic stability. 

 
 
INTRODUCTION 
 
Plant genetic resources (PGR) are any vegetal genetic 
materials with real or potential value for agri-food security 
(Sonnino, 2017). Only 30 crops cover 95% of global agri-
food needs and these have been used to produce new 
varieties, which have important characteristics such as 
higher   production   and  tolerance  to  biotic  and  abiotic 

stresses (Kaviani, 2011; Shiferaw et al., 2011; FAO, 
2021). Therefore, it is essential to preserve PGR because 
they represent a great part of plant biodiversity.  

The preservation of plant species depends greatly on 
whether their seeds are of orthodox or recalcitrant nature 
and   the   latter   species  are  often  conserved   in   field  
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collections (Guzmán et al., 2017). Nevertheless, PGR 
maintained in field are affected by biotic and abiotic 
factors (Niino and Arizaga, 2015). Thus, an alternative is 
in vitro medium or long-term conservation. In vitro plant 
culture requires multiple techniques that enable the 
growth of cells, tissues and organs in aseptic culture 
media (Oseni et al., 2018). 

Cryopreservation consists of the interruption of 
metabolic functions of biological materials by decreasing 
the temperature with liquid nitrogen (LN) (-196°C), while 
maintaining viability (Niino and Arizaga, 2015). 
Cryopreservation in liquid nitrogen is an alternative for 
long-term conservation of PGR (Panis, 2019). During 
cryopreservation, the cell cycle and metabolic and 
biochemical activity are detained, therefore, the biological 
material can be safeguarded for practically indefinite 
periods (Benson et al., 2006). After cryopreservation, 
plant materials will recover and regenerate into a plant, 
depending on treatments before and after exposure to LN 
and there is a minimal risk of DNA alterations (Adu-
Gyamfi et al., 2016; Nuc et al., 2016; Gross et al., 2017). 
The genetic stability of cryopreserved plant material is 
assessed with morphological, cytological, biochemical 
and, for the most part, molecular markers (Harding, 
2004).  

Different cryopreservation protocols have been 
developed for various species using different types of 
explants such as seeds (Schofield et al., 2018), synthetic 
seeds (Petrus et al., 2019), shoots (Bruňáková and 
Čellárová, 2016), apexes (Liu et al., 2017), pollen (Souza 
et al., 2018), embryogenic cultures (Varis et al. 2017), 
zygotic embryos (le Roux et al. 2016) and cell 
suspensions (Titova et al., 2021). The choice of explant 
used for cryopreservation is dependent on the objective; 
and while seeds and embryos are the main source of 
genetic diversity, shoot tips and dormant buds are clonal 
materials (Reed, 2017). 

The response of plant material depends on the species 
and its genetic variability, explant type, cryopreservation 
technique as well as the stressful environment of tissue 
culture (Kaya and Souza, 2017; Popova and Kim, 2019; 
Bednarek and Orłowska, 2020). Therefore, plant 
cryopreservation protocols developed, are specific for 
each plant material and focus on achieving the maximum 
post-cryogenic survival and regeneration (Harding, 2004). 
 
 
TECHNIQUES USED IN CRYOPRESERVATION 
 
Cryopreservation techniques are classified into 
conventional and new techniques. The first ones are 
based on the partial chemical dehydration of the explants 
with osmoprotectors followed by gradual freezing with 
automatic freezers (Engelmann, 2011). The new 
techniques are based on vitrification and the use of 
aluminum cryoplates that facilitate the manipulation of the  
explants   as    well   as   faster     cooling     and   heating 

 
 
 
 
 (Matsumoto, 2017). 

Plant vitrification requires a highly concentrated 
solution that sufficiently dehydrates tissues and solidifies 
intracellular water into metastable glass to avoid 
crystallization in the cell (Matsumoto, 2017). On the other 
hand, the aluminum cryoplates have been successful to 
obtain high shoot regeneration, greater than 90% in 
various species (Yamamoto et al., 2015; Rafique et al., 
2016; Dhungana et al., 2017; Thammasiri et al., 2019; 
Pettinelli et al., 2020; Zhang et al., 2020; Benelli et al., 
2021; Tanaka et al., 2021). Table 1 shows the main plant 
cryopreservation methods developed in different species. 
There are many combinations of procedures carried out 
in cryopreservation techniques like encapsulation-
dehydration, vitrification, encapsulation-vitrification, 
desiccation, pre-growth, pre-growth-drying and droplet-
vitrification (Engelmann, 2004). 
 
 
Stages of cryopreservation 
 
Cryopreservation includes different stages depending on 
the selected technique, involving preparation and explant 
excision, preculture, cryoprotection, 
vitrification/dehydration, fast cooling in LN, rewarming, 
cryoprotector elimination, regeneration and plant culture 
(Volk et al., 2004; Liu et al., 2017; Streczynski et al., 
2019). These stages are schematized in Figure 1. The 
critical point is an optimum dehydration to avoid lethal ice 
crystals formation in plant cells (Pence et al., 2020). To 
reduce explant water content, air-drying in laminar flow 
hood, silica gel, cryoprotectants, slow cooling and pre-
culture are used (O’Brien et al., 2021). The selection 
depends on explant tolerance to stress, and these can be 
used singly or combined. 
 
 
MAIN COMPLICATIONS DURING 
CRYOPRESERVATION 
 
Cryopreservation causes stress in plant cells that are 
subjected to excision, osmotic dehydration and sudden 
changes in temperature (Uchendu et al., 2013). This 
stress reduces plants survival and regeneration (Lynch et 
al., 2011). Freezing injuries affect cell membranes that 
lose the fluidity of their lipid components (Centinari et al., 
2016). Biological membranes define cell limits and 
internal organelles; they are highly dynamic which allows 
the maintenance of integrity, resistance to stress, 
flexibility, fluidity and electrical insulation (Gould, 2018). 
Plant membranes are constituted mainly of galactolipids, 
phospholipids and lysophospholipids. Some classes with 
large polar head groups are phosphatidylcholine and 
digalactosil diacylglycerol, while others have small head 
groups such as phosphatidylethanolamine, 
monogalactosyldiacylglycerol, and phosphatidic acid (Lin 
et al., 2021). 



Pérez and Sandoval-Cancino          57 
 
 
 
Table 1. Main plant cryopreservation methods developed in different species. 
 

Cryopreservation 
methods 

Species Preculture Osmoprotection Vitrification Rewarming 
Plant 

regeneration 
Reference 

Vitrification 
Apical meristems of 
Chlorophytum 
borivilianum 

MS medium with 0.5 M 
glycerol for 48 h at 25°C 

18.4% glycerol and 13.7% sucrose for 20 
min 

PVS2 for 30 min 
at 0°C   

40% sucrose for 10 
min 

33% 
Chauhan et al. 
(2021) 

Pregrowth-dehydration 
Embryogenic tissue 
of Picea abies L. 

0.25-1 M sucrose and 10 
μM ABA for 7 days 

N/A 
Dehydration with 
silica gel for 2 h at 
25°C 

Water bath at 42°C for 
3 min, after on ice for 
2-3 min and 1-0 M 
sucrose for 1.5 h 

276 embryos g-1 
Hazubska-
Przybył et al. 
(2013) 

D-Crio-plate 

(vitrification by air current on 
aluminium cryo-plates) 

Buds of Juncus 
decipiens Nakai 

MS medium with 0.3 M 
sucrose overnight at 25°C 

2 M glycerol and 1.0 M sucrose solution 
for 30 min 

Air current of a 
laminar flow 
cabinet for 3 h at 
25°C 

1 M sucrose for 15 
min 

90% 
Niino et al. 
(2013) 

Air drying (flash drying, 
normal drying) 

Zygotic embryos of 

Seemannaralia 
gerrardii 

Electrolysed water of CaMg 
solution (0.5 mM 
CaCl2.2H2O and 0.5 mM 
MgCl2.6H2O) for 30 min in 
the dark 

N/A 
Flash-dried for 50 
min at 25°C 

Electrolysed water of 
CaMg solution (0.5 
mM CaCl2.2H2O and 
0.5 mM MgCl2.6H2O) 
for 30 min in the dark 

70% 
Berjak et al. 
(2011) 

V-Crio-plate 

(vitrification and aluminium 
cryo-plates) 

Shoot tips of 
Tanacetum 
cinerariifolium 

MS medium with 0.5 M 
sucrose for 2 days at 5°C 

2 M glycerol and 1.4 M sucrose solution 
for 30-60 min 

PVS 7M for 40 
min at 25°C 

1 M sucrose for 15 
min 

90% 
Yamamoto et al. 
(2011) 

Droplet vitrification  

(droplets of cryoprotectant 
on an aluminium foil strip) 

Meristems of Musa 
spp. 

MS medium with 3, 6 y 9% 
sucrose for 1-2 days at 
25°C 

2 M glycerol and 0.4 M sucrose solution 
for 20 min 

PVS2 for 30 min 
at 0°C 

1.2 M sucrose for 15 
min 

52.9% 
Panis et al. 
(2005) 

Pregrowth 
Meristems of Musa 
spp.   

MS medium with 0.4 M 
sucrose and 1 μM IAA for 2 
weeks at  

N/A N/A 
Water bath at 40°C for 
1.5 min. 

66% 
Panis et al. 
(2002) 

Encapsulation-dehydration 
Apices of Wasabia 
japonica 

½ MS medium with 0.3 M 
sucrose for 1 day at 20°C 

Encapsulation into 2% Na-alginate beads 
containing 0.4 M sucrose and treated with 
MS medium and 0.8 M sucrose solution 
for 16 h at 25°C 

Dehydration with 
silica for 4 h at 
25°C 

Water bath at 35°C for 
3 min 

75% 
Sakai et 
al.,(2000) 

Encapsulation-vitrification 
Apices of Mentha 
spicata 

MS medium with 30 g L-1 
sucrose for 3 weeks at 4°C 

Encapsulation into 2% Na-alginate beads 
containing 0.4 M sucrose and treated with 
2 M glycerol and 0.4 M sucrose solution 
for 1 h 

PVS2 for 3 h at 
0°C 

Water bath at 38°C for 
1 min and MS medium 
with 1.2 sucrose for 
10 min 

87% 
Sakai et al. 
(2000) 

 

ABA: Abscisic acid. IAA: Indole-3-acetic acid. MS: Murashige and Skoog (1962). N/A: Does not apply. PVS: Plant Vitrification Solution (30% glycerol, 19.5% ethylene glycol and 0.6 M sucrose). PVS2: 
30% glycerol, 15% ethylene glycol, 15% dimethyl sulfoxide and 0.4 M sucrose. 
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Figure 1. Stages of cryopreservation. PVS: Plant vitrification solution. 

 
 
 
Cryogenic damage 
 
Temperature variations affect the lipid composition of 
membranes and therefore their biophysical properties 
(Cook et al., 2021). The integrity of the plasma 
membrane is a factor on which cell viability depends 
because it is considered a primary site of cryogenic 
injury. The mortality of plant explants is mainly due to 
improper thawing which causes cryogenic damage on 
cell membrane (Yang et al., 2017). In cryopreserved 
maize zygotic embryos, different degrees of cell lesions 
have been observed. The main symptoms include 
plasmolysis, mitochondrial condensation, increased 
heterochromatin, nuclear contraction and chromatin 
condensation, as well as rupture of the cell wall, cell 
membrane and nuclear envelope (Wen et al., 2010). 
 
 
Oxidative stress 
 
Cryopreservation procedures can cause physical, 
chemical and physiological cell damage in addition to 
oxidative stress (Martín and González-Benito, 2005). The 
first immediate response to biotic and abiotic stress in 
plant cells is formation of reactive oxygen species (ROS) 
and these tend  to  decline  when  the  stress  disappears 

(Huang et al., 2019). ROS are free radicals like 
superoxide anion (O2

2−
), hydroperoxyl radical (OH2

•
), 

alkoxy radical (RO
•
) and hydroxyl radical (

•
OH), also 

nonradical molecules such as hydrogen peroxide (H2O2) 
and singlet oxygen (

1
O2) (Mehla et al., 2017; 

Hasanuzzaman et al., 2019). These signaling molecules 
also regulate plant metabolism and are produced in 
organelles like chloroplast, mitochondria, peroxisome and 
cytoplasm (Das et al., 2015; Huang et al., 2019). 
However, an excessive concentration of intracellular ROS 
leads to oxidative stress and damage to lipids, proteins 
and DNA; therefore, it alters the plasma membrane and 
metabolic pathways, ending in cell death (Nita and 
Grzybowski, 2016). 

Favorably, plant cells have enzymatic and non-
enzymatic antioxidant systems that maintain ROS 
homeostasis (You and Chan, 2015). The enzymatic 
antioxidant systems are superoxide dismutase, catalase 
and peroxides involved in the reduction process of O

2−
 to 

H2O2. The non-enzymatic components are generally  
ascorbic acid, α-tocopherol, flavonoids, glutathione, 
carotenoids, lipids, and phenolic compounds, which are 
efficient antioxidants (Nadarajah, 2020). 

However, even when antioxidant substances are used 
during cryopreservation, these systems are often 
impaired during  freezing  and  thawing  (Kaczmarczyk  et  



 
 
 
 
al., 2012). The factors associated with oxidative stress 
during cryopreservation are diverse, including disinfection 
agents, explant cutting, osmotic agents, freezing and 
thawing (Chen et al., 2014). Particularly, plant tissues are 
exposed to cell lysis during aseptic establishment 
process and this causes the synthesis and release of 
phenolic compounds, whose high accumulation is toxic 
and causes cell death (Jones and Saxena, 2013). 

The most common disinfection agents used are sodium 
hypochlorite (Bello et al., 2018), mercuric chloride (Haider 
et al., 2015), ethanol (Maina et al., 2010), ozone (Cabrera 
Jova and González, 2014), antibiotics and commercial 
fungicides (Ray and Ali, 2016). Surface disinfectants 
cause oxidative stress and cell death depending on the 
concentration used, contact time and type of plant 
explant (Cuba-Díaz et al., 2020). 

During cryopreservation, direct mechanical damage 
causes cell wall injury and produces an explosion of ROS 
composed primarily of hydrogen peroxide (Whitaker et 
al., 2010; Skyba et al., 2012). Excess of hydrogen 
peroxide triggers autophagy by chloroplasts and 
peroxisomes as well as programmed cell death (Smirnoff 
and Arnaud, 2019). 

On the other hand, oxidative stress caused by 
cryoprotectants induces lipidic peroxidation and oxidative 
phosphorylation damage (Ren et al., 2013). Lipid 
peroxidation is the decomposition of lipids into aldehydes 
such as 4-hydroxynonenal and malondialdehyde under 
the action of ROS (Liu et al., 2021). Cryoprotectants like 
polyethylene glycol, mannitol and sucrose are osmotic 
stress agents under in vitro culture conditions (Şen, 
2012). In addition, sorbitol pretreatments increase 
intracellular hydrogen peroxide concentrations (Lynch et 
al., 2011). 

Plant cells are exposed to osmotic stress during the 
osmoprotection and dehydration process, which can lead 
to excessive ROS release (Whitaker et al., 2010; 
Rahmah et al., 2015). Osmotic dehydration involves 
treating tissues with concentrated sugar solutions or 
other osmotically active substances, which allows water 
to flow through membranes from a lower solute 
concentration to a higher concentration (Volk and 
Walters, 2006). 

Therefore, plants need to increase the cryostability 
capacity of the plasma membrane to tolerate various 
stresses caused by freezing and thus accelerate the 
recovery process after thawing (Uemura et al., 2009). 

 
 
CRYOPROTECTIVE AGENTS 

 
Cryoprotective agents (CPAs) are high or low molecular 
weight water-soluble substances that facilitate 
dehydration and decrease the osmotic gradient of cells 
through vitrification during cryopreservation and long-
term storage in liquid nitrogen (Yang et al., 2017). 

The function of CPAs is  to  prevent  ice  formation  and  
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cryogenic damage through interference of hydrogen 
bonds in water molecules (Towey and Dougan, 2012). 
Most of the time, plant survival depends on optimal 
dehydration with CPAs (Elliot et al., 2017). 

Permeable CPAs to plasma membrane are low 
molecular weight and the most widely used are methanol, 
dimethyl sulfoxide, glycerol, propylene glycol, ethylene 
glycol and formamide. Non-permeable CPAs are of high 
molecular weight, among which are polyvinylpyrrolidone, 
hydroxyethyl starch and some sugars (Gurruchaga et al., 
2018). 

However, the toxicity of penetrating CPAs is an 
obstacle to successful cryopreservation (Streczynski et 
al., 2019). The CPAs toxicity is associated with 
temperature, CPAs concentration, time of exposure, plant 
species and tissue development (Rahmah et al., 2015). 
CPAs are toxic when they break membranes, alter 
enzyme function or if cell viability is decreased (Best, 
2015). 

 
 
PLANT REGENERATION 
 
Plant regeneration after a cryopreservation process will 
depend mainly on the species, explant type and the 
cryopreservation technique used (Mathew et al., 2018). 
The time required for plant regeneration is variable; in 
some cases, it takes a few months and, in others, it takes 
up to a year or more to obtain fully acclimatized plants 
(Kaczmarczyk et al., 2012). 

Regeneration rates are also influenced by the 
sensitivity of plant tissue to various types of 
cryopreservation stress (Uchendu et al., 2013). 
Therefore, before and after freezing, specific solutions 
are used to cryoprotect cells and prevent or reduce 
recrystallization (Yang et al., 2017) which reduces 
negative impact of cryopreservation stress in cells. 

Another important aspect during plant regeneration 
after cryopreservation is the genetic stability, because the 
aim of plant genetic resources conservation is to ensure 
the true-to-type status of the regenerants (Wang et al., 
2021). 

 
 
Genetic stability of cryopreserved plants 
 
During plant cryopreservation, genetic stability evaluation 
helps to verify if the DNA from cryopreserved plants 
remains intact (Dar et al., 2019). In general, nulls or 
minimal differences have been observed in plant 
materials before and after cryopreservation (Matsumoto 
et al., 2013). 

However, freezing and thawing could alter lipids and 
proteins, which can cause chromosomal damage and 
induce genetic and epigenetic changes (Chatterjee et al., 
2016). Other factors that could alter DNA are plant 
growth   regulators   used   for   plant   regeneration  after  
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Table 2. Evaluation of genetic stability in plant cryopreservation. 
 

Molecular marker Species 
Cryopreservation 
technique 

Genetic stability Reference 

MSAP, RAPD and AFLP markers Mentha x piperita L. Encapsulation-dehydratation 
MSAP results revealed variation in the DNA methylation pattern of mint 
apices after cryopreservation. RAPD and AFLP markers showed a complete 
genetic stability. 

Ibáñez et al., 2019) 

Transcript expression patterns and 
qPCR methods 

Arabidopsis thaliana (cv. 
Columbia) 

Vitrification (PVS2 and 
PVS3) 

Changes in transcript expression in shoot tips. Gross et al. (2017) 

Microsatellites Picea abies L. Karst Slow-cooling Identical prior to and following cryopreservation of somatic embryos. Varis et al. (2017) 

ISSR markers Malus domestica Two-step freezing 
No polymorphism found between the mother plant and regenerants before 
and after cryopreservation of apple dormant buds. 

Yi et al. (2015) 

RAPD markers Eutrema japonicum Matsum. Vitrification (PVS2) 
No significant differences were observed using RAPD PCR in wasabi plants 
regenerated from shoot tips after cryopreservation. 

Matsumoto et al. 
(2013) 

RAPD markers Prunus armeniaca L. Encapsulation-dehydration No changes in genetic stability in apricot shoot tips after cryopreservation. Soliman (2013) 
 

AFLP: Amplified Fragment Length Polymorphism. ISSR: Inter Simple Sequence Repeat. MSAP: Methylation Sensitive Amplification Polymorphism. qPCR: Real-Time Polymerase Chain 
Reaction. PVS: Plant Vitrification Solution. RAPD: Random Amplified Polymorphic DNA. 

 
 
 

cryopreservation; these could induce somaclonal 
variation in the regenerated plants (Bairu et al., 
2011; Sales and Butardo, 2014; Butiuc-Keul et al., 
2016). 

Furthermore, different stages of 
cryopreservation affect cell functionality, protein 
expression and DNA stability in different ways 
(Chatterjee et al., 2016). In general, substances 
used in pretreatment, preculture and 
cryoprotection stages could affect genetic stability 
of explants (Martín et al., 2011). Specifically, 
histone methylation and modification have been 
observed during preculture and vitrification 
(Heringer et al., 2013). Likewise, increased 
methylation has been reported in tissue culture 
associated with the use of CPAs and stress 
conditions (Smulders and de Klerk, 2011; 
Orlowska et al., 2016; Gross et al., 2017; Ibáñez 
et al., 2019). 

Molecular markers are used to detect variations 
or polymorphisms between individuals for specific 
regions of DNA. These polymorphisms can be 
used to construct genetic maps and evaluate 
differences between markers in the expression  of  

traits in a population (Marwal et al., 2014).  
Some molecular markers that have been widely 

used in plant cryopreservation are presented in 
Table 2. Nevertheless, DNA alteration during in 
vitro culture depends on the species, genotypes  
and culture conditions (Surenciski et al., 2007). 
 
 
CONCLUSION 
 
The bases of food security are PGR because they 
provide a source of energy, fiber and metabolites 
of industrial and pharmaceutical interest. 
Cryopreservation is a viable alternative to 
safeguard these valuable resources. Plant 
cryopreservation is a multiple stage process and 
there are different plant cryopreservation 
techniques that have been used for different 
explants. Nevertheless, different responses have 
been observed because there are many factors 
that influence the development of plants after 
cryopreservation protocols in such a way that the 
existing protocols are specific for each species 
and  genotypes.  ROS  production  is  the  primary 

explant response after cryopreservation, and it 
has been associated with low plant survival and 
regeneration. In this sense, avoiding ice crystal 
formation through CPAs is crucial during 
osmoprotection.  

The success of a cryopreservation protocol 
depends on survival, regeneration and genetic 
stability of the plant material. These are  

fundamental variables for the development of 
suitable cryopreservation protocols for plant 
germplasm. 

It is necessary to develop cryopreservation 
protocols for species of agri-food interest that are 
not yet cryopreserved, wild relatives and for those 
that are at risk of loss. In addition, it is necessary 
to optimize existing protocols for their application 
in different genotypes. 
The use of cryopreservation for long-term PGR 
conservation contributes to ensure agricultural 
and food security for many generations to come, 
either through the use of these resources to 
repopulate or to carry out genetic improvement 
and generate varieties better adapted to the 
challenges ahead. 

https://es.wikipedia.org/wiki/L.
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