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Recent advances in genomic selection are a revolution in animal breeding. A genome consisting 10 
chromosomes each with 100 cM in length with 100 equally spaced markers (1 cM) were simulated. After 
50 generations of random mating in a finite population (Ne = 100) in order to create sufficient linkage 
disequilibrium, population was expanded to two different population sizes of 500 and 1000. This 
structure was conserved until generation 59. Only females of generations 51 to 58 had phenotypic 
records and were included in the training set. The generation 59 was assumed as juveniles without any 
phenotypic records (validation set). Two measures of heritability (h

2 
= 0.1 and h

2 
= 0.5) were considered. 

Each simulation was replicated 10 times and results were averaged across replications. The results 
showed that using individuals of more recent generations in training set led to higher accuracy of 
genomic estimated breeding values (GEBVs) than individuals from more distant generations. However, 
increase in the amount of phenotypic records in training set even from individuals of older generations 
will increase accuracy of GEBVs. Number of phenotypic records in training set was shown to have 
important role in accuracy of GEBVs especially for low heritability traits. 
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INTRODUCTION 
 
Traditional methods of genetic evaluation depend on 
phenotypic and pedigree information. This elongates the 
time needed for availability of the phenotypic records in 
most farm species such as dairy cattle. This leads to 
reduced genetic improvement rate due to longer gene-
ration interval (Schaeffer, 2006).  One of the most 
important goals of modern breeding programs is to utilize 
genotypic information at DNA level to increase genetic 
progress by reducing the generation interval and im-
proving the accuracy of estimated breeding values. 
Currently, it is possible to genotype individuals for tens of 
thousands of single nucleotide polymorphisms (SNP) loci 
with gene chip array (Goddard and Hayes, 2007). These 
markers can be used to genomic estimated breeding 
values (GEBVs) as proposed by Meuwissen et al. (2001).  
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In genomic selection method, marker effects are esti-
mated first with a reference data set containing indivi-
duals with marker genotypes and trait phenotypes 
(training set); then GEBV of juveniles with marker geno-
type and no trait phenotype (validation set) would be the 
sum of the corresponding marker effects over all loci. 
GEBVs can be estimated as soon as DNA can be ob-
tained, which reduces generation interval and increases 
genetic progress (König et al., 2009). Schaeffer (2006) 
compared a strategy that utilizes genomic estimated 
breeding values with a traditional progeny testing strategy 
under a typical Canadian-like dairy cattle situation. He 
concluded that costs of proving bulls were reduced by 
92% and genetic change was increased by a factor of 2, 
due to reduced generation interval. Another advantage of 
genomic selection for animal breeding is its ability to 
control inbreeding (Daetwyler et al., 2007). One of the 
most important factors that affect accuracy of GEBVs is 
number of phenotypic records in the training set. 
Meuwissen et al. (2001) compared effect of three different 
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Table 1. Population structure and parameters used in the simulation. 
 

Parameter Value 

Number of chromosome 10 

Number of SNP markers per chromosome 100 

Genome length 1000 cM 

Marker distance (cM) 1 

Number of QTL 50 

QTL effects Normal distribution 

Recombination Haldane map function 

Number of generation 59 

Generation 1 to 50, create LD 50 male,50 female 

Generation 51 to 59 500 and 1000 individuals 

Training set Females of generation 51 to 58 

Validation set Females of generation 59 

Heritability 0.1 and 0.5 
 
 
 

numbers of phenotypic records in training set on 
accuracy of estimated GEBV in validation set. They used 
three different statistical methods and showed that in all 
statistical methods accuracy of estimated GEBVs will 
increase by increasing the number of phenotypic records 
in the training set. Similar results were reported by other 
studies (e. g. Calus and Veerkamp, 2007; Muir, 2007). 
Goddard (2009) developed a formula that calculates 
expectation of the accuracy of GEBV by deterministic 
model. In this formula accuracy of GEBVs estimation has 
direct relationship to number of individuals in the training 
set. 

In practice, one of the limiting factors to increase 
number of genotyped individuals in training set is the cost 
of genotyping. Moreover, individuals with phenotypic re-
cords may belong to different generations. For example, 
in dairy cattle, bulls' DNA exists from several generations. 
The main question is whether and how generation 
distance between individuals in training set and validation 
set affect the accuracy of GEBVs. On the other hand, 
heritability of the trait of interest has been shown to affect 
the accuracy of genomic selection (Calus and Veerkamp, 
2007; Goddard, 2009). 

Therefore, the objective of this paper was to investigate 
the effect of (i) number of phenotype records in training 
set, and (ii) strength of relationship between training set 
and validation set, on accuracy of genomic estimated 
breeding values. Different scenarios were simulated by 
including different number of individuals of different 
generations in training set. Also, traits with low and high 
heritability were compared.  
 
 
MATERIALS AND METHODS 
 
Simulation 
 
A genome consisting 10 chromosomes each with 100 cM in length 
with 100 equally spaced SNP's (every 1 cM) and a total number of 
50 QTL's (that scattered on chromosomes randomly) was gene-

rated for each individual. This small genome size was chosen to 
decrease calculation time. Both SNP and QTL were assumed to be 
biallelic with equal initial allelic frequencies. For these simulations, 
gene substitution effects for each QTL were assigned randomly 
from a standard normal distribution, a ~ N (0, 1). Fifty QTLs covered 
total genetic variance and individual true breeding values. Only 
additive genetic effect was considered. 

An effective population size of 100 individuals was simulated, of 
which 50 were male and 50 were female. This structure was 
followed by 50 generations of random mating, implying that each 
individual had on average two offspring in the next generation 
(variance of family size was two). The paternal and maternal haplo-
types for each individual were generated based on Haldane map-
ping function to generate recombinant haplotypes. Sires and dams 
in the base generation were assumed to be unrelated. Fifty 
generations of random mating were practiced to generate sufficient 

linkage disequilibrium (LD) between loci. Two LD measurements, 
2

r  

and D′ , were used to calculate LD in generation 50, as average of 
all syntenic marker loci. Markers with a minor allele frequency of < 
0.05 were discarded. 

After the first 50 generations, 9 additional generations (51 to 59) 
were simulated. Population was expanded to obtain intended popu-
lation size in generation 51. Population size was constant until 
generation 59. Two different population sizes (500 and 1000 
individuals with equal number of males and females) in each of the 
last 9 generations were simulated. Only females of generations 51 
through 58 (250 or 500 females in each generation) had trait 
phenotype and, thus, were included in the training set according to 
different scenarios. To investigate the effect of generation distance 
between training set and validation set on accuracy of GEBVs, 
females from different generations (distant and recent generations) 
were included in training set. The validation data contained indivi-
duals from generation 59. For simplification, no selection was con-
sidered. Population structure and parameters used in the simulation 
are presented in Table 1. 

 
 
Models 

 
For calculation of GEBV, the simple mixed model estimation 
method suggested by Meuwissen et al. (2001) was used assuming 
that all loci explained an equal amount of variance (That is,  the 

variance  per   locus mσ
2

, is n
aσmσ

2
2

=
 where aσ

2

 is the  total  
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Table 2. Mean (±SE) of homozygosity and linkage 
disequilibrium (D’ and r

2
) between markers in generation 

50.  
 

Parameter Mean ± SE 

D' 0.59 ± 0.002 

r
2
 0.17 ± 0.001 

Homozygosity 0.61 ± 0.001 
 
 
 

genetic variance and n is the number of marker loci). Meuwissen et 
al. (2001) termed this method as best linear unbiased prediction 
(BLUP) method. This assumption (equal variance over all loci) is 
clearly unrealistic. Genetic variance may not be equal across 
markers, for example, major genes may exist on some chromo-
somes. However, BLUP is quick, easy to program and as 
Meuwissen et al. (2001) demonstrated, BLUP performs almost as 
well as the much more advanced and time consuming Bayesian 
methods.  
The model to estimate the marker effects was  
 

eZmXby ++=
                                                    (1) 

 
Where, y is the vector of observations, b is the vector of means, m 
is the vector of random marker effects, e is the vector of random 
residual effects, X and Z are coefficient matrices. Row elements of 
Z consist of 0, 1 and 2 for marker genotype. Then, the expected 
value of y is 1µ and the variance of y is 

em σσ
22 IZIZ'V(y) +=

, (assuming equal variance for each 
marker). 
The mixed model equation (MME) for BLUP is 
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We considered m

e
2

2

σ
σα =

 as Meuwissen et al. (2001). After 
obtaining solution for vector m, GEBV was estimated as 

 

ii mZ ˆGEBV
i

=
                                                             (3) 

 
The genetic variance was determined as variance of true breeding 
values among individuals in generation 51 through 58. 

As haplotyping would increase computation time with little or no 
gain in accuracy at high marker density (Calus et al., 2008), we 
used genotypes rather than haplotypes. Different scenarios were 
compared by the accuracy of the estimated genomic breeding 
values for individuals without a phenotypic record (generation 59). 
Accuracies were calculated as the correlation between simulated 
and estimated breeding values. Each simulated data set was repli-
cated 10 times and results were averaged across replicates. 

 
 
RESULTS  
 
Simulated data 
 
After fifty generations of random mating in finite popula-
tion (Ne = 100),  considered  linkage  disequilibrium  bet- 

 
 
 
 
ween markers was created. Two linkage disequilibrium 
measurement, D' and r

2
, were used to measure the 

amount of LD between pairs of markers in the individuals 
of generation 50. Results are presented in Table 2. 
 
 
Trait with high heritability  
 
Results from different scenarios are presented in Table 3. 
As it is shown in Table 3, in all scenarios with equal num-
ber of phenotypic records, when individuals in training set 
belong to generations close to validation set, accuracy of 
GEBV is higher than when they belong to generations far 
from validation set. For example, when data from 1000 
individuals of generations 57 and 58 (generations close 
to validation set) were used in training set, the accuracy 
of GEBV were higher than when an equal number (1000 
individuals) of individuals from generations 51 and 52  
were used in training set (0.634 versus 0.555). Similar 
results are obtained for similar comparisons between 
generations. 

Even with less number of phenotypic records from in-
dividuals of more recent generations had higher accuracy 
of GEBV than more phenotypic records of individuals 
from more distant generations. For example 2000 records 
of individuals from generation 55 to 58  in the training set 
led to higher accuracy of GEBV (0.706) in comparison 
with 3000 records of individuals from older generations of 
51 through 56 (0.695). 

These results indicate that accuracy of GEBVs in 
validation set increase by adding number of individuals in 
the training set even if these individuals belong to older 
generations. For example including information of indivi-
duals from generations 51 and 52 to training set with 
information of individuals from generations 53 to 58 had a 
small increasing effect on accuracy of GEBV from 0.737 
to 0.749.  
 
 

Traits with low heritability 
 

Results from different scenarios are presented in Table 4. 
As it is seen in Table 4, results for traits with low herit-
ability were similar to the results of traits with high 
heritability. It means that using individuals from recent 
generations in the training set has positive effect on 
accuracy in comparison to the information from indivi-
duals of older generations.  However, for the low herit-
ability traits, number of records had higher impact than 
the distance between generations of training set and vali-
dation set. For example, using 2000 individuals from 
generations 55 to 58 in training set was not better than 
using 3000 individuals from generations 53 to 58 (in com-
parison with high heritability traits). Results for low 
heritability trait confirmed that accuracy of GEBV will 
increase by increasing the number of phenotypic records 
in the training set even if new records are from more 
distant generations.  
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Table 3. Accuracy of GEBVs in validation set according to different number of individuals (250 or 500 in each 
generation) from different generations in training set for trait with h

2 
= 0.5. 

 

Training set 51 and 52 57 and 58 51 - 54 55 - 58 51 - 56 53 - 58 51 - 58 

Number of individuals 1000 1000 2000 2000 3000 3000 4000 

Accuracy* 0.555 0.634 0.639 0.706 0.695 0.737 0.749 

SE** 0.028 0.013 0.019 0.012 0.015 0.010 0.010 

Number of individuals 500 500 1000 1000 1500 1500 2000 

Accuracy* 0.464 0.573 0.552 0.630 0.613 0.666 0.689 

SE** 0.034 0.029 0.037 0.026 0.030 0.025 0.025 
 

*Correlation coefficient of True Breeding Value (TBV) and GEBV. 
**Standard error. 

 
 
 

Table 4. Accuracy of GEBVs in validation set according to different number of individuals (250 or 500 in each 
generation) from different generations in training set for trait with h

2 
= 0.1. 

 

Training set 51 and  52 57 and 58 51 - 54 55 - 58 51 - 56 53 - 58 51 - 58 

Number of individuals 1000 1000 2000 2000 3000 3000 4000 

Accuracy* 0.267 0.335 0.347 0.398 0.405 0.431 0.460 

SE** 0.028 0.030 0.034 0.030 0.031 0.032 0.033 

Number of individuals 500 500 1000 1000 1500 1500 2000 

Accuracy* 0.246 0.310 0.323 0.374 0.381 0.419 0.448 

SE** 0.036 0.029 0.038 0.022 0.033 0.023 0.026 
 

*Correlation coefficient of True Breeding Value (TBV) and GEBV. 
**Standard error. 

 
 
 

DISCUSSION 
 
Accuracy of estimated breeding values based on marker 
distance and number of phenotypic records in the training 
set is similar to other studies. Meuwissen et al. (2001) 
used equally spaced (1 cM between adjacent markers) 
markers in a simulation study with different sizes of 
phenotypic records for a trait with heritability of 0.5 in the 
training set to estimate genomic EBV's for the validation 
set. Based on BLUP evaluation they obtained GEBVs 
with accuracies of 0.579, 0.659 and 0.732 for the 500, 
1000 and 2200 records in the training set, respectively. 
These measures of accuracy are close to our results of 
0.573 for 500 records; 0.639 and 0.630 for 1000 records; 
and 0.706 and 0.689 for 2000 records. Also, as shown in 
our study, increasing the number of phenotypic records in 
the training set leads to increased measures of accuracy 
in the validation set. It is expected that higher amount of 
information leads to better estimates of marker effects. 
Solberg et al. (2006) in a simulation study used 1000 
phenotypic records in the training set for a trait with 
heritability of 0.5 and genomic structure similar to our 
study. Instead they used Bayes-B method to estimate 
marker effects. Accuracy of GEBVs of the progeny in the 
training set considered as validation set was 0.663. Small 
advantage (in comparison with 0.634 when generations 
57 and 58 were included in the training set) may be due 
to the statistical method used in their evaluation. Advan-

tage of Bayesian method to BLUP evaluation has been 
shown in some studies (Meuwissen et al., 2001; Hayes et 
al., 2009). 

Our results show that using information of generations 
closer to the validation set leads to more accurate 
GEBVs compared to using information of more distant 
generations in the training set. This may be due to: (i) 
weaker relationship between individuals of training set 
and validation set, (ii) higher amounts of recombination 
and changes in haplotypes structure, and (iii) reduction in 
LD between markers and QTLs, through higher number 
of generations between individuals of training set and 
validation set. Habier et al. (2007) indicated that genomic 
selection uses genomic relationship among individuals 
and LD between markers and QTL to improve accuracy 
of GEBVs. They showed increase in accuracy of evalua-
tion is partly due to using genomic relationship informa-
tion among individuals. In an earlier study Nejati-
Javaremi et al. (1997) replaced pedigree based relation-
ship by marker-based total allelic relationship and docu-
mented its impact on reducing prediction error variance, 
hence, increasing accuracy of evaluation. 

In genomic selection, effects of QTL are distributed 
among adjacent marker loci. In other words, some 
degrees of co-linearity exist among neighboring markers. 
With increasing distance between generations in training 
set and generation of validation set, because of higher 
amounts of  recombination  occurrence  and  because  of  
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change in haplotypes, the accuracy of evaluation de-
creases. Meuwissen et al. (2001) used Bayesian method 
and obtained accuracy of 0.848 for the GEBVs of 
individuals in the training set. They showed that the 
accuracy of GEBVs decreased to 0.804, 0.768, 0.758, 
0.734 and 0.718 in 5 subsequent generations, respec-
tively. Muir (2007) showed that after several generations 
following estimation of marker effect the accuracy of 
GEBVs reduces and these effects should be re-
estimated. 

Our study also shows that GEBVs for the traits with 
higher heritability is more accurate than GEBVs for the 
traits of lower heritability. Similar results have been repor-
ted elsewhere (Willumsen et al., 2009; Goddard, 2009). 

As expected, the importance of the number of 
phenotypic records is shown to be more important for the 
traits with lower heritability. Hayes et al. (2009) used the 
formula of Goddard (2009) to estimate the accuracy of 
GEBVs and indicated that although higher number of 
records is required to reach at a certain level of accuracy 
for a trait with low heritability, but this relationship is not 
linear.  In general it is safe to comment that increasing 
the number of phenotypic records in the training set leads 
to higher accuracy of evaluation even if these records 
belong to more distant generations. However, if cost of 
genotyping is an issue it may be recommended to use 
genotypes (and phenotypic information) of individuals 
from more recent generations.  
 
 
REFERENCES 
 
Calus MPL, Veerkamp RF (2007). Accuracy of breeding values when 

using and ignoring the polygenic effect in genomic breeding value 
estimation with a marker density of one SNP per cM. J. Anim. Breed. 
Genet. 124: 362-368. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Calus MPL, Meuwissen THE, Deroos APW, Veerkamp RF (2008). 

Accuracy of genomic selection using different methods to define 
haplotype. Genetics, 178: 553-561. 

Daetwyler HD, Villanueva B, Bijma P, Woolliams JA (2007). Inbreeding 
in genome-wide selection. J. Anim. Breed. Genet. 124: 369-376. 

Goddard ME (2009). Genomic selection: prediction of accuracy and 
maximization of long term response. Genetica 136:245-257. 

Goddard ME, Hayes BJ (2007). Genomic selection. J. Anim. Breed. 
Genet. 124: 323-330. 

Habier D, Fernando RL, Dekkers JCM (2007). The impact of genetic 
relationship information on genome-assisted breeding values. 
Genetics 177: 2389-2397. 

Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME (2009). Invited 
review: Genomic selection in dairy cattle: Progress and challenges. J. 
Dairy Sci. 92: 433-443. 

König S, Simianer H, Willam A (2009). Economic evaluation of genomic 
breeding programs. J. Dairy Sci. 92: 382-391. 

Meuwissen THE, Hayes BJ, Goddard ME (2001). Prediction of total 
genetic value using genome-wide dense marker maps. Genetics, 
157: 1819-1829. 

Muir WM (2007). Comparison of genomic and traditional BLUP-
estimated breeding value accuracy and selection response under 
alternative trait and genomic parameters. J. Anim. Breed. Genet. 124: 
342-55. 

Nejati-Javaremi A, Smith C, Gibson JP (1997). Effect of total allelic 
relationship on accuracy of evaluation and response to selection. J. 
Anim. Sci. 75: 1738-1745. 

Schaeffer LR (2006). Strategy for applying genome-wide selection in 
dairy cattle. J. Anim. Breed. Genet. 123: 218-223.  

Solberg TR, Sonesson A, Wooliams J, Meuwissen THE (2006). 
Genomic selection using different marker types and density. 8

th
 World 

Congress on Genet. Appl. to Livestock Prod. August 13-18, Belo 
Horizonte, Brazil. 

Willumsen TM, Janss L, Lund MS (2009). The importance of haplotype 
length and heritability using genomic selection in dairy cattle. J. Anim. 
Breed. Genet. 126: 3-13. 

 
 
 
 
 
 
 
 
 
 
 


