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Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels which mediate fast 
cholinergic synaptic transmission in insect and vertebrate nervous systems. The great abundance of 
nAChRs within the insect central nervous system has led to the development of insecticides targeting 
these receptors, such as neonicotinoid insecticides. Neonicotinoid insecticides act selectively on 
insect nAChRs, accounting at least in part for the selective toxicity to insects over vertebrates. Some 
important amino acid residues in insect nAChR α and β subunits contribute to neonicotinoid 
insecticides selectivity, including important residues in loop C, the region loop B to the N-terminus and 
loop B-C interval of insect α subunit, and important residues in loop D, E and F of insect β subunit. 
Important residues contributing to neonicotinoid insecticides selectivity may also contribute to the 
resistance to these insecticides, if they mutate to other residues identical or similar to the 
corresponding residues in vertebrate subunits. The first point mutation Y151S has been identified in 
insect α subunit loop B to be associated with neonicotinoid insecticides resistance, which decreased 
neonicotinoid insecticides affinity remarkably, but showed little effects on insect nAChRs normal 
function.  
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INTRODUCTION 
 
Most commercially important insecticides are neurotoxins 
that act on ion channels, receptors or enzymes within the 
insect nervous system (Bloomquist, 1996; Narahashi, 
1996; Casida and Quistad, 1998). Examples include 
pyrethroids which act on voltage-gated sodium channels 
(Vais et al., 2001; Soderlund and Knipple, 2003), organo-
phosphates and carbamates which inhibit acetylcholines-
terase (Casida and Quistad, 1998), and cyclodienes 
which act on insect GABA-gated ion channels 
(Buckingham et al., 2005). In recent years, one of the 
most promising areas in insecticide development is the 
identification of compounds acting on insect nicotinic 
acetylcholine receptors (nAChRs), referred  as  neonicoti- 
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noid insecticides (Casida and Quistad, 1998; Matsuda et 
al., 2001). Imidacloprid, the first of the neonicotinoid class 
of insecticides, was patented in 1985 by Bayer and was 
first marketed in 1991. Other neonicotinoid insecticides 
have subsequently been developed and brought to the 
market, including nitenpyram (in 1995 by Takeda), 
acetamiprid (in 1996 by Nippon Soda), thiamethoxam (in 
1998 by Syngenta), thiacloprid (in 2000 by Bayer), 
clothianidin (in 2002 by Takeda and Bayer) and dinote-
furan (in 2002 by Mitsui) (Millar and Denholm, 2007; 
Figure 1).  

Neonicotinoid insecticides are insect-selective nAChRs 
agonist, and the great abundance of nAChRs within the 
insect central nervous system (CNS) has led to the quick 
development and extensive use of neonicotinoid 
insecticides. This paper provides a summary on important 
amino acid residues in insect n nAChRs contributing to 
neonicotinoid insecticides selectivity.  
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NEONICOTINOID INSECTICIDES: SELECTIVITY AND 
RESISTANCE 
 
Neonicotinoid insecticides show selective toxicity to 
insects over vertebrates, and are used extensively in 
areas of crop protection and animal health (Matsuda et 
al., 2001; Tomizawa and Casida, 2005; Millar and 
Denholm, 2007). Neonicotinoid insecticides act selecti-
vely on insect nAChRs, accounting at least in part for the 
selective toxicity to insects over vertebrates (Matsuda et 
al., 2001, 2005; Tomizawa and Casida, 2005). Neonico-
tinoid insecticides possess either a nitro or a cyano 
group, which have been postulated to contribute directly 
to their selectivity (Matsuda et al., 2001; Tomizawa and 
Casida, 2005).  

Imidacloprid and other neonicotinoid insecticides, like 
other systemic insecticides, display prolonged persis-
tence which is likely to generate high selection pressure 
for resistance (Taylor and Georghiou, 1982). Resistance 
to imidacloprid has been reported in a range of species, 
including Nilaparvata lugens (brown planthopper), a 
major rice pest in many parts of Asia (Nauen and 
Denholm, 2005; Liu et al., 2003; Liu and Han, 2006; 
Wang et al., 2008). However, because of its characteris-
tics, including a novel mode of action (Devine et al., 
1996; Bao et al., 2008), imidacloprid resistance in field 
population appears to develop slowly and the mechanism 
is not well understood. Although a point mutation has 
been identified to confer resistance to all neonicotinoid 
insecticides in brown planthopper, N. lugens (Liu et al., 
2005, 2006), there has been no work to establish the 
prevalence of the mutation in field populations (Liu et al., 
2006).  
 
 
INSECT nAChRs: THE TARGET OF NEONICOTINOID 
INSECTICIDES 
 
The nAChRs are ligand-gated ion channels mediating 
fast cholinergic synaptic transmission in insect and 
vertebrate nervous systems (Matsuda et al., 2001). In 
mammals and other vertebrates nAChRs are expressed 
both at the neuromuscular junction (the “muscle-type” 
nAChRs) and within the central and peripheral nervous 
system (“neuronal” nAChRs). In insects, although 
nAChRs are not expressed at the neuromuscular junction 
(where synaptic transmission is glutamatergic), acetylc-
holine is the major excitatory neurotransmitter in insect 
brain (Breer and Sattelle, 1987). The most extensively 
characterized nAChRs is that expressed within the 
electric organ of fish such as the marine ray Torpedo 
(Unwin, 1996). Affinity labeling, mutagenesis and struc-
tural studies have provided extensive evidence for a 
structure model of the agonist site with contributing amino 
acids from three distinct regions of the α-subunits 
(referred to as binding site segments A, B, and C) and 
from at least three regions of the  non-α   (β, γ or δ) –sub- 

 
 
 
 
units (segments D, E, and F) (Prince and Sine, 1998; 
Arias, 2000; Corringer et al., 2000; Grutter and 
Changeux, 2001). Most features of the model are present 
and confirmed in the binding site identified within the 
solved structure of a molluscan, glial-derived soluble ACh 
binding protein (AChBP), a homopentameric structural 
and functional homolog of the N-terminal ligand binding 
domain of a nAChR α-subunit (Brejc et al., 2001; Smit et 
al., 2001).  

The agonist site structure model of nAChRs was 
derived from few species up to the present and it remains 
unknown whether the structure is suitable for all animals 
because of the diversity in nAChRs. A total of 17 nAChR 
subunits (α1–α10, β1–β4, γ, δ and ε) have been identified 
in vertebrate species, which can co-assemble to form 
multiple functional homopentamers (α7, α8 and α9) or 
heteropentamers (Corringer et al., 2000). The genome 
sequencing projects of insects had revealed 10, 10, 11, 
12 and 12 subunits in Drosophila melanogaster (Adams 
et al., 2000), Anopheles gambiae (Jones et al., 2005), 
Apis mellifera (Jones et al., 2006), Bombyx mori (Shao et 
al., 2007) and Tribolium castaneum (Jones and Sattelle, 
2007), respectively. The agonist site structure model 
derived from Torpedo nAChRs and molluscan AChBP 
might not be suitable for all nAChRs from different animal 
species, although most nAChR subunits possess the key 
residues included in the agonist site structure model. In 
insect, no functional nAChR pentamers were identified 
even when insect nAChR subunits were heterologously 
expressed together with different insect subunit combina-
tions or all subunits from one insect species (Lansdell 
and Millar, 2000; Liu et al., 2005, 2006). The fact, that the 
key residues in the agonist structure model were included 
in insect nAChRs and no functional pentamers were 
identified in the expression of recombinant nAChRs from 
insect species in heterologous expression systems, gives 
some indications that the model is not generally suitable 
for some species, or other important residues in the 
regions outside these six loops also play essential roles 
in nAChRs function. Recently, the amino acid clusters 
between loop B and C of insect nAChR α subunit were 
identified essential to agonist binding (Liu et al., 2008). 
 
 
IMPORTANT AMINO ACID RESIDUES IN INSECT 
nAChR α SUBUNIT  
 
Although Loops A, B and C exist in insect α subunits and 
Loops D, E and F. In insect β subunits, the difficulties 
were encountered in expressing recombinant insect nico-
tinic receptors (Tomizawa and Casida, 2001; Millar, 2003; 
Millar and Denholm, 2007). Despite this, however, it has 
been possible to generate functional hybrid nicotinic 
receptors by the co-expression of insect α subunits with 
the vertebrate neuronal β subunits in the heterologous 
expression systems, such as Drosophila S2 cells and 
Xenopus  oocytes (Bertrand  et al., 1994;  Lansdell  et al.,  



 
 
 
 
1997; Lansdell and Millar, 2000). A concern, however, is 
that these hybrid receptors may not faithfully reflect insect 
nAChRs (Tomizawa and Casida, 2001). 

The nAChR subunit composition has been identified to 
influence neonicotinoid insecticides selectivity, such as 
the replacement of the α4 subunit of the chicken α4β2 
nAChRs by Drosophila Dα2 subunit resulting in a marked 
increase of imidacloprid selectivity and demonstrating 
that insect α subunit has structural features favorable for 
interactions with neonicotinoids (Matsuda et al., 1998; 
Lansdell and Millar, 2000; Ihara et al., 2003). In chicken 
α4β2 nAChRs, the combination of replacing the region 
loop B to the N-terminus of α4 subunit by the corres-
ponding region of Dα2 subunit and E219P mutation in the 
YECC motif in loop C resulted in a marked increase of 
imidacloprid selectivity, which showed that the region loop 
B to the N-terminus in the Dα2 subunit contributes to the 
high imidacloprid sensitivity of the hybrid Dα2β2 nAChRs 
(Shimomura et al., 2005). Using the similar techniques, 
loop B–C interval region and proline residue in the YPCC 
motif in loop C from the Dα2 were also found to play 
important roles in its selective interactions with imida-
cloprid (Shimomura et al., 2004). Because mutation of 
proline residue in the YPCC motif in Dα2 loop C only 
showed minimal effects on ACh potency, such mutation 
may lead to a neonicotinoid resistant phenotype in 
insects.  

In a laboratory strain of N. lugens with high resistance 
to imidacloprid, the point mutation Y151S mutation in 
nAChR α subunit has been identified to contribute to 
neonicotinoid insecticides resistance (Liu et al., 2005, 
2006). Radioligand binding studies, performed with both 
native nAChR preparations and heterologously –expres-
sed recombinant nAChRs in Drosophila S2 cells, demon-
strated that the Y151S resistance-associated point 
mutation is responsible for a dramatically reduced level of 
specific [

3
H]imidacloprid binding (Liu et al., 2005). By 

expression of recombinant nAChRs in Xenopus oocytes, 
this Y151S mutation was found to show remarkable 
effects on all neonicotinoid insecticides potencies, but 
little on ACh (Liu et al., 2006). Despite the evidence that 
the potency of all neonicotinoid compounds is reduced by 
the mutation, an interesting finding is that this effect is 
less pronounced for the tertrahydrofuryl compound, 
dinotefuran. In contrast to dinotefuran, all of the other 
neonicotinoid insecticides examined contain a chlorinated 
heterocyclic (chloropyridyl or chlorothiazolyl) group. Be-
cause Y151 is an important residue for ligand binding and 
conserved in most vertebrate and insect α subunits, it is 
not possible for the Y151S mutation involved in neonicoti-
noid insecticides selectivity.  

Although all residues contributing to the six loops were 
thought to be important for agonist binding, some of them 
play the roles in a weak manner, including Y151 in loop B 
(Corringer et al., 2000). Various residues at the 151-site 
are found among invertebrate nAChR α subunits, 
including M151 (Methionine) in Caenorhabditis  elegans α  
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subunit acr18, belonging to DEG-3 group (Brown et al., 
2006). When Y151M mutation was introduced into insect 
α subunit, imidacloprid was found to act as an antagonist 
on insect nicotinic acetylcholine receptor containing the 
Y151M mutation (Zhang et al., 2008). Although the 
Y151M mutation resulted in the complete loss of agonist 
action of imidacloprid on insect Nlα1/β2, imidacloprid 
interferes with the normal biological function of nAChRs 
Nlα1

Y151M
/β2 by inhibiting the response to acetylcholine 

and should maintain activity against insect nAChRs 
containing the Y151M mutation. Consequently, despite 
the effects of the Y151M mutation upon imidacloprid 
action, the mutation may not lead to an imidacloprid 
resistant phenotype.  
 
 
IMPORTANT AMINO ACID RESIDUES IN INSECT 
nAChR β SUBUNIT  
 
The recombinant insect/vertebrate α/β nAChRs in the 
heterologous expression systems are the best available 
model at present, this strategy is not suitable to express 
insect β subunit, because no functional pentamer consis-
ting of insect β and either insect or vertebrate α subunits 
has been identified up till now (Bertrand et al., 1994; 
Lansdell et al., 1997; Lansdell and Millar, 2000; Liu et al., 
2006). 

Another way to do the pharmacological studies on 
insect nAChRs, especially for insect β subunit, is to 
construct the artificial subunit chimeras, although it also 
can not reveal the complete features of its wild type 
(Lansdell and Millar, 2004; Shimomura et al., 2005).  

 Replacement of Loop D, E and/or F of vertebrate β2 
subunit by the corresponding regions of insect β1 subunit 
increased the neonicotinoid selectivity (Yao et al., 2008). 
In studies of single amino acid changes, the introduction 
of insect-specific loop D amino acid residues T77R/K/N 
and E79V/R into the chicken β2 subunit of Dα2/β2 hybrid 
nAChRs significantly increased the neonicotinoid 
selectivity (Shimomura et al., 2006). S131Y/R and D133N 
in loop E and T191W and P192K in loop F were also 
found to contribute to the neonicotinoid selectivity of 
Dα2/β2 (rat) hybrid nAChRs (Yao et al., 2008). Neonicoti-
noids possess either a nitro or a cyano group, which have 
been postulated to contribute directly to their selectivity 
(Matsuda et al., 2001; Tomizawa and Casida, 2005). 
T77R/K, S131R and P192K, mutations from a neutral 
residue to a basic residue, and E79V/R and D133N, 
mutation from an acidic residue to a neutral or basic 
residue, should change the electrostatic properties of the 
Nlα1-β2 nAChR agonist binding pocket, which could 
explain their roles in influencing neonicotinoid selectivity 
(Shimomura et al., 2006).  

These studies show insect-specific residues or regions, 
in or out the important loops (Loop A-F), could enhance 
neonicotinoids selectivity, depending on residues’ electro-
static properties (Shimomura et al., 2006). Because these 
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mutations in vertebrate β2 Loop D, E and F only showed 
minimal effects on ACh potency, such mutation may also 
lead to a neonicotinoid resistant phenotype in insects.  
 
 

PROBLEMS ENCOUNTERED IN INSECT nAChRs 
STUDY 
 
Although many insect nAChR subunits have been cloned, 
and genome sequencing of several insects also gives 
more information about insect nAChRs, some problems 
were encountered in the detailed functional and 
pharmacological characterisation of insect nAChRs.  
 
1) The subunit composition of insect native and 
recombinant nAChRs is unknown. Until now, no func-
tional nAChRs consisting of only insect subunits were 
identified. Although recombinant nAChRs of insect α 
subunit and vertebrate β subunit in the heterologous 
expression systems and the construction of artificial 
subunit chimeras are thought to be useful strategies, they 
may not faithfully reveal all features of insect nAChRs 
(Tomizawa and Casida, 2001; Lansdell and Millar, 2004; 
Shimomura et al., 2005).  
 
2) The number of nAChR subunits is different among 
insect species. In D. melanogaster, an extensively 
studied model insect species, ten nAChR subunits (α1-α7 
and β1-3) have been identified by molecular cloning 
(Tomizawa and Casida, 2001; Millar, 2003). The 
proliferation of insect genome sequencing projects is now 
starting to reveal a similar level of nAChR subunit diver-
sity in other species, such as nine α (Agamα1-9) and one 
β (Agamβ1) in A. gambiae (Jones et al., 2005), nine α 
(Amelα1-9) and two β (Amelβ1-2) in A. mellifera (Jones 
et al., 2006), nine α (Bmα1-9) and three β (Bmβ1-3) in B. 
mori (Shao et al., 2007), eleven α (Tcasα1-11) and one β 
(Tcasβ1) in T. castaneum (Jones and Sattelle, 2007). It is 
found that at least two α subunits are missing from D. 
melanogaster, which shows this model insect species is 
not a suitable model for insect nAChRs study. 
Furthermore, the function and the roles in insecticide 
selectivity of these missing α subunits are unknown until 
now.  
 
3) Insect nAChRs agonist site structure remains 
unknown. The agonist site structure model of nAChRs 
was derived from few species up to the present and it 
remains unknown whether the structure is suitable for all 
animals because of the diversity in nAChRs. Recently, 
the amino acid residues or residue clusters outside the 
six loops were found to play essential roles in agonist 
binding, especially for the amino acid clusters between 
loop B and C (Liu et al., 2008). This  result  indicated  that 
the residues in the six loops could be necessary, but not 
enough for the activity of agonist binding. 
 
4) The  target  subunit  of  different  insecticides  remains 

 
 
 
 
unknown. Nicotinic receptors have long been recognized 
as potential targets for insecticidal compounds, and over 
the last 20 years this potential has been realised by the 
development of highly potent and selective agents that 
collectively offer effective control of the majority of insect 
pests of agricultural, veterinary and medical importance 
(Millar and Denholm, 2007). Insecticides acting on insect 
nAChRs mainly include plant alkaloids (including 
nicotine), spinosyns, nereistoxin analogues and neonico-
tinoid insecticides. Although these insecticides all act on 
insect nAChRs, their target subunits are different. The 
available example is that Drosophila Dα6 subunit has 
been identified as a target site for spinosad (Chouinard et 
al., 2006; Orr et al., 2006), but not neonicotinoid 
insecticides such as imidacloprid (Lansdell and Millar, 
2004), a finding which is consistent with the evidence that 
spinosad and neonicotinoids act upon different popula-
tions of nAChRs (Salgado and Saar, 2004).  

Nicotinic receptors are a diverse family of neurotran-
smitter-gated ion channels, expressed in both vertebrate 
and invertebrate species. Although some progresses 
have been achieved in insect nAChRs and the selective 
insecticides acting on insect nAChRs have been 
developed well, the resolve of some important problems 
is in urgent need.  
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