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The quality control of frozen semen samples from cattle is established by parameters such as 
percentage of progressive motility (% MP) because it is related to the fertilization capacity of bulls. 
Nowadays, sperm quality test is performed by direct visual inspection of sperm through a microscope 
in andrology laboratories. However, there is a high subjectivity in the observation and assessment 
depending on the observer; thus, causing unreliable diagnoses and non-repetitiveness in results. The 
development of a low cost computer tool was proposed to identify the individual sperm motility in cattle 
through the application of artificial vision algorithms. The methodology consisted of: the acquisition 
and pre-processing of videos obtained from thawed cryopreserved samples, the segmentation, filtering 
and detection of spermatozoa using the Fisher Discriminant Analysis and Adaptive Gaussian Models, 
followed by the assignment and construction of sperm trajectories through the Munkres Algorithm and 
Kalman Filter. Finally, the characterization and assessment of sperm motility parameters were 
performed based on the criteria present in computer-aided semen analysis (CASA) commercial 
systems. The results obtained showed high correlation for the individual sperm motility with a 
determination coefficient of 0.8143 for 10 different samples of bull sperm with respect to manual 
analysis. Likewise, a concordance coefficient of 0.966 was found in the 95% confidence interval using 
the Bland-Altman test, indicating that the measures were highly similar. In this way, the methodology is 
a reliable technological support that contributes to the improvement of quality control of semen 
samples from cattle. 
 
Key words: Sperm motility, track detection, fisher discriminant analysis, Gaussian models, Kalman filter. 

 
 
INTRODUCTION 
 
In Colombia, agricultural activity and majority of the 
bovine livestock have a great impact on the internal 
economy of the national territory (DANE, 2016). The 
country  has   a   large   cattle   market  and,  therefore,  a 

demanding commercialization of semen straws of cattle. 
One of the most important aspects is the sperm quality 
because there is a high demand of bovine semen straws 
for  artificial  insemination  processes (Livestock  Context,  
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2017). 

Nowadays, semen analysis is usually done manually 
through physical observation of spermatozoa under the 
microscope by specialists in andrology for a long time 
period (World Health Organization, 2010). However, this 
conventional procedure can have errors due to factors 
such as: subjectivity in the determination of progressive 
and non-progressive moving spermatozoa, lack of 
repetitiveness in the results and ocular fatigue of the 
expert for long working hours, thus, affecting the result of 
the analysis and the objective determination of the bull 
fertility (Hidalgo et al., 2017). On the other hand, 
commercial systems of computer-aided semen analysis 
(CASA) (Lu et al., 2014) have been developed, which 
allow the identification of seminal parameters with 
automatically high precision. However, these systems are 
closed and expensive, hence their implementation is not 
common in the livestock sector. Although in Colombia, 
only the case of one commercial system is reported, 
researchers have already developed algorithms to 
determine sperm parameters and its relation with semen 
quality, as well as detection of velocities of cells by CASA 
(Nagy et al., 2015).  

The main objective of this research was to develop a 
methodology that reduces errors in the results of sperm 
motility analysis, by implementing a computational tool 
that performs artificial vision techniques on recorded 
videos, to provide the specialist, a support technology 
based on results obtained objectively and makes it to be 
easily adaptable to many different laboratories. 

The methodology implemented consists of four phases 
in general; phase 1 is the acquisition and pre-processing 
of the videos through a Leica DM500 led binocular 
microscope, phase 2 is the segmentation and extraction 
of motile and non-motile spermatozoa. Subsequently, in 
phase 3, the algorithm was implemented to assign 
detections and construct trajectories described by the 
spermatozoa in the video. Finally, the proposed method 
analyzes these trajectories of the spermatozoa and 
identifies the sperm motility parameters following the 
protocols established by the OMS manual.  

In the present investigation, there is a report on the 
development results, implementation and validation of the 
computational tool for individual sperm motility assess-
ment in bovines from videos of semen samples obtained 
from 10 specimens.  
 
 

MATERIALS AND METHODS 
 
Initially, preparation of the seminal samples was performed 
according to established protocols in andrology and veterinary 
medicine laboratories (Vincent et al., 2012). Considering that, this 
procedure can influence the results of the motility analysis (Contri et 
al., 2010). In the investigation, the authors only worked on samples 
of frozen semen for each breed of bull (white black ear), the frozen 
samples were withdrawn from the liquid nitrogen vessel, each straw 
was thawed by a water bath for 60 s and 5 μL of semen were placed 
on a preheated slide at 37°C. Subsequently, the videos were 
captured using a Leica DM500 led binocular microscope, with digital 

 
 
 
 

 
 

Figure 1. Proposed methodology. 

 
 
 
camera Wi-Fi model ICC50W attached to the lens for different 
objectives.  

The proposed methodology for the identification of individual 
sperm motility consists of 4 phases, as shown in Figure 1. In the 
first phase, video acquisition and pre-processing of the video were 
performed. In the second phase, the segmentation and detection of 
spermatozoa  in motion were performed through adaptive Gaussian  



 
 
 
 
models. Subsequently, in the third stage, the allocation and 
construction of trajectories were performed. Finally, validation of the 
computational tool was performed through sperm motility indexes. 
Each of the four phases implemented are described below. 

 
 
Acquisition and pre-processing 
 
When the sample with 5 μL of semen was prepared on a slide and 
covered with a coverslip, it was focused with a 40x eyepiece using 
the Leica DM500 led binocular microscope made in Germany and a 
laptop with Intel core i5 processor and 4 GB memory ram, 
respectively. Afterwards, the camera software obtained the videos 
that were later stored in a computer, with the following attributes. 
Format: WMV; resolution: 640 x 480 pixels; frame rate: 30 Hz; data 
rate: 1572 kbp; duration: 5 s. 

After obtaining the videos, a pre-processing stage was applied 
which allowed adjusting the contrast of the frame in order to 
increase the difference between light and dark pixels, thus 
improving the performance of the segmentation process. 

 
 
Segmentation and detection of spermatozoa 
 
For extraction of the spermatozoa, a similar technique of frame 
differentiation was used as developed by Stauffer and Grimson 
(1999), called adaptive background Gaussian models, with 
comparison of the value of each pixel with respect to Gaussian 
functions that are modeled adaptively. It is important to define the 
probability of each pixel belonging to a background image region. 
The variance of the pixel values over time allows the modeling of 
Gaussian functions present in an image. Therefore, these models 
make prediction possible when a particular pixel is part of a moving 
object or the background of the image. The probability of observing 
the pixel value is obtained from Equation 1: 
 

 (  )  ∑       (            )
 
                                                  1 

 
Where, K is the number of Gaussian models, ω is an estimated 
weight coefficient for a model i per unit of time t. The variable η 

represents the conventional Gaussian probability density, where    
takes the value of the pixels in the image. μ is the mean value and 
Σ is the covariance existing in the combination of models. Likewise, 
by Equation 2, Gaussian probability density was determined 
adaptively, allowing differentiation of objects that have motion on a 
video. 
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Where, n is the domain size of the normal distribution.  

Since the resulting binary image exhibits in most cases, 
unwanted particles and objects due to the movement of the seminal 
sample, it is necessary to carry out a filtering step in order to 
optimize the image and prevent further erroneous detections in the 
following process stages (Maintz, 2005). Later, an analysis of 
connected components was implemented in order to recognize the 
regions of the binary image and to develop an analysis of their 
geometric parameters (Gonzalez and Woods, 2008), in which 
fundamental data such as area and center of mass (centroid) are 
abstracted. The centroid denotes the coordinate on the image 
which is located in the region of pixels of interest, which in this 
case, would correspond to the head of a spermatozoon.  

Considering that the adaptive Gaussian modeling method can 
only segment spermatozoa in motion, the linear discriminant 
analysis method described by Bishop (2016) aims to segment all 
the spermatozoa present in the frames, regardless of  whether  they  
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are in motion or not, in order to determine the total motility of the 
sample. This analysis allows the classification of data between two 
or more classes. Its function is to maximize inter-class variance and 
minimize intra-class variance. In this way, a discriminant vector is 
created to maximize the variance between the pixels belonging to 
the bottom of the head of a spermatozoon by Equations 3 and 4. 
 
   ∑  (    )(    )

                                                     3 
 

   ∑    (     )(     )
                                                    4 

 
Where, μ is the mean of all pixels, μc is the mean of each class, NC 
is the number of patterns in the class and xi is the value of each 
pixel. Subsequently, the discriminant vector is obtained with 
Equation 5 that separates the two classes and allows 
segmentation. 
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Assignment and construction of trajectories 
 
When applying the segmentation algorithm to the video, multiple 
sperm detections are evident in each frame. These must be 
interpreted and organized under a set of real trajectories, in order to 
ensure that different detections correspond to a common trajectory 
along the frames and, in this way, registering a record of the 
coordinates of each moving target. 

The assignment and construction of the tracks followed by the 
spermatozoa are developed at first through the application of 
Munkres assignment algorithm, followed by a Kalman filter. The first 
technique corresponds to variation of the assignment algorithm of 
Munkres (1957). This mathematical model aims to make a direct 
assignment of m elements to n destinations by means of an m x n 
matrix called the cost matrix. These costs are values related to the 
probability of assigning an element of row m to one of column n 
whose total cost is minimal. 

Where m represents the detections in the binary image, n 
represents the sperm trajectories and each element of the matrix 
relates to the difference between estimated position and the actual 
position of the sperm. On the other hand, the Kalman filter is a set 
of mathematical equations that provide efficient computational 
means to estimate the state of a process, in such a way that it 
minimizes the mean square error. This filter allows estimations of 
states in past, present and even future. This algorithm was 
designed by Kalman (1960) which describes its operation as a 
predictive and corrective cycle that communicates with each other 
through a feedback. In Equations 6 and 7, the Kalman filter 
prediction stage is described in discrete time: 
 
 ̂ 
    ̂                                                            6 
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Where,  ̂ 

   is the current state prediction,  ̂    represents the 

previous state prediction,    is the position measurement, A and B 
are state transfer matrices,   

   is the error covariance a priori and 
Q is the process noise covariance. Subsequently, the position is 
updated through the correction stage described by Equations 8, 9 
and 10, which consist of obtaining new measurements of the state 
variable and its conjugation with the a priori estimation of the 
prediction. 
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Figure 2. Representation of the assignment of sperm 
detections to their trajectories.  

 
 
 
   (     )  

                                                   10 
 
Where,    is the Kalman gain, H is the measurement state matrix, 
R is the covariance of the measurement error and     is the current 
system measurement. 

In this way, the positions that define the trajectories of the 
spermatozoa are determined, considering both the observed 
measurements and the coordinates estimation. All previous 
measurements constitute a criterion for predicting future 
measurements. The correction, in turn, updates the data and 
incorporates it into the information history through a feedback loop. 
In the cost matrix, the difference between the current position 
measurement and the Kalman prediction is stored, and eventually, 
a given detection is assigned with a greater probability of belonging 
to a real trajectory, as shown in the Figure 2. 

The first detections presented in the initial frame of a video are 
classified in initial positions of trajectory and the unassigned 
detections become a new trajectory. In the case of the assigned 
detections, the update of the measurement in each frame is given 
by assigning a new element to the track. On the other hand, those 
tracks that do not comply with a minimum number of points are 
automatically deleted by the algorithm, because they are 
insignificant or indicate a detection error. 
 
 
Characterization of sperm motility 
 
Finally, the trajectory of the spermatozoon is defined by means of a 
matrix that represents the coordinates X and Y of the positions 
through time within the image, which allows determination of the 
most common parameters of sperm motility as realized in the 
systems CASA (Agarwal and Sharma, 2017) which have: 
curvilinear velocity (VCL), average velocity (VAP), straight line 
velocity (VSL), linearity index (LIN), straightness index (STR), 
wobbling index (WOB), percentage of total motility (% MT) and 
progressive motility (% MP). 

The curvilinear velocity is a fundamental parameter in individual 
sperm motility. The other parameters are calculated from this value. 
The total distance was obtained by summing the distances between 
each coordinate k in the space of the image and its multiplication by 
a factor (A) that converts Cartesian coordinates (     ) into 
micrometers dominion (μm). The velocity was determined in 
Equation 11 by multiplying the total distance by the capture 
frequency of the video   (s-1) as follows: 
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Because the average velocity corresponds to the smoothed real 
trajectory, a mean filter was applied for each column of the 
coordinate matrix and subsequently computed. Mathematically, the 
sequential mean was calculated for each element of the column 
vector (     ), obtaining another average column vector (     ) as 
shown in Equations 12 and 13. Then, the same equation previously 
used was applied, but adapted to the ne values (Equation 14): 
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Also, the rectilinear velocity was computed from the initial point 
(     ) to the final point (     ) of the trajectory described by the 

spermatozoon, and likewise using Equation 15, the velocity was 
converted to units of µm/s: 
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Subsequently, the linearity indices were calculated in Equation 16, 
straightness in Equation 17 and wobbling in Equation 18: 
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Moreover, a characterization stage was designed in order to 
classify each spermatozoid into a motility category depending on its 
speed and trajectory. Finally, the percentages of total motility and 
progressive motility are determined by Equations 19 and 20, being 
the progressive motility percentage and one of the most important 
descriptors of the quality of a seminal sample as described in 
Vincent et al. (2012). 

The criterion implemented for the classification of sperm motility 
in the categories of fast progressive (grade A), slow progressive 
(grade B), non-progressive (grade C) and non-motile (grade D) was 
based on criteria implemented in CASA systems for the analysis of 
frozen samples of bovine semen. However, the thresholds used for 
the classification were previously characterized, considering the 
specific conditions of our design, since for CASA systems, there is 
no official standard (Simonik et al., 2015).  
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RESULTS 
 

Acquisition and pre-processing 
 

The first phase tested was the acquisition and pre-
processing of the images. Figure 3C shows the results of 
the process in which contrast adjustment was applied in 
order to increase the background contrast with respect to 
the spermatozoa.  
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Figure 3. (A1-A3) Sequence of original frames. (B1-B3) Sequence of frames showing 
segmentation of three spermatozoids in motion by the adaptive method of Gaussian 
models. (C) Original frame. (D) Fisher discriminant analysis segmentation. 

 
 
 
Segmentation and detection of spermatozoids  
 
Segmentation by a combination of adaptive Gaussian 
models had effect shown in Figures 3B1 to B3. It is 
evident that these spermatozoids with displacement 
highlighted by red circles are extracted from the 
background together with some particles generated by 
the vibration of the sperm liquid, caused by the turbulence 

proper to the flagellar movement of spermatozoa. Some 
sperm tails are also extracted, either completely or 
partially; also, these spermatozoa have very poor or near 
zero displacement. Figures 3A1 to A3 highlights 
spermatozoids in yellow, do not exhibit movement at all 
and are not segmented by this technique, as expected, 
because the pixels that constitute them do not show 
variability or displacement in the video and are practically 



1876          Afr. J. Biotechnol. 
 
 
 
taken as part of the background. 

Later, the application of morphological operators to the 
binary image resulting from the segmentation method 
allowed eliminating the small particles generated by the 
movement of the background. Also, the tails of the 
spermatozoa are reduced until they disappear, thus 
leaving only the heads of the spermatozoids in motion. 
However, the filtering process is not enough and 
sometimes it allows the presence of other objects of 
larger size in the images that do not belong to spermatic 
heads. For this reason, an aperture operator was applied 
followed by a closure operator with a circular structuring 
object of 2- and 4-pixel radius, respectively, in order to 
obtain an image with objects that belong to the heads of 
the spermatozoids without disturbances. 

Since the adaptive Gaussian models did not segment 
the sperm without motility, another method was required. 
For this, Fisher's linear discriminant analysis was used, 
which allowed the sperm cell heads to be segmented 
independently of their mobility or vitality, in order to 
analyze all spermatozoa in the video. 

Figure 3C shows the final frame of a test video in which 
this analysis was done. The corresponding result is 
shown in Figure 3D, where it is shown that the sperm 
heads are extracted from the background effectively. 
Fisher's method segments all sperm heads independently 
of their movement, since it is based only on their color 
composition, allowing the detection of these spermatozoa 
without any movement. 
 
 
Assignment and construction of trajectories 
 
In Figure 4, the effect of application of the Kalman filter 
and Munkres algorithm is illustrated. In Figure 4A1 to A3 
the transition of three frames at different times is 
observed, showing the positions of all the detected 
centroids, labeled with red points. Whereas, in Figure 
4B1 to B3, the assignment of these positions to the actual 
trajectories of the spermatozoids is shown with blue lines. 

Likewise, the superposition of two sperm trajectories is 
shown in Figure 4A3 and B3. However, the Munkres 
assignment allows proper differentiation of these two 
trajectories. It was also observed that when the current 
position of the spermatozoon was not detected, either 
due to segmentation errors, the Kalman filter enabled the 
prediction of the position in each frame; therefore, when 
the target is detected again, the correction of the position 
should be done to compute the prediction model with the 
current measurement. 
 
 
Characterization of sperm motility 
 
With the Kalman filter, it was possible to define the 
trajectory of each moving sperm present in the video. A 
trajectory    is    described    as    a   series    of  Cartesian  

 
 
 
 
coordinates in the image; this allows characterization and 
classification of each spermatozoon within a degree of 
motility just like the commercial CASA systems. Figure 
4C shows the final frame of the trajectory as described in 
Figure 4A3, where it is observed that for each trajectory, 
the VCL, VAP and VSL are calculated to proceed to the 
classification stage. 

Finally, in Figure 4D, the expansion of a trajectory was 
performed to show the classification process. In this 
case, a very undulating movement of a spermatozoid 
(WOB = 47.3%) combined with a very low linearity (LIN = 
39.1%) was observed, which makes it a spermatozoon 
without progressivity belonging to category C. 
 
 
Validation of the computational tool 
 
The evaluation performed by the andrology expert was 
based on the same classification criteria described in the 
state of the art except for categories A and B. Categories 
A and B are linked in a single class (A + B) for practical 
effects, because, according to the expert, it is often 
unnecessary to distinguish between fast and low 
progressive spermatozoa. Taking this into account, the 
classification is as follows: 
 
1. Class 1: spermatozoa with progressive motility 
(Category A + B); 
2. Class 2: spermatozoa with non-progressive motility 
(Category C); 
3. Class 3: sperm without motility (Category D). 
 
From these classes, the calculation of the total sperm 
detected (total), percentage of progressive motility (% 
MP) and percentage of total motility (% MT) were 
derived. Thus, the observation and assessment obtained 
from the 10 videos by the andrology expert are shown in 
Table 1. It shows the number of sperm classified in each 
category and percentages of progressive and total 
motility. 

On the other hand, the analysis of the 10 videos of 
seminal samples from different bulls was arranged and 
the algorithm was executed to show results in terms of 
the parameters of motility observed by the expert. Table 
2 shows the results obtained by the computational tool. 

Likewise, the determination coefficients were calculated 
in order to find the level of success of the computational 
tool developed with respect to the analysis performed by 
the expert. Figure 5A shows the correlation of 
spermatozoa in the (A + B) category for the expert and 
the algorithm. It is shown that the computational tool was 
able to classify most progressive spermatozoa with a 
high determination coefficient (R2 = 0.8542). 

However, there were differences in the detection and 
classification of spermatozoa belonging to category C. 
Figure 5B shows that the correlation was low with a 
coefficient  of   determination   of  R2 = 0.3952.  This  was 
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Figure 4. Frames at different times: 1, 2, 3. (A) in red dots, unassigned centroid 
detections are marked; (B) in blue lines, the constructed trajectories are 
illustrated; (C) trajectories are characterized; VLC in green; VAP in blue; VSL in 
red; (D) characterized trajectory of a random spermatozoon. 

 
 
 
mainly due to the difficulty in adjusting a minimum 
sensitivity threshold in order to sort a moving and non-
progressive sperm, because the visual inspection of the 
expert is very subjective and there is no strict regimen, 
for example, when considering a spermatozoon with 
almost null displacement or with extremely short 
displacement. On the other hand, for the detection of 
non-motile spermatozoa, a good correlation  (R2=0.8056) 

was observed, therefore, Fisher's discriminant analysis 
had a good performance, as shown in Figure 5C. 

In general terms, it can be stated that the motile 
classification stage of the algorithm presented good 
agreement with the expert's manual analysis, since by 
combining the data of the three classes, a percentage of 
progressive motility of R2 = 0.8143 and high correlation 
with a coefficient of determination of R2 = 0.8754  can  be  
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Table 1. Results of manual analysis by the expert technician, elaborated by the author. 
 

Video Cat. A+B Cat. C Cat. D Total MP (%) MT (%) 

1 7 2 19 28 25.00 32.14 

2 6 1 13 20 30.00 35.00 

3 3 1 10 14 21.43 28.57 

4 2 2 3 7 28.57 57.14 

5 5 0 4 9 55.56 55.56 

6 7 1 9 17 41.18 47.06 

7 2 3 7 12 16.67 41.67 

8 5 2 5 12 41.67 58.33 

9 5 0 9 14 35.71 35.71 

10 6 1 11 18 33.33 38.89 

 
 
 

Table 2. Results obtained with the computational tool, elaborated by the author.  
 

Video Cat. A+B Cat. C Cat. D Total MP (%) MT (%) 

1 7 1 19 27 25.93 29.63 

2 6 0 13 19 31.58 31.58 

3 2 2 9 13 15.38 30.77 

4 3 0 4 7 42.86 42.86 

5 5 1 2 8 62.50 75.00 

6 8 2 7 17 47.06 58.82 

7 3 0 12 15 20.00 20.00 

8 4 0 7 11 36.36 36.36 

9 5 2 7 14 35.71 50.00 

10 6 1 11 18 33.33 38.89 

 
 
 
obtained as shown in Figure 5D and E, respectively.  

Finally, using the Bland-Altman test shown in Figure 
5F, which represents the difference between the 
methodologies implemented, no significant variability was 
found between the sperm motility measurement by the 
expert and the implemented computational tool. The 
outcomes show the differences of the manual measure 
with respect to the algorithm with a relation of 0.966 in a 
95% confidence interval of (3.058 to 3.19). They 
indicated that the measurements were very similar, if the 
two methodologies were the same, the expected ratio 
would be 1. 
 
 
DISCUSSION 
 
In the present work, the versatility of the artificial vision is 
demonstrated in processes that require observation of 
small objects on microscopic images for long periods of 
time. This application provides a technological support to 
the manual analysis by the expert, and in this way, the 
intrinsic drawbacks of his intervention are greatly 
reduced. However, it is necessary to use an expert to 
properly focus  the  sample  of  the  ejaculate  and  obtain 

videos of high quality. 
It is important to note that the present methodology 

aimed only at post-thawed samples and fresh ejaculates 
were not supported. Though fresh spermatozoa have 
similar performance than the frozen counterpart 
(Szeptycki and Bentov, 2016), their captures under 
microscope and kinetics are different.  

The preparation of the semen samples was carried out 
according to the protocols established in the World 
Health Organization (WHO, 2010) laboratory manual, in 
order to remove agglomerations of cells that could impair 
the procedure. Moreover, the image capture was 
obtained using a suitable illumination and focus 
configuration of a binocular microscope Leica model 
DM500 led, with digital camera, Wi-Fi model ICC50W. 
Each capture was taken immediately after thawing 
because sperm vitality decreases over time (Ibȃnescu et 
al., 2016).  

Disadvantages were evidenced in some samples due 
to the cases in which some spermatozoa were defocused 
by the change of their height within the sample, which 
caused erroneous detections in the segmentation. The 
contrast adjustment allowed this situation to be improved  
by facilitating the method to  recognize  variation  in  pixel  
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Figure 5. (A) Linear regression and coefficient of determination of spermatozoa classified in A + B, (B) Linear regression and coefficient 
of determination of spermatozoa classified in C, (C) Linear regression and coefficient of determination of spermatozoa classi fied in D, (D) 
Linear regression and coefficient of determination of the percentage of progressive motility calculation, (E) Correlation between the 
computational tool vs. the expert technician, (F) Bland-Altman test for classes A+B, C and D. 

 
 
 
values along the frames. 

Due to the vibration of the seminal fluid caused by the 
oscillatory movement of the sperm tails, there was an 
exaggerated detection of  particles  not  corresponding  to 

sperm heads; therefore, morphological operators were 
implemented to eliminate them in the field of the binary 
image. This could be avoided if a non-linear diffusion filter 
is used as shown by Imani et al. (2014), but morphological  

 

R
2
= 0.8154 
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operators were enough. In this way, only the regions 
belonging to the spermatic heads were obtained, which 
through an analysis of connected components were 
extracted from the values of the position coordinates in 
each frame. 

The adaptive mixture of Gaussian models algorithm is 
one of the useful techniques for background subtraction 
as summarized by Piccardi (2004). It allowed a proper 
detection of movement in the cells that presented 
displacements, but those immobile ones were not 
segmented. Therefore, a Fisher´s linear discriminant 
analysis was implemented to extract all the sperm cells 
using an experimentally extracted database to perform a 
complete motility analysis. Fisher method offers great 
precision of segmentation, but consumes a high amount 
of memory and processor (Zhiwei et al., 2012); thus, for 
higher resolutions, it could take significant periods of 
time. 

Furthermore, the criterion of eccentricity made it 
possible to discard non-spermatozoa objects in the 
segmentation process, making the method more reliable. 
However, in certain specific cases, segmentation errors 
were observed, where two sperm heads that are in 
contact were taken as a single object and were therefore 
ignored by the area criterion. Watershed algorithms and 
particle filters were able to break this contact in the 
segmentation process (Ravanfar et al., 2014). 

The reconstruction of each sperm trajectory in the 
video was possible due to the implementation of the 
Munkres assignment algorithm; it could assign the new 
centroids to the existing trajectories using the Kalman 
filter prediction and correction criteria. This filter, whose 
initial variables were adjusted experimentally, worked 
correctly in the individual tracking process. A common 
issue found in multi-tracking algorithms is the problem 
derived from the superposition of targets. Since each 
sperm trajectory develops its own Kalman filter, this issue 
was solved (Urbano et al., 2017). 

Despite not having an official protocol for the CASA 
systems, one was adapted for the present design, by 
characterizing the coordinates that describe the trajectory 
of each motile spermatozoon in the video. This allowed 
calculation of the parameters of individual motility 
according to the commercial systems CASA. Starting 
from the acquisition of these parameters and the 
classification of motility, for each video, a percentage of 
progressive motility was obtained, which was submitted 
to validation having as reference, the assessment by an 
expert in andrology. 

The validation regarding observation and manual 
analysis by a technician showed high concordance in the 
classification of progressive motility. However, the 
classification of non-progressive motility was affected, 
mainly by the complexity of the objective determination of 
the speed limits or cut-off values of non-progressive and 
almost immotile spermatozoa (Wilson-Leedy and 
Ingermann, 2007), because the sensitivity of the algorithm 
is quite different as compared to the human eye  and  the  

 
 
 
 
conventional manual procedure presents downsides 
(Baracaldo et al., 2007). This could be overcome but it 
would require higher frames per second. 

This affected the total motility analysis, but the results 
showed that they followed the trend line of the data 
provided by the expert. On the other hand, the parameter 
of progressive motility, one of the significant descriptors 
for fertility together with VAP and VSL (Ahmed et al., 
2016) (Rezagholizadeh et al., 2015), had a high 
coefficient of determination (R2=0.8143) and, therefore, a 
very good correlation.  

As also demonstrated by Giaretta et al. (2017), open 
alternatives are as competitive as commercial systems 
like Hamilton-Thorne IVOS and present similar 
performance for sperm motility analysis, even though 
there is no official standard for computer-assisted tools. 

 Thus, a semi-automatic, reconfigurable and modular 
computational tool was developed for the assisted 
analysis of individual sperm motility of bovine semen 
samples. It has the capacity to reduce human errors in 
the interpretation of motility parameter and thus provide 
reliable results. In Colombia, this tool would provide an 
economical and accessible alternative for quality 
analysis, academy and research in the field of andrology 
and veterinary medicine. 

Future developments involve, firstly, the minimization of 
errors presented in this study, then, the design of a 
complete CASA system with the capacity to analyze 
motility and viability, concentration and sperm 
morphology. In addition, adjusting the design to provide 
the user with the option of evaluating both bovine semen 
samples and other animal species, is proposed. 
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