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The polyadenylation of messenger RNA (mRNA) in eukaryotes is an essential step in gene expression. 
Currently, with the in-depth sequencing, a considerable amount of alternative poly(A) sites have been 
found in the coding sequences and introns, while there was little study on these unconventional poly(A) 
sites and their signals. To study the signals of mRNA polyadenylation, an effective poly(A) signal pattern 
recognition model was established to select and analyze the nucleotide patterns in the poly(A) site-
related regions from large scale sequences generated from Sanger and next generation sequencing 
technologies. Our model, integrating a pattern and an assembly analysis pipelines and several 
visualization methods could be applied to various species. Through recognition of poly(A) patterns in 
three species including rice, Arabidopsis and Chlamydomonas reinhardtii, the experimental results 
showed that this model was able to select effective poly(A) signal patterns for poly(A) sites and 
alternative poly(A) sites to compare the poly(A) signals in different species and different regions, and to 
enhance the accuracy of poly(A) sites recognition to a larger extent. 
 
Key words: Polyadenylation signal, pattern recognition, alternative polyadenylation. 

 
 
INTRODUCTION 
 
Maturation of eukaryotic mRNA involves three major 
steps of post-transcriptional processing, including 5’ 
capping, splicing of introns and 3’ end formation. The 3’ 
end formation of mRNA includes two steps: The cleavage 
of pre-mRNA in a specific location [that is., poly(A) site] of 
3’-UTR (3’ untranslated region) and the addition of a 
poly(A) tail to the site (also known as polyadenylation). 
Polyadenylation is guided by cis-acting elements 
surrounding the poly(A) site (Hu et al., 2005), collectively 
known as the poly(A) signals. The 3’-UTRs containing cis-
acting elements that may interact with RNA binding proteins 
and small non-coding RNAs, thereby affecting the 
function of RNA, such as mRNA stability, exportation, 
localization and translatability (Bartel, 2009; Buratowski, 
2005; Hammell, 2002; Holec et al, 2006; Moor et al.,  
2005; Wickens  et  al.,  2002) . Poly(A)  tail  marks  the  
end of a gene, thus identification of poly(A) sites can help 
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improve the gene structure prediction (Kan et al., 2001). 
Since a poly(A) signal is possible in the vicinity of a poly(A) 
site (Beaudoing et al., 2000), the recognition of poly(A) 
signal could be an alternative solution to the problem of 
poly(A) site predic-tion. Many eukaryotic genes possess 
multiple poly(A) sites (Tian et al., 2005; Wu et al., 2011), 
and thus undergo alternative polyadenylation (APA). APA 
can alter the nature of the 3’-UTR harboring many 
potential poly(A) signals for gene expression regulation. 
Recent large-scale studies have suggested that APA is 
widespread in many species (Jan et al., 2011; Mangone 
et al., 2010; Shen et al., 2008a; Tian et al., 2005; Wu et 
al., 2011). It is shown that over 50% of genes in humans, 
~30% of genes in mice, ~50% of rice genes and up to 
70% of Arabidopsis genes contain APA sites (Shen et al., 
2008a; Tian et al., 2005; Wu et al., 2011). The APA sites 
located in coding sequences (CDS) and introns can 
significantly alter transcript sequences and their encoding 
proteins. Recent study showed that in Arabidopsis 
numerous novel poly(A)  sites were located in CDS (11%)  
and intron(5.6%) (Wu et al., 2011). These APA sites 
provide   a   unique   way   to  examine  potential  poly (A) 
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signals systematically and comprehensively to further 
explore the complex mecha-nism of APA.  

To study the signals for mRNA poly(A) tailing, it is 
necessary to analyze the nucleotide patterns in the 
poly(A) site-related signal regions and select useful 
features from a large number of nucleoside sequences. 
In mammals, AAUAAA and its 11 single nucleotide 
variants have been identified as important hexamer 
signals (Beaudoing et al., 2000; Hu et al., 2005), among 
them, AAUAAA (~50%, usage frequency) and AUUAAA 
(~15%) are the most dominant ones, and both their 
sequences and relative locations are highly conserved. 
Currently, there are many methods for poly(A) signal or 
poly(A) site recognition in human (Akhtar et al., 2010; 
Beaudoing et al., 2000; Hu et al., 2005; Legendre and 

Gautheret, 2003; Liu et al., 2003). Legendre and Gautheret 
(2003) developed a program called Erpin which used 2-
gram position-specific nucleotide acid patterns to 
characterize the sequences around candidate poly(A) 
signals. Liu et al. (2003) selected k-grams by an entropy-
based algorithm and utilized support vector machine 
SVM to classify poly(A) sites. Cheng et al. (2006) used 
position specific scoring matrix (PSSM) to characterize 
patterns and also used SVM predict poly(A) sites. 
Recently, Akhtar et al. (2010) classified poly(A) sites into 
three classes and developed POLYAR program for the 
prediction. By testing different datasets, these methods 
have reached a reasonable specificity of 66 to 93% and 
sensitivity of 56 to 84%.  

When compared with mammals, the poly(A) signals in 
plants are much less conserved. The canonical hexamer 
AAUAAA only occurs in ~10% of transcripts in 
Arabidopsis (Loke et al., 2005) and ~7% in rice (Shen et 
al., 2008a) and none of the cis-elements are highly 
conserved at the nucleotide level (Loke et al., 2005; Shen 
et al., 2008a), leading to very limited knowledge of plant 
poly(A) signals at present. Till now, several computational 
methods have been developed to predict poly(A) sites in 
different species including grape (Cai et al., 2008), rice 
(Shen et al., 2008a), Chlamydomonas reinhardtii (Chlamy) 
(Ji et al., 2010c; Shen et al., 2008b) and Arabidopsis (Ji 
et al., 2010a, b, 2007a, b; Loke et al., 2005; Tzanis et al., 
2011). Ji et al. (2010a) developed a program PASS based 
on generalized hidden Markov model (GHMM) to predict 
poly(A) sites in Arabidopsis, and Shen et al. (2008a) 
extended this model and developed PASS_Rice for the 
prediction of rice poly(A) sites. Later, another program 
PAC (Ji et al., 2000a) was developed based on a 
classification model, using several feature representation 
methods to describe the sequences around poly(A) sites. 
These methods reached a specificity of 0.96 at the 
sensitivity of 0.97. Lately, Tzanis et al. (2011) utilized a 
distance-based scoring method to characterize emerging 
patterns and adopted different classifiers to predict  
poly(A) sites in Arabidopsis. These methods have their 
own strengths for the target species; however, they were 
all   species   specific  and  could  hardly  be  applied  on 

 
 
 
 
other species. Moreover, since the main purpose of these 
poly(A) site prediction methods was recognizing poly(A) 
sites rather than poly(A) signals, they tended to rely on 
the nucleotide distribution of the sequences around 
poly(A) sites rather than effective signal patterns. Till now, 
there is no universal poly(A) signal recognition model 
specifically for plants. Fortunately, these poly(A) site 
prediction tools allow users setting their own model para-
meters to enhance the identification accuracy by assigning 
the weight of the signal patterns (Ji et al., 2010a) and 
constructing a first order heterogeneous matrix (Ji et al., 
2007b). Therefore, the poly(A) patterns selected by our 
poly(A) pattern identification model can be used to 
optimize the parameters of such poly(A) site recognition 
models.  

At present, many motif recognition methods are 
available for detection of highly representative patterns 
for DNA sequences (Bailey and Gribskov, 1998; Hertz 
and Stormo, 1999; Hertzberg et al., 2005; Nuel, 2008; 
Ribeca and Raineri, 2008; Robin et al., 2007; Zhang et 
al., 2007). These methods searched the overrepresented 
patterns using some statistical models such as position-
weighted matrix (PWM) and finite Markov-chain imbedding 
(FMCI) based on the pattern frequency. Discovery motif 
in DNA sequences helps to clarify the evolutionary 
relationships between sequences and determine the 
functions of sequences, which is also functional but not 
entirely practical in poly(A) signal recognition. Most of 
these methods were the approximations to the statistical 
models or additional training data set was required 
(Ribeca and Raineri, 2008). They targeted DNA sequences 
were not suitable for poly(A) signal pattern recognition. 
Moreover, they were slow in computing speed (especially 
when the model was more complex), so they could only 
be applied to a small amount of sequences each time 
instead of a large quantity of data. With the development 
of the next-generation sequencing technologies, more 
and more poly(A) sites were discovered for further 
exploration. There were only 8,160 poly(A) sites (called 
8k dataset) in Arabidopsis (Ji et al., 2007b; Loke et al., 
2005) from ESTs, while recently more than 70,000 
poly(A) sites were found from NGS data (Wu et al., 2011). 

Therefore, effective recognition method specific for 
poly(A) signals to find important signal patterns to 
characterize the poly(A) sites, especially the APA sites is 
an urgent need.  

In this study, an effective poly(A) signal pattern 
recognition model was established. First, the patterns 
with low frequency of occurrences were removed and the 
existing effective motif searching tools were integrated to 
further filter patterns. In particular, the pattern recognition 
using control region made the selected patterns specific 
to the studied region. Then, the selected patterns were 
clustered into different assemblies (or clusters) based on 
their  similarities.   Finally,   the   position-specific  scoring 
matrix (PSSM) was used to characterize each assembly, 
and the nucleotide  composition  of  the  assembly  could  
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Figure 1. Process of the poly(A) pattern recognition model. 
 
 
 

also be visualized by sequence LOGO. 

 
 
METHODS 

 
General flow 

 
The process of our poly(A) pattern recognition model is shown in 
Figure 1, which includes the pattern pipeline and assembly analysis 
pipeline and can be applied to various species. In the pattern 
analysis pipeline, the weak patterns with low number of 
occurrences were filtered out by first accelerating the subsequent 
processes. Then, PATRONUS (Ribeca and Raineri, 2008), an effi-
cient motif identification tool, was integrated to further select 
patterns. Particularly, a control region was allowed to make the 
selected signal patterns specific to a given region, which is specially 
adapted for signal pattern identification for poly(A) site with multiple 
signal regions. In plants, there are three typical signal regions: FUE 
(far upstream element), NUE (near upstream element), CS 
(cleavage site) and CE (cleavage element, including CE-L and CE-
R). To identify the NUE-specific patterns, the FUE and CE can be 
considered as control regions. Finishing the pattern analysis 
pipeline, the assembly pipeline was adopted to cluster similar 
patterns for further analysis. First, similar patterns were assembled 
based on their edit distance (or Levenshtein distance) (Navarro, 
2001) into different assemblies. Then, the PSSM was used to 
represent the expression level of each assembly in the sequences 
and each assembly was visualized by sequence LOGO to display 
its nucleoside composition. Finally, the parameters of existing 
poly(A) site recognition models like PASS (Ji et al., 2007b) or PAC 
(Ji et al., 2010a) can be optimized to improve the recognition effect, 
using the selected assemblies or patterns to construct the 
heterogeneous formation of the first order Markov matrix (Ji et al., 
2007b, 2010a) or to weigh special patterns (Ji et al., 2010a). 

Pattern searching 
 
Here, a Perl script was written to implement the pattern analysis 
pipeline, which integrates different filtering rules and the existing 
motif recognition tools. Pattern usually refers to the conserved DNA 
sequence fragment, appearing significantly more or less than mere 
chance (Ribeca and Raineri, 2008). Since many of the current motif 
recognition methods have limitations on the number of the input 
sequences and the computing speed, here, a preliminary filtering 
was applied to filter out useless k-grams (sub-sequence with k con-
secutive nucleotides without mismatch) to enhance the efficiency of 
further processing. In pattern recognition, the number of occur-
rences of a pattern is one of the most important indicators, which is 
directly or indirectly used in almost all the motif recognition models 
to determine the representative patterns. However, with the 
increase of the k-gram length, the number of the k-grams increases 
exponentially. For example, there are as many as 4096 hexamers, 
given k = 6, which will undoubtedly increase the calculation time 
greatly if all these k-grams are considered. Since the k-grams with 
low number of occurrences or 0 occurrence merely emerge from 
the background sequences, it is worth removing these background 
noises to accelerate subsequent analysis. 

Here, three k-gram scanning modes were used to filter out 
useless k-grams (Figure 2). Normally, given a short region like the 
NUE where most k-grams only appear once, we can use the 
simplest overlapping-mode to scan the studied region and obtain 
the number of occurrences of all k-grams. Whereas, if a k-gram 
appears more than once in a given region of one sequence, the 
once-mode can be adopted to decide whether or not this k-gram is 
present, where each k-gram is counted once and the last location it 
appears in the studied region is recorded. In addition, we also 
provided another mode gap-mode for calculating the number of 
occurrences of k-grams in long sequences (example, 400 nt) to 
avoid overlapping matches for some periodic k-grams like ATATAT. 
Each occurrence of such periodic k-gram strongly  favors  additional
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Figure 2. Three k-gram scanning modes. 
 
 
 
occurrences in its immediate vicinity, which introduces a bias to 
most  statistics  (binomial,  log-likelihood).  The  gap-mode   can  be  
adopted to correct this bias by preventing counting twice the 
mutually overlapping occurrences. For example, TATATATATATA 
would represent two occurrences of TATATA when self-overlap is 
prevented, but five occurrences of TATATA when self-overlap is 
allowed. Generally, for short sequences, these three modes return 
similar results when scanning k-grams with a certain length like 
pentamer or hexamer. While for long sequences, the once-mode or 
gap-mode may be more appropriate in that they can prevent 
counting too many times for the periodic k-grams, especially for a 
stretch of the same nucleotide like AAAAAAn. To examine the 
difference may be introduced by these three modes; we tested the 
NUE of Arabidopsis 8K dataset and selected the top 50 hexamers 
by each mode. As can be seen from Table S1, the number of 
occurrences of the same hexamer using overlapping-mode is much 
higher than using once-mode or gap-mode, especially for the A-
stretch AAAAAA and T-stretch TTTTTT. While the selected 
hexamers and their frequencies from gap-mode or once-mode 
showed less difference. The once-mode was used for the following 
analysis since it was relatively simple and could get similar result as 
the gap-mode. 

The top 300 patterns ranked by the frequency of occurrences 
calculated by once-mode were used to form the initial pattern 
space. The empirical number 300 was chosen according to 
previous studies (Loke et al., 2005; Shen et al., 2008a) where only 
top the 50 patterns were presented, which is sufficient to include all 
potential patterns. The next step is to filter statistically significant 
patterns using sophisticated motif recognition tool. To this end, 
another Perl script integrating a motif searching tool PATRONUS 
(Ribeca and Raineri, 2008) was implemented. At present, many 
algorithms or tools for motif searching are available (Bailey and 
Gribskov, 1998; Hertz and Stormo, 1999; Hertzberg et al., 2005; 
Nuel, 2008; Ribeca and Raineri, 2008; Robin et al., 2007; Zhang et 
al., 2007). PATRONUS was used here because it is far better and 
much faster than many of such tools (Ribeca and Raineri, 2008). 
Given a list of patterns with their numbers of occurrences from 
above k-gram searching flow, PATRONUS attempts to compute 
from its numerical estimate of the probability function one or both of 
the following indicators: the p-value and the z-value, which evaluate 

in  different  ways  how improbable is the number of times the given 
k-gram is found in the sequence. Here, the final patterns with p-
value<0.05 and z-value>0 were selected.  
 
 
Pattern searching using control region 
 
Pattern searching for DNA sequence is usually to find over-
representative patterns by comparing the expected frequency of the 
background sequence with the frequencies of the candidate 
patterns. In this case, to find the patterns in a given signal region 
out of several signal regions, the difference between the 
background region and other signal regions will be ignored if only 
the given region is considered. For instance, given the NUE as the 
studied region, it is expected that the selected patterns are domi-
nant in this region rather than other signal regions like FUE or CS. 
Therefore, to select patterns unique to a specific signal region, it is 
necessary to consider the background region as well as other 
signal regions as the control regions. Given a region, the aforemen-
tioned pattern searching process was adopted to get candidate 
patterns in this region first. Then, the background regions and other 
signal regions were set as control regions, and the pattern filtering 
process using the control region was applied on the candidate 
patterns to get patterns unique to the studied region. This pattern 
filtering process integrated the feature selection methods based on 
PSSM and entropy. First, the sequences of the given region and a 
control region were considered as two sample sets. Then, patterns 
were selected by the entropy-based method, and the PSSM scores 
of the candidate patterns in the given region were compared with 
those in the control region. If the PSSM score of a pattern in the 
studied region is higher than that in the control region, this pattern 
is recognized as the one specific to the studied region. 

The followings are the steps of the entropy-based feature 
selection method. Given a sequence S of length L and a k-gram G 
of length k, the frequency of G in S is: 
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Table S1. Top 50 hexamers in the NUE of Arabidopsis 8K dataset using three scanning modes.  
 

Overlapping-mode  Gap-mode (gap=6)  Once-mode 

hexamer occu.  hexamer occu.  hexamer occu. 

AAUAAA 902  AAUAAA 880  AAUAAA 844 

AUAAAA 608  AUAAAA 604  AUAAAA 589 

AUAUAU 608  UAAUAA 574  UAAUAA 547 

UAUAUA 603  AAAUAA 539  AAAUAA 519 

UAAUAA 600  AUAAAU 509  AUAAAU 491 

AAAUAA 551  AUAUAU 489  UAUAUA 438 

AUAAAU 521  UAUAUA 479  AUAUAU 438 

AAAAAA 521  AAUAAU 445  AAUAAU 423 

UUUUUU 520  AUAAUA 442  AUAAUA 415 

AAUAAU 479  UUUUAU 419  UUUUAU 407 

AUAAUA 471  UAUAAA 409  AUAUAA 403 

UUUUAU 420  AUAUAA 407  UAUAAA 400 

UAUAAA 409  UUAUAU 393  UUAUAU 386 

AUAUAA 408  UAAAAA 376  UUUUUA 372 

UUAUAU 393  UUUAAU 374  UAAAAA 371 

UAAAAA 377  UUUUUA 374  UUUAAU 369 

UUUAAU 375  AAUAUA 367  AAUAUA 363 

UUUUUA 374  AAAAAU 363  AAAAAU 354 

AAUAUA 367  AAAUUU 360  AAAUUU 354 

UUAUUU 363  UUAUUU 356  UAAUAU 347 

AAAAAU 363  UAAUAU 352  UUAAUA 347 

AAAUUU 360  UUAAUA 352  UAUAAU 345 

UAAAUA 355  AAAAUA 349  UUAUUU 345 

UAAUAU 354  UUUUAA 349  UUUUAA 344 

UUUAUU 352  UAUAAU 347  AAAAUA 342 

AAAAUA 352  UAAAUA 346  UUUAUU 339 

UUAAUA 352  UUUAUU 344  UAAAUA 333 

UUUUAA 349  UAAAAU 339  UAAAAU 331 

UAUAAU 348  UAUUUU 337  AUUUAU 328 

UAAAAU 340  AUUUAU 334  UUUAUA 327 

AUUUAU 340  AAGAAA 331  UAUUUU 322 

AAGAAA 338  UUUAUA 330  AUUUUU 320 

UAUUUU 337  AAUGAA 327  AAGAAA 318 

AAUGAA 334  AUUUUU 323  UUAUAA 318 

UUUAUA 331  UUUGUU 321  AAUGAA 318 

UUUGUU 326  AUGAAA 320  AAAUAU 314 

AUUUUU 324  AAAAAA 318  UUUGUU 312 

AUGAAA 322  UUAUAA 318  AUGAAA 312 

UUAUAA 319  AAAUAU 316  AUUAAU 304 

AAAUAU 316  AUUAAU 308  AAUUUU 302 

AUUAAU 308  UUUUUU 305  AUUUUA 299 

AUUUUA 303  AUUUUA 303  AAAAUU 299 

UUUUGU 303  AAUUUU 302  UUUUGU 295 

AAUUUU 302  AAAAUU 302  UAAAUU 293 

AAAAUU 302  UUUUGU 300  UAUAUU 291 

UAUAUU 295  UAAAUU 295  AUAUUU 290 

UAAAUU 295  UAUAUU 294  AAAAAA 288 

AUAUUU 293  AUAUUU 293  UAAUUU 287 

UAAUUU 290  UAAUUU 290  UGUUUU 286 

UGUUUU 290  UGUUUU 289  UUUUUU 285 
 

Column ‘Occu.’ is the number of occurrences of the hexamer. 
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Where,  is the number of occurrences of G in S; 

  
is the number of sliding windows with length k in S. Here, the 
attribute of each k-gram was represented by its frequency. Given a 
sequence set, a signal region and a control region, the sequences 
of the signal region and the control region were trimmed as dataset 
1 and 2, respectively. Given a k-gram G, its entropy value was 
calculated as follows: 

 

(1) Initial setting. The dataset 1 and 2 are denoted as . 

The number of sequences in  is . The total number of 

sequences is . There are two classes . 
And the frequency value, ranging from 0 to 1, is divided into 50 

intervals, having , 
(2) Frequency calculation. The number of occurrences of G in each 

sequence of  was calculated and denoted as . Then, the 

number of sliding windows in  is counted as , and the 

frequency of G in  is .  

(3) Probability calculation. Given a frequency interval  

, the number of 

sequences in  where G is located and the frequency of G is 

in this interval is counted and denoted as . Then, the total 

number of sequences is  and the 

probability of sequence  belonging to class  is 

. Finally, the probability of a sequence 

 is calculated as . 
(4) Entropy calculation. The entropy value of G is: 

. 
Finally all the k-grams were ranked by their entropy values and 

the ones with entropy value less than a threshold were chosen for 
further analysis. Here, the threshold was determined empirically to 
get a reasonable number of k-grams (approximately 100) for further 
selection. 

When the candidate patterns were selected by the entropy 
method, we then compared their PSSM score (Cheng et al., 2006; 
Hu et al., 2005) in the studied and control regions to further select 
valid patterns. First, the number of the occurrences of each 
candidate pattern was counted and a corresponding PSSM was 
generated for the given region. The PSSM has four rows and k 

columns, corresponding to the four bases  and the 
length of k-gram, respectively. Each element in the matrix is 
calculated as: 

  

 
 

Where,  is the corrected relative frequency of nucleotide i at 

position j;  is the number of occurrences of nucleotide i at 
position j; b is the pseudo weight (arbitrary, 1 in this case) to avoid  

 
 
 
 
the  problem  of  zero  entries  in  the frequency matrix and negative 
infinity in the log odds scoring matrix. 

For a given sub-sequence with the length equal to the column 
number of the PSSM, its score is the sum of individual scores at all 
nucleotide positions: 

  

 
 

Higher score indicates the higher likelihood of the presence of a 
pattern similar to the k-gram represented by the PSSM. Finally, for 
each k-gram, we calculated its score in each location of the signal 
region and the control region. The final score of the k-gram in a 
region was the maximum score in this region. If the score of a k-
gram in the signal region is larger than that in the control region, 
then this k-gram is constant, otherwise it is discarded since it is 
highly represented in the control region than in the signal region.  
 
 
Assembling patterns into pattern-assembly 
 
Through the aforementioned processes, the representative patterns 
in a given signal region were selected. To provide a more refined 
description of these patterns, they were further clustered into 
different pattern-assemblies based on their similarities. An assem-
bly is a cluster of mutually overlapping patterns sharing similar 
nucleotide composition. Finally, these assemblies were characte-
rized by PSSM (Hu et al., 2005) and visualized by sequence LOGO 
(Crooks et al., 2004). 

First, the patterns were clustered into several assemblies based 
on their Levenshtein distance (edit distance) (Navarro, 2001). In 
information theory and computer science, the Levenshtein distance 
can be used to measure the difference between two sequences. 
The Levenshtein distance between two strings is defined as the 
minimum number of edits required to transform one string into the 
other. The allowable edit operations are insertion, deletion and 
substitution of a single character. This distance metric is equivalent 
to the negative of the score of a pairwise sequence alignment, 
where a match is 0, a mismatch is -1, the penalty for opening a gap 
is 0, and the penalty for extending a gap is -1. The dynamic pro-
gramming algorithm based on the Needleman-Wunsch and Smith-
Waterman algorithms can be used for global and local pairwise 
sequence alignments, respectively. This algorithm consumes 
memory and computation time proportional to the product of the 
length of the two strings. Here, the distance calculation was 
implemented in R (www.r-project.org) using ‘stringDist’ method in 
‘Biostrings’ library. 

Then, a hierarchical clustering method called ‘Agnes’ in ‘cluster’ 
library in R was adopted to compute agglomerative hierarchical 
clustering of the dataset using the earlier mentioned Levenshtein 
distance matrix. The Agnes algorithm constructs a hierarchy of 
clusters. At first, each observation is a small cluster by itself. 
Clusters merged until only one large cluster with all the obser-
vations remained. At each stage, the two nearest clusters are 
combined to form one larger cluster. An empirical cutoff 2.6 was 
used to group the patterns into pattern-assembly. 

After clustering, patterns in the same cluster were aligned by 
ClustalW (http://www.ebi.ac. uk/clustalw). The gaps at both ends of 
the patterns after alignment were filled by nucleotides randomly 
generated based on the background nucleotides distribution in the 
studied region. Then, the weight of each filled pattern was set as 
the frequency of occurrences of that pattern in the studied region. 
Since there were large amount of sequences analyzed, a pattern 
usually occurs thousands of times, the file storing all redundant 
patterns will be too large to upload to WebLogo. Here, we used the 
relative frequency to replace the real frequency of each pattern  to 
reduce the  size  of  the  output  file  to  be  visualized by  Web Logo  
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Figure 3. Calculation of PSSM for an assembly. 

 
 
 
easier.  To  get  the  relative frequency, first, the minimum number of 
occurrences of the patterns in the assembly was divided by 100 to 
get a common divisor. Then, this divisor was applied on each 
pattern to get its relative number of occurrences. Each pattern in 
the assembly was written in a file for times of the relative number of 
occurrences. Finally, this file was uploaded and visualized by 
sequence logo using WebLogo (Crooks et al., 2004). 

To detect whether an assembly was representative in the studied 
region for a given sequence set, the PSSM score (Hu et al., 2005) 
for this assembly was calculated. The flow to calculate the PSSM 
score of an assembly is shown in Figure 3. First, the given region of 
a sequence was scanned for the presence of the assembly and the 
score of the assembly was calculated, using the PSSM generated 
from that assembly. Then, the score of each position of the given 
region is the average of all positive scores in all sequences in the 
given dataset. Finally, the scores were smoothed by a sliding 
window with length 3. To calculate PSSM score, each aligned 
pattern-assembly was used to generate a PSSM with dimension 
4*L, where L is the length of the aligned pattern. For a given sub-
sequence with the length equal to the column number of the PSSM, 
its score was the sum of individual scores at all nucleotide 
positions. Higher score indicates the higher likelihood of the 
presence of an assembly. 

 
 
RESULTS 
 
Datasets 
 
We used sequences containing authenticated poly(A) sites 
from Arabidopsis, Chlamy and rice to test our model. 

Chlamy  is  a  green  algal  species  widely  used to study 
photosynthesis and cellular movements’ mechanisms 
(Mayfield, 2007; Wilson et al., 2008), and may be related 
to renewal energy production (Rupprecht, 2009). Rice is 
a dominant staple food crop and Arabidopsis is a widely 
studied model plant. The poly(A) sites of Arabidopsis 
includes 8160 sites from ESTs (called 8K) (Ji et al., 
2007b). The Chlamy dataset contains 16,952 poly(A) 
sites (called 17K) (Shen et al., 2008b) and the dataset of 
rice contains 57,996 sites (called 55K) (Shen et al., 2008a). 
All these poly(A) sites were mostly in 3’-UTRs. To analyze 
alternative poly(A) signals, the unconventional poly(A) 
sites from the next generation sequencing, including 
3223 poly(A) sites in CDS and 4860 poly(A) sites in intron 
of Arabidopsis were used (Wu et al., 2011). For pattern 
recognition, the 180 nt sequences containing upstream 
150 nt and downstream 30 nt (poly(A) sites included) 
around the poly(A) sites were trimmed. This range was 
chosen because it covers all plant poly(A) signal regions 
(Loke et al., 2005). 
 
 

Patterns in the FUE and NUE 
 

To show the effectiveness of our pattern recognition 
model, first we analyzed the patterns in the FUE and 
NUE. The NUE is the most conserved signal region in 
plant,  where   AAUAAA   is   the    dominant    pattern   in  
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Arabidopsis  as well as in rice (Loke et al., 2005; Shen et 
al., 2008a) and UGUAA is dominant in Chlamy (Shen et 
al., 2008b). Though the FUE is much less conserved than 
the NUE, it is still a valid signal region detected by 
conventional genetic mutagenesis experiments (Li and 
Hunt, 1997; Rothnie, 1996; Rothnie et al., 2001). Thus, 
here we chose the FUE and NUE to analyze the patterns 
and compare the difference of signals in the FUE with 
those in the NUE for each species, and also to compare 
the patterns in the same signal region among the three 
species. 

Here, the patterns were selected by the pattern 
recognition flow with a control region. For each species, 
the FUE was considered as control region when the NUE 
was targeted, and vice versa. Based on previous studies 
(Loke et al., 2005; Shen et al., 2008a, b), the hexamer 
was analyzed for Arabidopsis and rice, while the penta-
mer was used for Chlamy. We listed top three assemblies 
and their patterns for the FUE and NUE for each species 
(Tables 1, S2 and S3). 

In order to examine the nucleoside composition of each 
assembly, we also generated sequence LOGO. It is 
noteworthy that some dominant patterns, such as 
AAUAAA, may not be clearly shown, because there were 
other patterns in the same assembly and the LOGO only 
displays the nucleotide composition in each position of 
the assembly. It can be seen from Table 1, in Arabidopsis, 
the FUE is UC-rich, while the NUE is UA-rich. In rice, the 
FUE is UG-rich and UA-rich, while the NUE is UG-rich. In 
Chlamy, the FUE is UG-rich and UGUAA clearly appears 
in the LOGO of the NUE (46%, Table S2), suggesting that 
UGUAA is highly conserved. The UGUAA also exists in 
Arabidopsis (17%) and rice (16%) (Table S3), while it is 
mainly in the FUE rather than NUE, suggesting a shift in 
function. These results are consistent with the published 
results (Loke et al., 2005; Shen et al., 2008a, b), which 
also demonstrates the effectiveness of our method. Using 
the selected patterns and the assemblies, we also 
compared difference of the signals among these three 
species, where the signals were similar in Arabidopsis 
and rice, but the signals in Chlamy are significantly diffe-
rent from the other two species. Figure S1 shows the 
poly(A) signals in the FUE and NUE for a typical poly(A) 
site in these three species, where the most dominant 
assembly from Table 1 was used. Figure S1 also clearly 
shows the similarity of the poly(A) signals between 
Arabidopsis and rice, as well as the shift of the UGUAA 
assembly from their FUE to the NUE of Chlamy. 

Since some patterns are of positional propensity, for 
example, the NUE signals are usually located upstream -
10 to -30 nt of a poly(A) site, we also provided another 
pattern selection flow according to the maximum number 
or the total number of the occurrences of the patterns in 
the studied region. After the poly(A) signal patterns were 
obtained, a Perl script was used to count the number of 
occurrences of each individual pattern at every location of 
the given  region  by  once-mode.  Normally,  for  a  given  

 
 
 
 
region  like  the  NUE, most of the patterns only appeared 
once in one sequence, whereas if a pattern appears 
more than once, then it is counted for only one time and 
its position is the last location. As shown in Figure 4, 
AAUAAA is the most dominant in the NUE of Arabidopsis 
and rice, while other patterns are not so apparent, which 
also shows the low conservation of plant poly(A) signals. 
In contrast, UGUAA in Chlamy is significantly higher than 
other patterns. In the FUE of rice, the number of 
occurrences of three patterns (UGUAAU, UUGUAA and 
UGUAAA) are dramatically increased in the vicinity of the 
NUE, which demonstrates that this kind of analysis is 
conducive for searching the dominant position of the 
pattern. 

To reflect whether the selected assemblies could well 
characterize the studied region, we calculated the PSSM 
scores along the 180 nt sequence. As shown in Figure 5, 
for the assemblies specific to the FUE, their scores in the 
NUE were significantly reduced while the scores were 
distributed uniformly in the FUE, indicating that there was 
no obvious positional propensity for patterns in the FUE. 
Similarly, the scores of the assemblies in the NUE were 
significantly higher in the NUE than in the FUE. In 
particular, in Chlamy, the scores of the FUE assemblies 
were reduced dramatically near the NUE. Moreover, the 
scores of the NUE assemblies in the NUE were the most 
distinct from the rest regions among the three species, 
especially for the assembly containing UGUAA. This is 
consistent with the fact that the UGUAA is accounted for 
50% in Chlamy and also demonstrates that the score 
curve can reflect the likelihood of the presence of an 
assembly. In addition, there is an apparent peak in the 
NUE of the curve while the curve is rather smooth outside 
the NUE, indicating that the signals in the NUE are the 
most conserved. In contrast, though the length of FUE 
region is relatively long, and there is no significant 
fluctuation along this region, the scores of the FUE 
assemblies in the FUE were still significantly higher than 
in other regions. 
 
 
Patterns for alternative poly(A) sites 
 
With the development of next generation sequencing 
technologies, quite a few novel poly(A) sites were found 
to be in CDS and introns. Here, we also identified the 
poly(A) signals of these unconventional poly(A) sites to 
see whether a different group of signal patterns were 
used in these APA sites from the 3’-UTR poly(A) sites. To 
this end, we compared the patterns in the NUE since the 
NUE is the most conserved region. 

As shown in Figure 6A and B, there is no significant 
assembly of CDS APA sites which is highly conserved in 
the NUE, while there are some weak peaks in the NUE in 
the score curves of some assemblies of intron APA sites. 
This result indicates that the poly(A) signals of poly(A) 
sites in CDS or introns may be less conserved than in 3’-
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Table 1. Patterns and assemblies in the FUE and NUE of Chlamy, Arabidopsis and rice. Column ‘Pattern’ is the top three patterns of the aligned patterns of that 
assembly. 
 

Species 
S/
N 

  FUE    NUE 

Pattern Occu. Logo  Pattern Occu. Logo 

Arab 

1 --UUGUAA----GUAAA-UAUGUA-- 
1423   
1016  
1047  

 

 
 

 

--AAUAAA----UAAUAA--AUAAAA- 
844 
547 
589 

2 UUCUUC---UCUUCU---CUUCUU 
1069  
1151  
1013  

 

 
 

 

-UCAAUAAUCAAU--UUAAUC 
243 
247 
182 

3 UCUCUG--CUCUCUUCUCUC- 
656 
742 
678 

 
 

 

UUUAGUUUUGGU 
130 
164 

 

Rice 

1 ---UGUAAU---UUGUAA-----GUAAA- 
9237 
8066 
7271 

 
 

 

AAUAAA---AAAUAA-AUAAAA-- 
3714 
2432 
2291 

 

 
 

2 -UAUAUGGUAUAU--UAUAUU 
4779 
4188 
4327 

 

 

 

UAUAUA--AUAUAUAAUAUA- 
2128 
2669 
2043  

 3 AUGCAU--UGCAUG-UGCUUG 
4137 
4533 
4698 

 

 
 

 

-GAUGAUUGAUGA--GAUGAA 
1015 
1303 
1134 
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Table 1. Continue  
 

Chlamy 

1 GGAUG-GAUG--GAUGG 
3619  
3218  
3402  

 

 

UGUAA-UGCAA--GCAAG 
8596 
1415 
783   

2 CGCUG--GCUGGUGCUG- 
3344 
4578 
4710 

 

 

-CGUGUGCGUG-ACGUG- 
1475  
915   
736    

 3 CAUGGCAUGC 
3596 
3630 

 

 

UUGUAUUGAAUUGCA 
2114 
452  
801   

 

Column ‘Occu.’ is the number of occurrences of each pattern in that assembly. 
 
 

Table S2. The number of occurrences of each pattern of each assembly in the NUE.  
 

Arabidopsis Rice Chlamy 
Pat (%) No. Pat. Pat# Pat (%) No. Pat. Pat# Pat (%) 

No. Pat. Pat# 

1 AAUAAA 844 10 1 UGUAA 8596 105 1 AAUAAA 3714 46 

1 AUAAAA 589 7 1 UGCAA 1415 17 1 AAAUAA 2432 30 

1 UAAUAA 547 7 1 GCAAG 783 10 1 AUAAAA 2291 28 

1 AAGAAA 318 4 1 UGAAA 570 7 1 UAAUAA 1923 24 

1 CAAUAA 277 3 2 CGUGU 1475 18 1 AUAAUA 1870 23 

1 GAAUAA 269 3 2 GCGUG 915 11 1 GAAUAA 1757 22 

1 UAAUGA 253 3 2 ACGUG 736 9 2 AUAUAU 2669 33 

1 UGUAAU 250 3 2 CCGUG 658 8 2 UAUAUA 2128 26 

1 AUAAAG 242 3 2 UGGUG 624 8 2 AAUAUA 2043 25 

1 GUAAUA 219 3 2 UCGUG 549 7 3 UGAUGA 1303 16 

1 UAAAAC 174 2 3 UUGUA 2114 26 3 GAUGAA 1134 14 

2 AUCAAU 247 3 3 UUGCA 801 10 3 GAUGAU 1015 12 

2 UCAAUA 243 3 3 UUGAA 452 6 3 AGAUGA 752 9 

2 UUAAUC 182 2         

2 UCAAUG 145 2         

2 UGAAUC 141 2         

3 UUUGGU 164 2         

3 UUUAGU 130 2         
 

Column ‘No.’ is the index of the assembly. ‘Pat’ is pattern. 
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Table S3. The number of occurrences of each pattern of each assembly in the FUE. 
 

Arabidopsis Rice Chlamy 
Pat (%) No. Pat. Pat# 

Pat 
(%) 

No. Pat. Pat# Pat (%) 
No. Pat. Pat# 

1 UUGUAA 1423 17 1 UGUAAU 9237 16 1 GGAUG 3619 21 

1 UAUGUA 1047 13 1 UUGUAA 8066 14 1 GAUGG 3402 20 

1 UGUAAA 1016 12 1 UGUAAA 7271 13 1 UGAUG 3218 19 

1 AUGUAA 1007 12 1 AUGUAA 7171 12 1 GAUGC 3209 19 

1 UAAUGU 822 10 1 UAUGUA 6698 12 2 UGCUG 4710 28 

1 AAUGUA 784 10 1 UGUACU 6353 11 2 GCUGG 4578 27 

1 UGUAAC 581 7 1 GUUGUA 6007 10 2 CGCUG 3344 20 

1 GUGUAA 569 7 1 AUAUGU 5869 10 2 GCUGA 3139 19 

2 UCUUCU 1151 14 1 UGUACA 5652 10 3 CAUGC 3630 21 

2 UUCUUC 1069 13 2 UAUAUG 4779 8 3 CAUGG 3596 21 

2 CUUCUU 1013 12 2 UAUAUU 4327 7     

2 CCUUUU 737 9 2 GUAUAU 4188 7     

2 UCCUUU 667 8 2 GUAAAU 4176 7     

2 UUCCUU 630 8 3 UGCUUG 4698 8     

2 UUUCCU 604 7 3 UGCAUG 4533 8     

3 CUCUCU 742 9 3 AUGCAU 4137 7     

3 UCUCUC 678 8 3 GUACAU 3459 6     

3 UCUCUG 656 8         

3 CUCUGU 641 8         
 
 
 

 
 
Figure S1. Poly(A) signals in the FUE and NUE for a typical poly (A) sitw in 3’-UTR. 

 
 
 

UTRs . As  shown  in  Figure  6D,  for intron poly(A) sites,  
AAUAAA is still the most dominant pattern in the NUE, 
while it is much less significant than that of 3’-UTR 
poly(A) sites. For CDS poly(A) sites, AGAAGA is the most 
apparent, but more conserved in the CS than in the NUE 
(Figure 6C). In Figure 6E and F, the NUE of CDS poly(A) 
sites is rich in U or C, while the NUE of intron poly(A) 
sites is U/A-rich. The corresponding patterns of these 
assemblies are listed in Table S4. 
 
 

Improvement of poly(A) site prediction using selected 
patterns 
 

There are several poly(A) site prediction tools such as 
PASS_Rice (Shen et al., 2008a), PASS (Ji et al., 2007b) 
and PAC (Ji et al., 2010a), which allow users to set their 
own model parameters for specific site recognition for a 
given  species.  Normally,  we can set parameters like the 

weights of the signal patterns (Ji et al., 2010a) and a first 
order heterogeneous matrix (Ji et al., 2007b). Here, the 
identified poly(A) patterns were used to optimize the 
model parameters of PASS_Rice (Shen et al., 2008a) for 
rice to improve the accuracy of poly(A) site prediction. To 
improve the parameters of poly(A) site prediction model, 
the aforementioned selected patterns in the NUE and 
FUE of rice were used to set the weights of patterns and 
to construct the first-order Markov matrix (Ji et al., 
2007b). To set the weights of patterns, the frequencies of 
the selected patterns were used as the weights. To 
construct the Markov matrix, first, the selected patterns 
were used to form a list of vectors 

 , where k is the length of the pattern. Here the 

 is the same as the first-order  Markov  matrix. 

     is     a      vector     storing      the          probabilities

CE-L              CE-RFUE NUE CS

Arabidopsis

Rice

Chlamy

similar

1,..., kV V

1,..., kV V

1V
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Figure 4. Occurrences of individual pattern at every location. X-axis is the location, Y-axis is the number of occurrences of each pattern in the given region. (A) NUE of Arabidopsis; (B) FUE 
of Arabidopsis; (C, D) same as (A) and (B) except for rice; (E, F) same as (A) and (B) except for Chlamy. The poly(A) site is at position -1. The upstream sequence of the poly(A) site is with ‘-
’ designation, and the downstream sequence is in ‘+’ designation. 
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Figure 5. PSSM scores of assemblies in the FUE and NUE. X-axis is the location, Y-axis is the PSSM score of each of the top three assembly in the given region. (A) NUE of Arabidopsis; 
(B) FUE of Arabidopsis; (C, D) same as (A) and (B) except for rice; (E, F) same as (A) and (B) except for Chlamy. 

0

200

400

600

800

1000

1200

1400

1600

1800

-3
5

-3
3

-3
1

-2
9

-2
7

-2
5

-2
3

-2
1

-1
9

-1
7

-1
5

UGUAA UGAAA
UGCAA GCAAG
UUGUA UUGAA
UUGCA CGUGU
GCGUG CCGUG
ACGUG UCGUG
UGGUG

0

10

20

30

40

50

60

70

-1
49

-1
43

-1
37

-1
31

-1
25

-1
19

-1
13

-1
07

-1
01 -9

5

-8
9

-8
3

-7
7

-7
1

-6
5

-5
9

-5
3

-4
7

-4
1

CAUGG CAUGC GCUGA
CGCUG GCUGG UGCUG
GAUGC GGAUG UGAUG
GAUGG

E F

0

1

2

3

4

5

6

7

-1
47

-1
37

-1
27

-1
17

-1
07 -9

7

-8
7

-7
7

-6
7

-5
7

-4
7

-3
7

-2
7

-1
7 -7 3 13

assembly1

assembly2

assembly3

0

1

2

3

4

5

6

7

-1
47

-1
37

-1
27

-1
17

-1
07 -9

7

-8
7

-7
7

-6
7

-5
7

-4
7

-3
7

-2
7

-1
7 -7 3 13

assembly1

assembly2

assembly3

A B

C D



3228        Afr. J. Biotechnol. 
 
 
 

 
 
Figure 5. Contd. 
 
 
 

 
 
Figure 5. Contd 

0

1

2

3

4

5

6

7

8

-1
4
7

-1
3
5

-1
2
3

-1
1
1

-9
9

-8
7

-7
5

-6
3

-5
1

-3
9

-2
7

-1
5 -3 9

2
1

assembly1

assembly2

assembly3

0

1

2

3

4

5

6

7

8

-1
47

-1
35

-1
23

-1
11 -9

9

-8
7

-7
5

-6
3

-5
1

-3
9

-2
7

-1
5 -3 9 21

assembly1

assembly2

assembly3

-1
47

-1
37

-1
27

-1
17

-1
07

C D

0

1

2

3

4

5

6

7

8

9

10

-1
4
7

-1
3
6

-1
2
5

-1
1
4

-1
0
3

-9
2

-8
1

-7
0

-5
9

-4
8

-3
7

-2
6

-1
5 -4 7 1
8

assembly1
assembly2
assembly3

0

1

2

3

4

5

6

7

8

-1
4
7

-1
3
6

-1
2
5

-1
1
4

-1
0
3

-9
2

-8
1

-7
0

-5
9

-4
8

-3
7

-2
6

-1
5 -4 7

1
8

assembly1
assembly2
assembly3

-1
47

-1
35

-1
23

-1
11 -9

9

-8
7

-7
5

-6
3

-5
1

-3
9

-2
7

-1
5

E F



Wu et al.      3229 
 
 
 

 
 
Figure 6. Poly(A) signal patterns of poly(A) sites in CDS and introns. (A) PSSM scores of the top three assemblies in the NUE of CDS poly(A) sites. (B) Same as (A) but for intron poly(A) 
sites; (C) Number of occurrences of individual pattern at every location in CDS poly(A) sites; (D) Same as (A) but for intron poly(A) sites; (E) Sequence LOGO for assemblies in CDS poly(A) 
sites; (F) same as (E) but for intron poly(A) sites. 
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of the four bases A, T, C, and G.  

 is a two-dimensional vector holding 
the transition probability of each base from one 
position to the next position. The frequency of 
each base at the first position of the aligned 

patterns was used to calculate : 
 

 

 was calculated based on the frequency 
of the di-nucleotide at position k-1 and k: 
 

 

Given a sub-sequence with length k  

and the vectors , the probability of S 
presented in the vectors is:  

 
 
Then, the poly(A) site recognition result after 
improving the parameters was compared with the 
result without using any pattern in the model 
parameters. Using PASS_Rice, each location of 
the input nucleotide sequence will be assigned a 
score representing its possibility being a poly(A) 
site. We then examined the distribution of the 
average scores with or without using the improved
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Table S4. The number of occurrences of each pattern of each assembly in the NUE for APA sites in CDS and introns. 
 

NUE of CDS poly(A) sites NUE of intron poly(A) sites 
Pat# Pat (%) No. Pat. Pat# 

Pat 
(%) No. Pat. 

1 UUCUUG 39 2 1 AUAUAU 92 5 

1 UUCUUC 36 2 1 UAUAUA 91 5 

1 CUUCUU 30 2 1 AUAUUA 51 3 

2 UGAUGA 69 4 1 AUUAUG 36 2 

2 AUGAUG 51 3 2 AAUAAA 97 6 

2 GAUGAU 47 2 2 UAAUAA 60 3 

2 UAAUGA 30 2 2 AAUGAA 59 3 

2 AUGACA 28 1 2 UUAAUA 58 3 

2 UAAUAA 28 1 2 AUGAAU 57 3 

2 AUAAUA 26 1 2 AAUUAA 54 3 

2 GAUAAU 23 1 2 AUUAAU 51 3 

2 AAUAAU 23 1 2 UAAUUA 50 3 

2 GGAUGA 22 1 2 AUCAAA 45 3 

3 AACAAA 25 1 2 AAUCAA 43 2 

3 AAGAAC 24 1 2 UAAUGA 40 2 

3 AAACAA 24 1 2 AUCAAU 40 2 

    2 UUAAUG 39 2 

    2 UAUCAA 38 2 

    2 UGAUGA 37 2 

    2 UCAAUA 36 2 

    3 UGAUUU 63 4 

    3 UUGAUU 54 3 

    3 AUGAUU 47 3 
 
 
 

 
 
Figure 7. Average score using improved parameters or not. 

 
 
 

parameters. As shown in Figure 7, the score curve not 
using selected patterns is more even and there is no 
particular  prominent  peak. In contrast, in the score curve 

with optimized parameters, the score of the poly(A) site 
(location -1) is significantly higher than the scores of 
other  positions.  This  result demonstrated the efficacy of
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Figure S2. The Sn and Sp using improved parameters (Sn_optimized andSp_optimized) 

and Sn and Sp without improving parameters (Sn_not and Sp_not). The arrows mark the 
crossing value of Sn and Sp. 

 
 
 

of our pattern identification model in that the selected 
patterns could make the poly(A) site more presentable.  

Here, we also explored the sensitivity (Sn) and specificity 
(Sp) to evaluate the prediction result. The positive 
sequences with poly(A) sites were used to calculate Sn. 
Since recent study have shown that there were quite a 
number of novel poly(A) sites in CDS and introns (Wu et 
al., 2011), here the 5’-UTR sequences without any 
poly(A) site from previous study (Shen et al., 2008a) were 
used as negative dataset to calculate Sp. The PASS_Rice 
was adopted to test the positive and negative sequences, 
with model parameters improved by the selected patterns 
or not. As shown in Figure S2, the Sn and Sp after 
improving model parameters (Sn_optimized and 
Sp_optimized) were significantly higher than the Sn and 
Sp without improving parameters (Sn_not and Sp_not). 
The improvement is statistically significant at 90% 
confidence level (the p-value of Wilcoxon rank sum test is 
2.9e-05 for Sn and 0.07 for Sp). The crossing value of Sn 
and Sp was considered as an overall merit of the 
prediction result (Ji et al., 2007b; Shen et al., 2008a). The 
crossing value of Sn_optimized and Sp_optimized (0.85) 
was -10% higher than Sn_not and Sp_not (0.75), 
demonstrating that the selected patterns could enhance 
the poly(A) site prediction result greatly. 

It is widely known that AAUAAA is the most important 
pattern in the NUE in plants and has been verified by 
biological experiments. Although not all the patterns 
selected by our model were verified by biological experi-
ments, these patterns also played an important role in the 
poly(A)  site recognition from the perspective of biological 

computing. Figure 8 shows the output scores using or not 
using the improved parameters and the selected patterns 
for the NUE and FUE of a rice sequence. As shown in 
Figure 8B, there is no AAUAAA in the rice sequence, but 
another hexamer TAATAA (position is 274) exists in the 
NUE and TAATGT appears in the FUE (position is 185). 
The scores calculated using the selected patterns are 
apparently higher in the region around poly(A) site and 
dramatically decrease in other regions. While the score 
curve without using selected patterns is very flat and the 
potential region of the poly(A) site can be hardly deter-
mined. 
 
 
DISCUSSION 
 
Due to the absence of highly conserved signals around 
the poly(A) site, computational reorganization of plant 
poly(A) signals is still a challenging problem. The model 
established here is applicable to the poly(A) signal pattern 

recognition for a specific region for various species in 
plants. Studies (Loke et al., 2005; Shen et al., 2008a, b) 
have shown several signal regions around poly(A) site, 
here the background region and other signal regions can 
be considered as control regions to identify the patterns 
unique to a specific signal region. 

One of the great challenge in bioinformatics is to 
visualize the poly(A) signals in a user-friendly manner to 
general biologists. Here, the poly(A) signal patterns could 
be displayed in a variety of ways including the PSSM 
scores,  the  location  of  the  patterns  and  the sequence 
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Figure 8. Poly(A) site recognition of a rice sequence. (A) Score curves; (B) the nucleotide sequence and the patterns in the FUE, NUE and 
CS. ‘TAATGT’ is the FUE pattern, ‘TAATAA’ is the NUE pattern, underlined ‘A’ is the poly(A) site. 
 
 
 

LOGO, making the results easy to be understood. 
Through analyses of three different species including rice, 
Arabidopsis and Chlamy, useful patterns for poly(A) sites 
were selected and visualized and the poly(A) signals 
among different groups of poly(A) sites and species were 
compared. In particular, the poly(A) signals of the newly 
discovered APA sites in CDS and introns of Arabidopsis 
were explored, indicating a completely different set of 
poly(A) signals used in CDS poly(A) sites. The recently 
discovered phenomenon of antisense polyadenylation 
regulation of the sense gene transcript in plants (Liu et 
al., 2010; Wu et al., 2011) offers some clues on previous 
unknown gene regulation mechanisms. The accurate 
reorganization of the poly(A) signals of such antisense 
poly(A) sites will undoubtedly promote such research. We 
are working hard along these lines. 

The emerging poly(A) site prediction is focused on 
discovering new patterns before predicting the poly(A) 
site (Akhtar et al., 2010; Tzanis et al., 2011). Thus, the 
approach proposed here may contribute to the problem of 
poly(A) site prediction. We used the selected patterns to 
optimize the parameters of existing poly(A) site prediction 
program PASS_Rice to predict poly(A) sites in rice, the 
effectiveness of our pattern recognition model was 
demonstrated by the 10% higher Sn and Sp. However, 
the model used in PASS_Rice was hardly altered, and 
only a part of the parameters of the model was modified, 
thus the potential performance might not be fully 
expounded. This study aims to find potential poly(A) 
signal patterns in plants, and attempts to apply these 
patterns on poly(A) site prediction. Efforts are also 
underway to develop or utilize some appropriate poly(A) 
site prediction model which can be seamlessly integrated 
with our pattern recognition model. 
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