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Detection and identification of plant pathogens is one of the most important strategies for sustainable 
plant diseases management. For this reason, the availability of fast, sensitive and accurate methods for 
detection and identification of plant pathogens is increasingly necessary to improve disease control 
decision making process. In other words, new technologies and improved methods with reduced/fair 
cost and improved speed, throughput, multiplexing, accuracy and sensitivity have emerged as an 
essential strategy for the control of both fungal and bacterial diseases. The development of 
recombinant DNA technology is also possible to isolate individual genes and incorporate resistance 
genes into otherwise agronomically acceptable cultivars to develop genetically resistance variety for a 
particular disease. These advances have been complemented by the development of new nucleic acids 
extraction methods, increased automation, reliable internal controls, multiplexing assays, online 
information and on site molecular diagnostics. The different types of polymerase chain reaction (PCR) 
are the most common DNA amplification technology used for detecting various plant pathogens. With 
the applications of bioinformatics as a modern technology in plant pathology, identification of specific 
motifs, DNA sequences has become possible, which ultimately increase the accuracy of modern 
techniques in plant disease diagnosis. The newly emerged proteomic technology is also a promising 
tool for providing information about pathogenicity and virulence factors that will open up new 
possibilities for plant disease diagnosis and appropriate protection measures. 
 
Key words: Biotechnology, molecular markers, marker assisted selection, quantitative trait loci (QTL), 
polymerase chain reaction (PCR), proteomics. 

 
 
INTRODUCTION  
 
Biotechnology is broadly defined as set of biological 
techniques developed through basic research and now 
applied to research and product development. In other 
words, it is the genetic manipulation and multiplication of 
any living organism through new technologies resulting in 
the production of improved and new organism and 
products can be used in a variety of ways  (Agrios,  2005; 

Fagwalawa et al., 2013). It is an applied science in the 
field of agriculture and known as agricultural 
biotechnology. Based on knowledge of DNA, scientists 
have developed solutions to increase agricultural 
productivity (Agrios, 2005). New biotechnological tools 
enhance pathologists’ ability to make improvements in 
crops  regarding  to  their  respective  diseases.  It can be 
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applied as genetic engineering, molecular markers, 
molecular diagnosis and tissue culture (James, 2003). 

Chemical control of plant diseases is often non-specific 
in its effects, killing beneficial organisms as well as 
pathogens, and it may have undesirable health, safety, 
and environmental risks. Because of these factors, 
nowadays, control of plant disease is a subject of great 
interest for biotechnologists. Biotechnology will enhance 
our understanding of the mechanisms that control a plant 
ability to recognize and defend itself against disease 
causing organisms like fungi (Haggag, 2008) and the 
future of sustainable agriculture will increasingly rely on 
the integration of biotechnology with traditional 
agricultural practices. 

Biotechnology is an important discipline for accurate 
diagnosis of plant disease. Enzyme-linked immunosorbent 
assays (ELISA) and nucleic acid techniques are used in 
the identification of fungal, viral and bacterial diseases. 
New techniques in plant genetic engineering strategies 
for the management of plant diseases are now available 
and the application of genetic engineering for plant 
disease resistance has been discussed and presented by 
many scholars. The different tools of biotechnology and 
genomic approaches have enhanced the process of 
identifying plant pathogens with greater accuracy. Plant 
genes and their products that interact with plant 
pathogens have been identified and either inserted into 
plants or used as specific molecular markers to improve 
plant breeding for disease resistance. Therefore, 
acquiring noble information from applied biotechnology to 
plant-pathogen interactions is providing new knowledge 
and new approaches to improve plant health, yield and 
quality of plants contributing to food (Fagwalawa et al., 
2013). 

Accurate identification and diagnosis of plant diseases 
are very important for sustainable food security as well as 
prevention of the spread of invasive pathogens (Balodi et 
al., 2017). In this regard, special interest should be taken 
in the early detection of pathogens in plant propagating 
materials (seeds, mother plants and vegetative 
propagative plant material) to avoid the introduction and 
further dispersal of new pathogens in a growing area 
where it is not present earlier. Therefore, rapid detection 
and identification of plant pathogens is strongly 
necessary by using fast, sensitive and accurate methods 
so as to come to last decision for appropriate control 
strategies. Some of the most important molecular 
methods for detection of plant pathogenic disease are the 
PCR isothermal amplification methods, fingerprinting 
[restriction fragment length polymorphism [RFLP], 
random-amplified polymorphic DNA (RAPD), amplified 
fragment length polymorphism (AFLP), microsatellites], 
DNA hybridization technology and sequencing 
(McCartney et al., 2003; Barnes and Szabo, 2007; Kang 
et al., 2010). Successful management of plant diseases 
is primarily dependent on the accuracy and efficient 
detection  of   the   pathogens,   knowing   the  amount  of 

genetic and pathogenic variability present in a pathogen 
population, development of disease resistant cultivars 
and quantifying disease resistance genes in different 
epidemiological regions. Beside conventional methods of 
pathogen detection and breeding resistant cultivars, 
recent development in molecular biology techniques 
particularly the advent of various DNA based markers 
have greatly influenced the plant protection methods. 
Therefore, the objective of this article is to review the 
major application of biotechnological tools to detect, 
identify and control of plant diseases as well as to give an 
overview of proteomics studies in bacterial diseases.  
 
 
ADVANCED TOOLS FOR DETECTION AND 
IDENTIFICATION OF PATHOGENS  
 
Detection protocols used for the diagnosis or quarantine 
measures should be reproducible, repeatable and should 
have minimum false results. All molecular detection 
methods should be sensitive to pathogen concentration, 
genetic variability within a target pathogen population, 
and similarities between the target and other organisms 
(Martin et al., 2016; Balodi et al., 2017). 
 
 
Bacterial diseases 
 
Detection of pathogenic bacteria in seed and other plant 
tissues (particularly in latent infections) is challenging 
because the target bacteria are often irregularly 
distributed and present as a small component of a much 
larger bacterial population. Moreover, it is often difficult to 
distinguish and identify pathogenic bacteria from all the 
soil-associated and other saprophytic bacteria normally 
present on plant surfaces. In addition to epiphytic and 
casual surface contaminants, non-detrimental or 
beneficial endophytic bacteria may also be present 
(Punja et al., 2008).  

Traditional techniques to detect the presence of 
pathogenic bacteria involved in field inspection for 
symptoms and signs of disease as well as laboratory 
tests (Figure 1). Laboratory procedures for detection of 
the bacteria may involve grow-out assays, serological 
tests such as ELISA and immune-fluorescence 
microscopy. In addition, isolation of the bacteria on 
selective or semi-selective media is also done. Following 
isolation, strains need to be characterized by 
physiological, biochemical and pathogenicity tests. Use of 
traditional methods is reliable and efficient for some of 
the bacterial plant pathogens, but for many others they 
lack adequate sensitivity and specificity. Another major 
disadvantage is the long times required for grow-out 
assays, bacterial isolation and pathogenicity tests. 
Therefore, new and modern molecular techniques are the 
best option to diagnosis of bacterial pathogens (Punja et 
al., 2008). 
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Figure 1. Detection methods of plant pathogens at various stages of disease development (adapted from Balodi et 
al., 2017). 

 
 
 

Nucleic acid (DNA)-based techniques have been 
demonstrated to be generally more sensitive, specific and 
reliable for the detection, identification and quantification 
of bacterial plant pathogens than other methods. Among 
the nucleic acid-based diagnostic techniques, PCR assay 
or its variants have been used very widely for detection of 
bacterial pathogens in pure cultures or in single/multiple 
infections of plant hosts (Narayanasamy, 2011). For 
example, a PCR-based assay using the primers from 
DNA sequences of the phaseolotoxin gene was able to 
detect efficiently the pathogen Pseudomonas savastanoi 
pv. phaseolicola, causing bean halo blight disease, even 
in the presence of high populations of non-target 
bacteria. Similarly, Xanthomonas axonopodis pv. 
manihotis and Ralstonia solanacearum  (from soil) can be 
detected by PCR, on amplifying an 898 and 288-bp 
fragment, respectively (Alvarez et al., 2008). In another  

 
study by Audy et al. (1994), X. axonopodis pv. phaseoli 
(Xap) was detected in the first time by employing primers 
from plasmid DNA, in PCR assay which had a detection 
limit of 10 to 100 fg of Xcp DNA (equivalent of 1 to 10 
cfu).   

To date, real-time PCR seed detection assays have 
been reported for Acidovorax avenae subsp. citrulli in 
watermelon seeds, R. solanacearum race 3, biovar 2, in 
asymptomatic potato tubers, Xanthomonas arboricola pv. 
pruni in Prunus species and Xanthomonas oryzae pv 
oryzae in rice by Real time Bio-PCR (Balodi et al., 2017).  
 
 
Fungal diseases  
 
Plant pathogenic fungi are the causal agents of the most 
detrimental diseases in plants, provoking considerable  
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yield losses worldwide (Aslam et al., 2017). Some of the 
basic methods used to detect fungal pathogens mostly 
rely on microscopic, morphological and cultural 
approaches that require extensive time, labor and 
classical taxonomy knowledge (Nilsson et al., 2011). 
Even though, these approaches are the cornerstone of 
fungal diagnostics, they can lead to the unreliable results 
due to the problems in weak identification. Therefore, 
advances in the development of molecular methods, like 
immunological methods, nucleic acid-based probe 
technology and PCR technology have provided 
diagnostic laboratories with powerful tools for detection 
and identification of phytopathogenic fungi (Aslam et al., 
2017). These methods are much faster, more specific, 
sensitive, and accurate, and can be performed and 
interpreted by personnel with no specialized taxonomical 
expertise (Badali and Nabili, 2012). Additionally, these 
techniques allow the detection and identification of non-
culturable microorganisms, and due to its high degree of 
specificity, molecular techniques can distinguish closely 
related organisms at different taxonomic levels (Capote 
et al., 2012). PCR technology includes multiplex PCR, 
nested PCR, real-time PCR and reverse transcriptase 
(RT)-PCR and DNA barcoding has been recently used as 
a molecular tool for detection and identification of fungal 
pathogens (Table 1).  

PCR methods for identification of Sclerotium rolfsii and 
Colletotrichum capsici have been developed based on 
specific sequences of the internal transcribed spacer 
(ITS) region. Multiplex PCR technique has been used for 
the simultaneous detection and differentiation of fungal 
pathogens in different crops like in sunflower 
(Podosphaera xanthii and Golovinomyces 
cichoracearum), in cedar trees and water samples 
(Phytophthora lateralis). It is also very important  for 
determining the mating type of the pathogens Tapesia 
yallundae and Tapesia acuformis; for differentiating two 
pathotypes of Verticilliun alboatrum infecting hop and for 
distinguishing among eleven taxons of wood decay fungi 
infecting hardwood trees (Guglielmo et al., 2007; Chen et 
al., 2008; Jeeva et al., 2010; Torres-Calzada et al., 2011; 
Capote et al., 2012). Padlock probes have been used for 
the simultaneous detection of Phytophthora cactorum, 
Phytophthora nicotianae, Pythium ultimum, Pythium 
aphanidermatum, Pythium undulatum, Rhizoctonia solani, 
Fusarium oxysporum f. sp. radicis-lycopersici, Fusarium 
solani, Myrothecium roridum, Myrothecium verrucaria, 
Verticillium dahliae and Verticillium alboatrum in samples 
collected from horticultural water circulation systems in a 
single assay (Van Doorn et al., 2009; Capote et al., 
2012). ISSR and SRAP markers were also used for 
molecular characterization of Venturia inaequalis isolates 
for the first time and they were more informative, easily 
applicable, reproducible, and specific (Kaymak et al., 
2016). 

A polymerase chain reaction-denaturing gradient gel 
electrophoresis (PCR-DGGE) detection tool based on the  

 
 
 
 
amplification of the ITS region has been recently applied 
to detect multiple Phytophthora species from plant 
material and environmental samples (Shamim et al., 
2017). Real-time PCR is currently considered the gold 
standard method for detection of plant pathogens. This 
technique allows the monitoring of the reaction during the 
amplification process by the use of a fluorescent signal 
that increases proportionally to the number of amplicons 
generated and to the number of targets present in the 
sample (Alemu, 2014). Another advantage of real-time 
PCR is the capability to perform multiplex detection of 
two or more pathogens in the same reaction. 
Microdochium nivale in wheat seeds and Fusarium 
circinatum in pine seed were detected by real time-PCR 
assay (Balodi et al., 2017). SYBR Green real-time PCR 
assays can detect so many pathogenic fungi like Botrytis 
cinerea, Fusarium oxysporum f. sp. vasinfectum, 
Colletotrichum acutatum, Phoma sclerotioides, Pythium 
irregular, Rhizoctonia solani, Verticillium dahliae, etc. 
(Capote et al., 2012). 
 
 
APPLICATION OF MOLECULAR MARKERS FOR 
RESISTANCE BREEDING  
 
Disease resistance in crop plants is a major challenge in 
plant breeding. Conventional breeding for disease 
resistance is based on phenotypic identification and 
crossing with agronomically desirable but susceptible 
plants. It has made great progress in incorporating 
natural defense genes. This is performed based on a 
backcross program which takes more than 7 years to 
reach the final goal. However, the modern molecular 
techniques make it possible to use markers and probes 
to track the introgression of several resistance genes into 
a single cultivar from various sources during a crossing 
program. The advent of new biotechnology techniques 
such as marker-assisted selection provides new 
opportunities to enhance plant disease resistance 
(Torres, 2010; Torres-Calzada et al., 2011). 

Different types of molecular markers (DNA based 
markers) have been developed and used for developing 
of disease resistance varieties. Restriction Fragment 
Length Polymorphism (RFLP), Random Amplified 
Polymorphic DNA (RAPD), Amplified Fragment Length 
Polymorphism (AFLP), Inter Simple Sequence Repeat 
(ISSR), Microsatellites or Simple Sequence Repeat 
(SSR), Allele Specific Associated primers (ASAP), 
Expressed Sequence Tag (EST), Cleaved Amplified 
Polymorphic Sequence (CAPS), Diversity Arrays 
Technology (DArT), Sequence Characterized Amplified 
Regions (SCARs) and Single Nucleotide Polymorphism 
(SNP) are some of molecular markers and have been 
used in several crops (Table 2) (Doveri et al., 2008; 
Singh et al., 2013; Ragimekula et al., 2013). Application 
of molecular markers for breeding disease resistant 
varieties   is   especially   interesting   when  breeding  for  
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Table 1. The advantage and disadvantage of molecular detection and identification tools in fungi. 
 

Molecular tools Advantages Disadvantages 

Conventional PCR 
Gives rapid and precise results when use 
the primer of specific species 

Required much labor and cost 

   

Nested PCR 
Use of two sets of primer increase the yield 
and specificity of amplification of the target 
DNA 

Risk of contamination, because of two cycles of 
amplification 

   

Multiplex PCR 
Time and money saver by using the several 
pairs of primers in a same reaction 

Interference of primers and probes, reduce sensitivity 

   

Reverse transcriptase 

(RT) PCR 

Gives quantitative data about pathogens, 
more sensitive than conventional PCR 

Formation of each assay is time consuming and 
requires the expensive equipment and the reagents 

   

Real-time PCR (q PCR) 
Automated and no need of post amplification 
analysis 

Cost and complexity due to simultaneous thermal 
cycling and fluorescence detection 

   

In situ hybridization Maximum use of the short supply tissue 
Difficulty in identifying targets that have low DNA and 
RNA copies 

   

FISH Can be used for non-dividing cells 
Probe-preparing method is very difficult because it is 
necessary to tailor the probes to identify the particular 
sequences of DNA 

   

Microarray 
Easy to use because it does not require the 
large-scale DNA sequencing 

Large amount of mRNA is required 

   

LAMP Rapid, sensitive and highly specific 
Primer design is complex; recognizes only one 
specific pathogen; risk of sample contamination 

   

NASBA 
Expensive equipment is not needed. Better 
than RTPCR 

Specificity of the reactions is dependent on 
thermolabile enzymes. Reaction temperature cannot 
be exceeded than 42°C without compromising it 

   

RNA interference 

(RNAi) 

Ability to simultaneously interrogate 
thousands of genes 

Variability and incompleteness of knockdowns and the 
potential non specificity of reagents 

   

Northern blotting Detection of RNA size Applied only on a small sample of the genes 

   

SAGE 
Prior knowledge of the subject’s genome is 
not requisite 

Specificity of tag sequence 

   

RNA-Seq Increased specificity and sensitivity 
Needs expensive equipment. Bioinformatics 
knowledge requisite for data analysis 

 
 
 
resistance traits that are difficult or expensive to assess 
phenotypically. 

Resistance to Turcicum leaf blight in sorghum 
accession G-118 was found to segregate as a single 
dominant trait in a cross with susceptible cultivar HC-136. 
By using SSR markers coupled with bulk segregant 
analysis, a molecular marker linked to the locus for 
resistance to Turcicum  leaf  blight  was  identified  (Mittal 

and Boora, 2005). In the same population, an SSR 
marker, Xtxp 309, produced amplification of a 450 bp 
band. This was found to be located at a distance of 3.12 
cM away from the locus governing resistance to leaf 
blight which was considered to be closely linked and 7.95 
cM away from the locus governing susceptibility to leaf 
blight (Mittal and Boora, 2005). By the RAPD technique 
with  bulk-segregant  analysis,  it  was possible to identify  
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Table 2. Some applications of molecular marker assisted selection (MAS) in four crops. 
  

Character/Trait Target genes Types of marker used References 

Rice    

Bacterial blight resistance  xa5, xa13 &  Xa21  
CAPS for xa5  (RG556+DraI), CAPS for xa13  (RG136+HinfI), 
STS for Xa21  (pTA248)  

Sundaram et al. (2008)  

    

Bacterial blight (BB) resistance + Grain quality  xa13 & Xa21  CAPS for xa13  (RG136+HinfI), STS for Xa21  (pTA248)  Gopalakrishnan et al. (2008)  

    

Bacterial blight (BB) resistance  Xa4, X17 &  Xa21  STS for Xa4 & Xa7,  STS for Xa21 (pTA248)  Perez et al. (2008)  

    

Bacterial blight (BB) resistance  xa5 and xa13  CAPS for xa13  (RG136+HinfI), STS for Xa21  (pTA248)  Sundaram et al. (2009)  

    

Blast  resistance  Pi-9(t)  pB8  Wen and Gao (2011)  

    

Bacterial blight (BB) resistance  Xa4, xa5, xa13 & Xa21  
STS for Xa4, CAPS for xa5 (RG556+DraI), CAPS for xa13 
(RG136+HinfI), STS for Xa21 (pTA248)  

Shanti et al. (2010) 

    

Bacterial blight (BB) resistance + Blast resistance  xa5, xa13, Xa21 &Pi25  
CAPS for xa5 (RG556+DraI), CAPS for xa13 (RG136+HinfI), 
STS for Xa21 (pTA248) and STS for Pi25 (SA7)  

Zhan et al. (2012)  

    

Bacterial blight (BB) resistance + Blast resistance + sheath blight 
(ShB) 

xa13, Xa21, Pi54 & qSBR11-1  
CAPS for xa13 (RG136+HinfI), STS for Xa21 (pTA248), SSR for 
Pi54 (RM206), SSR for qSBR11-1 (flanking markers RM224 and 
RM7443)  

Singh et al. (2012)  

    

Bacterial blight (BB) resistance  xa13 & Xa21  CAPS for xa13 (RG136+HinfI), STS for Xa21 (pTA248)  Pandey et al. (2013) 

    

Bacterial blight (BB) resistance + Blast resistance  Xa21& Pi54  STS for Xa21 (pTA248), SSR for Pi54 (RM206)   

    

Bacterial blight (BB) resistance  Xa4, xa5, xa13 & Xa21  
STS for Xa4, CAPS for xa5 (RG556+DraI), CAPS for xa13 
(RG136+HinfI), STS for Xa21 (pTA248)  

Dokku et al. (2013) 

    

Barley    

Barley yellow mosaic virus I-III  - RFLP  Okada et al. (2003)  

Resistance to cereal cyst nematode  - RFLP Barr et al. (2000) 

Barley stripe rust  - RFLP,  RAPD, AFLP  Hayes et al. (2003)  

Barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2)  - RAPD, SSR, STS Werner et al. (2005) 

Resistance to BYDV  - CAPS, SSR, STS  Scholz et al. (2009)  
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Table 2. Contd. 

 

Wheat    

Fusarium head blight (FHB) resistance  - SSR  Miedaner et al. (2006) 

Fusarium head blight QTL  - SSR  Wilde et al. (2008) 

Leaf rust (Puccinia triticina) resistance gene Lr47  - SSR  Bainotti et al. (2009)  

Powdery mildew (Erysiphe graminis f.sp. tritici) resistance genes  - RFLP  Liu et al. (2000)  

    

Soybean    

Soybean mosaic virus (SMV)  - SSR Shi et al. (2009) 

SCN resistance  - SSR Arelli et al. (2007) 

Resistance to frogeye leaf spot (Cercospora sojina)  - SNP, SSR  Shannon et al. (2009 ) 

 
 
 
PCR amplification products segregated with the 
response to Turcicum leaf blight (Boora et al., 
1999). A three-gene pyramid line of rice was 
identified by MAS to possess broad-spectrum 
bacterial blight resistance and excellent grain 
quality (Sundaram et al., 2008). Pandey et al. 
(2013) improved the two traditional bacterial blight 
(BB) susceptible rice varieties through the 
strategy of limited marker-assisted backcrossing 
for introgression of two major BB resistance 
genes coupled with phenotype-based selection for 
improvement of their plant type and yield. 
Generally, many scholars identified new QTLs 
related to resistance genes, however, very few of 
them reported (shown in Table 2) have been used 
for MAS in breeding programs. Manulis et al. 
(1994) were able to identify the specific banding 
patterns that were subsequently used as probes 
to distinguish between the races of the carnation 
wilt fungal pathogen F. oxysporum f. sp. dianthi by 
using RAPDs. In another study, RAPD markers 
were used to infer the genetic relationships 
among the wheat bunt fungi. Globally, RAPD 
markers are also reported to be useful in 
diagnostic studies of many plant pathogens 
(Singh  et   al.,  2013).   Billard  et  al.  (2012)  also 

identified fungal pathogen using ASAP marker 
system. In addition, they also identified resistance 
gene by molecular markers, knowing the genetic 
variability and diversity of the disease causing 
agents are also imperative. Kaymak et al. (2016) 
used RAPD, ISSR, SSR and SRAP markers to 
evaluate the genetic divergences and the 
relationships of Venturia inaequalis isolates. They 
reported that SSR and SRAP markers were found 
to be more informative and consistent than other 
marker techniques during their study.  
 
 

PROTEOMIC STUDIES AS A TOOL IN 
PATHOGENIC BACTERIA  

 
Proteomics is the large-scale study of the whole 
set of proteins present in a cell, tissue or organism 
at a specific time point under specific conditions. 
In recent years, proteomics has played a key role 
in identifying changes in protein levels in plant 
hosts upon infection by pathogenic fungal and 
bacterial organisms and in characterizing cellular 
and extracellular virulence and pathogenicity 
factors produced by pathogens (Lodha et al., 
2013).  Mehta  and  Rosato  (2001)   reported  the 

analysis of X. axonopodis pv. citri cultivated in the 
presence of the host Citrus sinensis leaf extract 
and recognized differentially expressed proteins, 
including a sulfate-binding protein, by NH2 
terminal sequencing. The same authors 
suggested that the induction of this enzyme may 
have been caused by the amino acids or different 
sugars present in the leaf extract. Tahara et al. 
(2003) also analyzed the expressed proteins of X. 
axonopodis during interaction with the host 
Passiflorae edulis leaf extract, and identified an 
inorganic pyrophosphatase and an outer 
membrane protein up regulated in the presence of 
leaf extract, also by NH2 terminal sequencing. It 
was proposed that the protein which was 
identified in outer membrane may have an 
important role in pathogenicity (Tahara et al., 
2003). 
  In a 2DE-mediated proteomic study of Xylella 
fastidiosa, the causal agent of citrus variegated 
chlorosis, showed that this pathogen did not 
produce significant changes in heat shock protein 
expression when compared with X. axonopodis 
pv. citri (Martins et al., 2007). However, it was 
found that X. fastidiosa constitutively expressed 
several  stress-inducible  proteins   such   as  heat
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shock protein A (HspA) and GroeS, which were induced 
in X. citri under stress conditions. The authors suggested 
that the constitutive expression of these proteins may 
help X. fastidiosa cope with sudden environmental 
changes and stresses. 

With regard to plant defense responses, direct 
evidence of the involvement of target proteins has also 
been provided by proteomic studies (Table 3). Although 
few of the reports outlined clearly show the importance of 
proteomic approaches, which can aid significantly in the 
understanding of plant bacterium interactions. A detail 
understanding of plant defense response using 
successful combination of proteomic techniques is 
needed for practical application to secure and stabilize 
yield of many crop plants (Lodha et al., 2013). Jones et 
al. (2004) analyzed the proteomic and transcriptomic 
profiles of Arabidopsis thaliana leaves during early 
responses (1 to 6 h post-inoculation) to the challenge by 
Pseudomonas syringae pv. tomato. They compared the 
proteomic changes in A. thaliana in response to the P. 
syringae pv. tomato highly virulent strain DC3000, which 
results in successful parasitism, a DC3000 hrp mutant, 
which induces basal resistance, and a trans-conjugant of 
DC3000 expressing avrRpm1, which triggers a gene-for-
gene-based resistance. As a follow-up study, Jones et al. 
(2006), examined the global proteomic profile in three 
sub-cellular fractions (soluble protein, chloroplast and 
mitochondria enriched) of A. thaliana responding to the 
same three P. syringae pv. tomato DC3000 strains. This 
was the first report to associate post-translational events 
(1 to 6 h post-inoculation) occurring before significant 
transcriptional re-programming. The results showed that 
several chloroplast systems are modified during all 
aspects of the defense response. 

Many study was conducted between rice and bacterial 
association, some are pathogenic and cause severe 
damages to the crop, such as X. oryzae pv oryzae, 
Burkholderia glumae, Burkholderia kururiensis and 
Pseudomonas fuscovaginae. Among them, B. kururiensis 
is very often isolated from rice and has been studied 
recently for its potential beneficial effects on the plant and 
the mechanisms of interaction (Suarez-Moreno et al., 
2012). The role of defense responsive proteins in the X. 
oryzae pv. oryzae interaction was investigated through a 
proteomic approach (Mahmood et al., 2006). Cytosolic 
and membrane proteins were fractionated from the rice 
leaf blades 3 days post-inoculation with incompatible and 
compatible X. oryzae pv. oryzae races. From 366 
proteins analyzed by 2DE, 20 were differentially 
expressed in response to bacterial inoculation. Analyses 
clearly revealed that the four defense related proteins 
[PR-5, probenazole-inducible protein (PBZ1), superoxide 
dismutase (SOD) and Prx] were induced for both 
compatible and incompatible X. oryzae pv. oryzae races, 
wherein PR-5 and PBZ1 were more rapid and showed 
higher induction in incompatible interactions and in the 
presence of jasmonic acid (JA). Study in the same rice X.  

 
 
 
 
oryzae pv. oryzae interaction, Chen et al. (2007) 
analyzed proteins from rice plasma membrane to 
investigate the early defense responses proteins involved 
in XA21-mediated resistance. XA21 is a rice receptor 
kinase, predicted to perceive the X. oryzae pv. oryzae 
signal at the cell surface, leading to the ‘gene-for-gene’ 
resistance response. At the same time, a total of 20 
proteins were differentially regulated by pathogen 
challenge at 12 and 24 h post-inoculation and identified 
at least eight putative plasma membrane-associated and 
two non-plasma membrane-associated proteins with 
potential functions in rice defense were observed by the 
same authors. 

By comparing two partially resistant lines and a 
susceptible line in a time course (72 and 144 h post-
inoculation) experiment, proteins from the wild tomato 
species Lycopersicon hirsutum that are regulated in 
response to the causal agent of bacterial canker 
(Clavibacter michiganensis subsp. michiganensis) were 
identified. Twenty six differentially regulated tomato 
proteins were identified by using 2DE and ESI-MS ⁄MS, 
12 of which were directly related to defense mechanisms.  

Proteomic analysis was also used to detect the 
responses of the model legume Medicago truncatula to 
the pathogenic bacterium Pseudomonas aeruginosa in 
the presence of known bacterial quorum sensing signals, 
such as N-acyl homoserine lactone (AHL) (Mathesius et 
al., 2003). To make appropriate responses to the 
pathogen, the fast and reliable detection of bacterial AHL 
signals by plant hosts is essential. Therefore, M. 
truncatula is able to detect very low concentrations of 
AHL from P. aeruginosa and response in a global manner 
by significant changes in the accumulation of 154 
proteins, 21 of which are related to defense and stress 
responses.   
 
 
CONCLUSIONS  
 
The science of plant diseases diagnostics and 
management has progressed in technological 
advancements from the visual inspection of signs and 
symptoms of diseases to molecular level detection of the 
pathogens. Currently, precise identification and diagnosis 
of plant pathogens to the species or strain level, 
information during their early stages of infection, and 
better understanding of pathogenicity factors are the 
crucial prerequisite for disease surveillance and 
development of novel disease control strategies. 
Therefore, the advancements in the field of plant 
pathology, coupled with biotechnology, bioinformatics 
and molecular biology have opened new avenues for 
development of specific and sensitive procedures of 
diagnosis. And currently more sensitive methods like 
Real Time PCR and Microarrays are being used. Genetic 
engineering is also one of the potential tools to provide 
an abundance  of  beneficial  plant  traits,  particularly  an  



Belete and Boyraz         805 
 
 
 
Table 3. Some examples of proteins expressed in plant-bacterial interactions and identified in plants using proteomic approaches (Jones 
et al., 2004, 2006; Mahmood et al., 2006; Chen et al., 2007). 
 

Protein Studied organism Pathogen 

lutathione S-transferase A. thaliana P. syringae 

Peroxiredoxin A. thaliana P. syringae 

Peroxiredoxin, chloroplast O. sativa X. oryzae pv. oryzae 

Glyceraldehyde 3-phosphate dehydrogenase O. sativa X. oryzae pv. oryzae 

Triosephosphate isomerase, cytosolic (EC 5.3.1.1) O. sativa X. oryzae pv. oryzae 

Thaumatin-like protein X O. sativa X. oryzae pv. oryzae 

Superoxide dismutase O. sativa X. oryzae pv. oryzae 

Alcohol dehydrogenase 1 a O. sativ X. oryzae pv. oryzae 

Quinone reductase O. sativa X. oryzae pv. oryzae 

Prohibitin O. sativa X. oryzae pv. oryzae 

Ascorbate peroxidase O. sativa X. oryzae pv. oryzae 

Remorin 1 L. hirsutum C. michiganensis subsp michiganensis 

Ascorbate peroxidase L. hirsutum C. michiganensis  subsp. michiganensis 

Glutathione S-transferase L. hirsutum C. michiganensis  subsp michiganensis 

Pathogenesis-related 3 (endochitinase precursor) L. hirsutum C. michiganensis  subsp michiganensis 
 
 
 

enhanced ability to withstand or resist attack by plant 
pathogens. In addition, developments in DNA marker 
technology together with the concept of marker-assisted 
selection provide new solutions for selecting and 
maintaining desirable genotypes. Marker assisted 
selection can be performed in early segregating 
populations and at early stages of plant development for 
pyramiding the resistance genes, with the ultimate goal of 
producing varieties with durable or multiple disease 
resistance. Generally, a timely detection of resistance 
levels in populations of phytopathogenic pathogens in a 
field would help the growers formulate proper decisions 
on resistance management programs to control plant 
diseases. Finally, future studies will be focused on the 
practical application of each traditional or innovative 
method, their cost and availability of instruments, 
specialization level, rapidity of analysis, and the stage of 
disease at which detection is possible. 
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