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Genomic copy number variations (CNVs) have significantly modified genomic regions during 
inversions, translocations, duplications and deletions that keep shaping phenotypic variation through 
changes in gene dosage, regulation and transcript structure. The objective of this review was to 
discuss the current application of CNVs on domestication, adaptations, productions, coat colour, 
morphology and diseases of livestock, and also address implication of CNV on genotyping selections, 
limitation and in the future, directions of livestock breeding. The CNVs are a key role in generating 
essential variation in the livestock population and disease phenotype. The association of CNVs with 
phenotypic traits was utilized for the determination of feed conversion ratios in beef cattle, growth, milk 
production, reproduction, coat color, health, demostication and morphology. Genomic CNVs are an 
important type of genetic variation in livestock development in different environments. This knowledge 
will be extremely pertinent from a molecular perspective and practical applications of genomic CNVs in 
animal breeding and allowed breeders to consider genomic selection of young animals at earlier ages. 
However, in livestock species, there are still open questions remaining about the genome frequency of 
CNVs. Therefore, application of genomics CNVs in livestock breaks the bridging between breeders and 
livestock producers; however, there are still gaps on genotypes and overlapping genes. 
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INTRODUCTION 
 
A key area of research in livestock genetics is the 
investigation of DNA variants which highly influence the 
phenotype of individuals (Clop et al., 2012). Chromosomal 
rearrangements have significantly modified genomic 
regions during inversions, translocations, duplications 
and deletions that is constantly shaping phenotypic 
variation through changes in gene dosage, regulation and 

transcript structure (Bickhart and Liu, 2014; Clop et al., 
2012). According to the reviews of  Freeman et al. 
(2006), genomic divergence can be observed in several 
forms, including single nucleotide polymorphisms (SNPs), 
variable numbers of tandem repeats, transposable 
elements and structural variations such as deletions, 
duplications  and  inversions. As  Dekkers  (2004)  report,
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genetic markers have provided opportunities to enhance 
the selection for economically crucial quantitative traits in 
beef cattle, especially for traits that are difficult to improve 
by conventional selections. The main goal in the 
application of genetic markers towards livestock breeding 
goals is the detection of genes which are important for 
quantitative traits. These are implicated in phenotypes 
variations and their interaction with the gene-environment 
or economic traits. In previous studies, genetic variation 
in livestock has been described using microsatellites 
(Curi et al., 2005) and SNPs (Utsunomiya et al., 2013). 
Until recently, SNPs were considered nucleotide 
variations detected during genome sequencing, and the 
most important cause of genetic variation by the livestock 
research community. For this reason, many studies have 
utilized SNP markers for genetic improvement of beef 
and dairy cattle (Hayes et al., 2009; Van Raden et al., 
2009; Wiggans et al., 2009). For instance, the 
development of yak gene specific SNPs for adaptation 
mechanisms to hypoxia and growth, and detection of the 
causal mutation of polledness in yak breeds have been 
reported (Liang et al., 2016; Liu et al., 2014; WU Xiao-
Yun et al., 2015). However, compared with SNPs, 
Henrichsen et al. (2009a) reported that CNVs are 
significant sources of genetic variation and play a major 
role in phenotypic diversity and evolutionary adaptation 
(Hou et al., 2011; Zhang et al., 2009). Also, variation in 
the number of gene copies in the genome (Redon et al., 
2006; Zhang et al., 2009) affects the expression of genes 
as well as having a large-scale influence on the 
transcriptome (Henrichsen et al., 2009b). Gene dosage, 
gene interruption, generation of a fusion gene, position 
effects, unmasking of recessive coding region mutations, 
and other functional SNPs are predominant molecular 
mechanisms by which CNVs convey diverse phenotypes 
and genotype along with complex diseases (Beckmann et 
al., 2007; Feuk et al., 2006; Lupski and Stankiewicz, 
2005; Redon et al., 2006; Reymond et al., 2007; 
Weischenfeldt et al., 2013; Zhang et al., 2009). 

Copy number variations (CNVs), a segment of DNA, 
that is 1 kb or larger in size and is present at a variable 
copy number in comparison with a reference genome, 
namely, deletions and duplications; as well as insertions, 
inversions and translocations (Feuk et al., 2006), 
contributes significantly to genetic and phenotypic 
variation among individuals of a species (Beckmann et 
al., 2007; Conrad et al., 2010; Feuk et al., 2006; Ghosh et 
al., 2014; Mills et al., 2011; Shi et al., 2016; 
Weischenfeldt et al., 2013). The application of CNVs 
animal breeding had long been held back due to the lack 
of reliable genotyping methods for CNVs (Zhou et al., 
2016). Besides, in recent years, advances in genomic 
technologies have allowed the construction of maps of 
CNVs for cattle (Liu et al., 2010), horses (Ghosh et al., 
2014), goats (Fontanesi et al., 2010), sheep (Liu et al., 
2013), pigs (Paudel et al., 2013), dogs (Alvarez and 
Akey, 2012),  chickens  (Zhang  et  al.,  2014),  and  yaks  

 
 
 
 
(Zhang et al., 2016), using different methods including 
whole-genome sequencing, array-based comparative 
genomic hybridization (aCGH), SNP array, and next-
generation sequencing (NGS) and providing a very 
significant resource for determining how CNVs convey 
economically important phenotypic traits in livestock 
species. The effects of CNVs on phenotype traits have 
been elucidated in different domestic animals. The 
association of CNVs with phenotypic traits was utilized for 
the determination of feed conversion ratios in beef cattle 
(de Almeida Santana et al., 2016), milk somatic cell 
scores in Holstein cattle (Ben Sassi et al., 2016; Durán 
Aguilar et al., 2016; Xu et al., 2014) and quantitative traits 
in a Brown Swiss population (Prinsen et al., 2017). A 
further study using quantitative real-time polymerase 
chain reaction (qPCR) in Chinese cattle revealed that 
CNVs in the genes MICAL-like 2 (MICAL-L2) (Xu et al., 
2013), leptin receptor (LEPR) (Shi et al., 2016; Xu et al., 
2017), myosin heavy chain 3 (MYH3) (Xu et al., 2014), 
potassium voltage-gated channel subfamily J member 12 
(KCNJ12) (Zhou et al., 2016) mitogen-activated protein 
kinase 10 (MAPK10) (Liu et al., 2016), phospholipase A2 
group IID (PLA2G2D) (Zhang et al., 2014) and 
cytochrome P450 family 4 subfamily A member 11 
(CYP4A11) (Yang et al., 2017) are associated with gene 
expression and growth traits. On the other hand, the 
association of CNVs with growth traits was explored for 
the muscle development (Lin et al., 2018) and growth 
traits (Rao et al., 2016) in chickens and meat tenderness, 
feed conversion ratio, shear force, residual feed intake 
and marbling score in a Nelore Cattle (Da Silva et al., 
2016a). The objective of this review was to discuss the 
current application CNVs on domestication, adaptations, 
productions, coat colour, morphology and diseases of 
livestock and also address implication CNV on 
genotyping selections, limitation and in the future 
directions of livestock breeding. 
 
 
DOMESTICATION AND COPY NUMBER VARIATIONS 
 
Notable changes in behavior, morphology, physiology 
and reproduction of the evolution of wild species into 
tame forms are domestication (Darwin, 1859). 
Domestications have shaped the genome of all living 
things in our globe. After domestication, human adjust 
animals by selecting important traits to further add to the 
complexity of evolution. The plants and animals 
domestication was one of the most prominent roles in 
cultural and evolutionary changes over the past 20,000 
decade (Larson et al., 2014). Zebu and taurine breeds 
are differentiated primarily by the presence or absence of 
a hump, taurine are domesticated in the Fertile Crescent 

∼8,000–10,000 years ago and indicine are domesticated 

in the Indus Valley ∼6,000–8,000 years ago (Larson et 
al., 2014; Loftus et al., 1994). Qiu et al. (2015) reported 
that domestication of yaks occurred approximately  7,300 



 
 
 
 
years before now, which coincides with two early human 
population expansions on the Qinghai-Tibet Plateau 
(QTP) of China during the early-Neolithic age and the 
late-Holocene, respectively. Guo et al. (2006) revealed 
that all domestic yaks may have originated from a single 
wild population (or gene pool); however, their divergence 
occurred before the domestication. Indeed, Lai et al. 
(2007) suggested that the Chinese yak was domesticated 
from two distinct matrilineal sources or from a 
heterogeneous pool containing both divergent lineages, 
with occasional gene introgression from cattle. This 
indicates that it is slightly later than the domestication of 
many livestock species (10,000-8,000 year before 
present) (Larson et al., 2014; Zeder, 2008). The 
divergence times of Bos and Poephagus (yaks) are 0.57–
1.53 million years after the present (Qiu et al., 2012). 
Moreover, the diverged time for yak and cattle, yak and 
water buffalo, yak and sheep/goat were approximately 
4.9, 12.2 and 20.6 million years ago, respectively (Qiu et 
al., 2012). However, divergence times of two cattle (Bos 
taurus and Bos indicus) are estimated 1.7-2.0 million 
years ago (Hiendleder et al., 2008). During domestication, 
the breeds were mostly selected based on coat colour 
and polled phenotypes (Bickhart et al., 2016). Therefore, 
bovine genomes were modified by human and livestock 
interaction in the surroundings environment. Ajmone-
Marsan (2010) revealed that after domestication, human 
selected traits that enabled easy management and 
breeders wanted to improve production traits by using 
artificial selection (artificial insemination) which affects 
genetic variability within breeds. 

In past few years, genomic changes of domestications 
history of the cattle and yaks breeds were identified using 
different markers, such as SNPs (Decker et al., 2009; 
McTavish et al., 2013), whole-genome resequencing (Qiu 
et al., 2015), mtDNA (Wang et al., 2010) and CNVs 
(Bickhart et al., 2012, 2016; Liu et al., 2009, 2010; Zhang 
et al., 2016) which are accompanied by breed specific 
genomic differentiation, hybridization, and introgression 
(Zhang et al., 2015). Qiu et al. (2015) detected signals of 
selection in 209 genes of domestic yaks which is 
associated with behaviour and tameness. Similarly, 
Zhang et al. (2016) revealed that CNVs was the potential 
contributions in the process of yak domestication, 
although Wang et al. (2010) identified about 38 genes 
related to domestication of yaks by using SNP. Moreover, 
Zhang et al. (2016) found that 46 CNVs genes delineate 
between domestic and wild yaks that is correlated with 
behavior, brain and nervous system development. For 
instance, the CNVs of the GRIN2D, SHANK3, KCNJ14, 
CA11 and NTF4 genes were associated with normal 
brain development, learning, working memory and 
behavior (Zhang et al., 2016). Thus, Carneiro et al. 
(2014) argued on the effect of strong selection on 
reducing aggressive behavior and neurological traits. 
   Domestication is a change reproductive efficiency of 
livestock   breeds;   for    example,  in  yak  CNVs  of   the 
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TSEG2, AKR1C3 and IZUMO1 genes were associated 
reproductive performance traits, such as age of puberty, 
sperm production, ovulation rate and embryonic mortality 
(Zhang et al., 2016). Domestic and wild CNVs are 
significantly different in nutrition metabolism and 
mitochondrial oxidative phosphorylation (Zhang et al., 
2016). Biological processes such as neurobiology, growth 
and metabolism, and immunobiology play significant 
roles in the domestication and subsequent evolution of 
European Bos taurus cattle, which is accompanied by 
behavioral selection and phenotypic traits (meat and milk) 
(Park et al., 2015). CNVs have been playing significant 
roles in the behavioral changes of cattle due to 
domestication (Shin et al., 2014). Comparative analyses 
of the olfactory receptor (OR) genes of cattle, pigs, 
humans, mice, and dogs showed that 6.0% of functional 
OR cattle genes were species-specific because OR gene 
subfamilies that are important for the survival of the 
species are likely to expand in the genome through 
evolution (Lee et al., 2013). 
 
 
ADAPTATION AND COPY NUMBER VARIATIONS 
 
In modern livestock breeds across the world, genetics 
adaptations have been affected by selective (natural and 
human-imposed) and non-selective forces (demographic 
events and introgression) (Bickhart et al., 2016). 
Selection pressures from environment and handlers 
influences a nuanced evolutionary history of livestock 
species (Bickhart and Liu, 2014). Compared with cattle, 
yaks graze throughout the year on diverse natural 
grasslands and have evolved morphological 
characteristics enabling them to consume a wide variety 
of plant species, thereby making them better adapt to the 
typically harsh characteristics of their pastures (Shao et 
al., 2010). Lower methane emissions from yak can be 
compared with cattle in rumen simulation technique 
(RUSITEC) fermenters (Mi et al., 2017) because the yaks 
have a unique rumen microbial ecosystem that is 
significantly different from that of cattle and has great 
potential as an “energy-saving” animal as many 
researchers around the world aim to find “low carbon” 
livestock (Huang et al., 2012). Qiu et al. (2012) reported 
that 81 genes detected in yak were related to the hypoxia 
response and energy metabolism. Hypoxia-inducible 
factors (HIF-1α and HIF-2α) expressions were higher in 
yak tissues than in cattle which indicated involvement of 
HIF-1α and HIF-2α genes in oxygen homeostasis in 
response to hypoxia (Xiong et al., 2015). The 
PGM1, PKLR, ATP5F1, and NDUFA10 genes were 
under positive selection in hypoxia-tolerant Tibetan yak 
(Tian et al., 2017). Lan et al. (2018) detected that 339 
genes which are related to physiological rhythm and 
histones, provided a basis for the evolution, molecular 
origin, and unique traits of Jinchuan yak. Recent studies 
(Xiao-Yun   et   al.,   2015)   indicated   that   EPAS1  was 
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identified as a selective target gene and contribute to the 
hypoxia adaptation at high altitudes of Tibetan mastiffs (Li 
et al., 2014), indigenous dogs (Gou et al., 2014), Tibetan 
sheep (Wei et al., 2016) and yaks (Xiao-Yun et al., 2015). 
Yang et al. (2016) suggested that energy metabolism is a 
possible adaptive mechanism for ruminants that inhabit 
the plateau environments. For instance in yak, Zhang et 
al. (2016) revealed that CNVs of the MOGAT2, GYS1, 
DHDH, HSD17B14, CPT1B, BCAT2 and MIOX genes are 
involved in metabolism of sugars, lipid, amino acid and 
carbohydrate during adaptation. The CNVs of MRP4, 
DCC and DEXI genes are associated with the hypoxia 
response in high and low altitude domestic yak (Zhang et 
al., 2016). 

On the other hand, genomic differences between zebu 
and taurine cattle are due to their original geographic 
distribution. Taurine cattle are more adapted to temperate 
climate, while zebu cattle are better adapted to tropical 
environments; therefore, differences between these two 
cattle could be linked to genomic adaptation to the 
environment (Porto-Neto et al., 2013). CNVs of the 
SCP2, IFNT, ULBP2 and ORs genes were related to 
adaptation of cattle (Hou et al., 2011; Liu et al., 2010). 
CNV genes are ORs that play an important role in food 
foraging and mate recognition in pig (Paudel et al., 2015) 
as well as detection of volatile chemicals in the 
environment (Bickhart and Liu, 2014), which provides 
rapid adaptation to different environments. In addition, 
gene families involved in sensory perception are usually 
fast evolving due to their importance in the organism 
responding to rapid changes in the environment (Zhang 
et al., 2016). The ORs are critical for transmitting the 
effects of odorants, contributing to the sense of smell, 
and have been implicated in participating in appetite 
regulation (Zhou et al., 2018). However, comparative 
genome study has revealed that gene families related to 
sensory perception were significantly expanded in yak 
compared to other mammals (Qiu et al., 2012). Animal 
genomes display enrichment of CNVs in genes which is 
associated to immune response and environmental 
interaction such as sensory perceptions of smell and 
chemical stimuli (Bickhart et al., 2012, 2016; Keel et al., 
2016; Liu et al., 2010; Upadhyay et al., 2017; Xu et al., 
2016, 2017; Yang et al., 2017; Zhang et al., 2016). 
Regarding Qinghai-Tibet plateau in north-western China, 
Yang et al. (2017) observed that CNVs of the 
MRVI1, ABO, GLRB and EPHA3 genes were associated 
with adaptation of the arid environment exhibiting dry, 
hypoxia, and low air pressure. 
 
 
ASSOCIATION OF CNVs WITH REPRODUCTION AND 
PRODUCTION TRAITS 
 
The association between CNVs and economically 
important phenotypic traits had been investigated in 
different breeds  of  domesticated  animals  (Chen  et  al.,   

 
 
 
 
2012; Shi et al., 2016; Xu et al., 2015; Zhang et al., 
2014). Recent studies (da Silva et al., 2016; Zhang et al., 
2014) underlined that CNVs are associated with health, 
meat, milk production and reproduction. CNVs of 
PLA2G2D gene play significant roles in lipid metabolism, 
fat deposition and gonadotropin-releasing hormone 
signalling in Back Angus cattle (Stothard et al., 2011). 
Also, CNV of the PHLDA2 gene is essential for normal 
embryo development during early development and pre-
implantation embryos (da Silva et al., 2016a). A further 
study using NGS in dairy cattle revealed that CNVs in 
INS, IGF2, FOXO3, TH, SCD5, GALNT18, GALNT16, 
ART3, SNCA, and WNT7A genes are potentially 
associated with milk protein and fat traits (Gao et al., 
2017). In the works of Xu et al. (2014), Ben Sassi et al. 
(2016), Jiang et al. (2016) and Upadhyay et al. (2017), 
CNVs were significantly associated with milk production 
traits. In addition, CNVs of the genes are associated with 
reproduction and milk phenotype in cattle (Durán Aguilar 
et al., 2017; Da Silva et al., 2016b; McCarthy et al., 2012; 
Prinsen et al., 2017; Sermyagin et al., 2016; Shin et al., 
2014; Xu et al., 2016; Yue et al., 2013; Zhou et al., 2018). 
In chickens, novel CNV of the TGFβ3 gene is associated 
with duration of fertility traits (Gu et al., 2017). The study 
of Sasaki et al. (2016) identified a deleted-type CNV 
encompassing ANXA10 in cows that was associated with 
embryonic mortality at 30–60 days after artificial 
insemination. 

In past several studies, bovine CNVs of the LEPR (Shi 
et al., 2016; Xu et al., 2017), GBP2 (Zhang et al., 2018), 
MYH3 (Xu et al., 2013) and MAPK10 (Liu et al., 2016) 
genes have been reportedly associated with growth traits 
of cattle. Indeed, Shin et al. (2014) showed that CNVs of 
the TTN, HDAC4, TSHR, and CCDC141 genes were 
associated with meat production and were strongly 
related to muscle in Hanwoo cattle (Shin et al., 2014) and 
marbling in Japanese Black beef cattle (Yamada et al., 
2009). Copy number variable regions (CNVRs) existing in 
a QTL is related to meat quality, feed conversion ratio, 
shear force, residual feed intake and marbling score in 
Nelore Cattle (Da Silva et al., 2016b). In addition, 
genome CNVs are associated with meat tenderness in 
Nellore Cattle (Da Silva et al., 2016b). Xu et al. (2017) 
suggested that the CNV of the LEPR gene contributed to 
fat deposition in muscles and desirable trait for meat 
production in Qinchuan cattle breeds. CNV of the 
ABCA12 gene was associated with growth and 
development in Holstein and Jersey cattle breeds 
(Mesbah-Uddin et al., 2018). 

On the other hand, Zhang et al. (2018) indicated that 
gain CNV type of the GBP2 gene has high growth traits in 
body height and body length than loss/median CNV types 
in Pinan cattle, whereas the median CNV type of the 
GBP2 showed better body length in Jian and Chaidamu 
cattle and yak (Zhang et al., 2018). In Jiaxian cattle, gain 
CNV type of the CYP4A11 gene had higher adult 
hucklebone  width than loss types, while in Qinchuan and 



 
 
 
 
Jinnan cattle gain CNV type of the CYP4A11 gene had 
higher adult heart girth, chest depth and body weight than 
loss types (Yang et al., 2017). The MICAL-L2 CNVs were 
significantly associated with body weight, height, and 
length in Nanyang cattle at 6 and 12 months old (Xu et 
al., 2013). The individuals with copy number gain of the 
MYH3 gene showed better growth trait than the loss 
and/or median copy number types in Chinese cattle (Xu 
et al., 2014). The gain/normal CNV type of the LEPR 
gene performed better in traits of body weight, height and 
length than the loss type in Nanyang (Shi et al., 2016). 
Similarly, the gain CNV type of the MAPK10 gene 
performed better in traits of body weight, body height and 
chest girth than the loss type in Nanyang (Liu et al., 
2016). Further, Bouwman et al. (2018) found that 
missense variant of LCOR (ligand-dependent co-
repressor) is associated with variation in height and 
body size in mammalian. 

Although the individuals with copy number gain in 
LEPR gene has high body weight, hucklebone width and 
rump length than loss or median (Xu et al., 2017), heart 
girth and body length are significantly associated with 
CNV types in CNVR (Zhang et al., 2014) in Chinese 
cattle. According to the finding of Liang et al. (2010), it 
was indicated that genotype IGF1R gene is associated 
with body weight, body height and body slanting length in 
yak breeds. Consistently, gain and normal copy number 
types has high heart girth, body length, weight and height 
at cattle ages of 12, 18 and 24 months (Shi et al., 2016; 
Xu et al., 2013); Conversely, no significant association 
was found at CNVs LEPR locus with growth traits of 
cattle age of 2 years (Shi et al., 2016), maybe due to 
breed differences and/or relatively small numbers of 
samples (Xu et al., 2013). Significant difference in CNV of 
the LEPR gene was determined in the Nanyang and 
Qinchuan cattle breeds in China (Xu et al., 2017). CNVs 
of the PLA2G2D and MYH3 genes are significantly 
associated with body height, body length, heart girth, 
hucklebone width, and body weight (Zhang et al., 2014). 
Zhou et al. (2016) detected 17 CNVs overlapped with 
QTLs that were significantly associated with seven 
growth traits and one of the CNV may be involved in 
growth traits through KCNJ12. In yak, CNVs of the KLF6, 
CHKB, GPC1 and CHRM3 are associated with growth 
traits (Zhang et al., 2016). 
 
 
ASSOCIATION OF CNVs WITH COAT COLOR 
 
In farm animal breeds, coat colour is one of the most 
significant characters that can be used to distinguish 
them. This is influenced by different genes that are 
involved in determining the presence, distribution and 
biochemical activities of the melanocytes (Fontanesi et 
al., 2010). The ASIP, TYR, TYRP1, KIT, KITLG, PMEL, 
MC1R, and MIT genes play major roles in determining 
coat colour variation  in  livestock  breeds  (Brenig  et  al.,   
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2013; Fontanesi et al., 2010, 2012; Fontanesi and Russo, 
2013). On the other hand, CNVRs covering the MC1R 
gene has been involved in coat color of Black Angus 
cattle (Hou et al., 2012). 

Coat colours in sheep and goat breeds are determined 
by duplication CNVs of the ASIP gene (Fontanesi et al., 
2009, 2011; Han et al., 2015; Norris and Whan, 2008, 
Figure 1). Similarly, Norris and Whan (2008) reported that 
tandem duplication of a 190-kb portion of the ovine 
genome is responsible for the dominant white coat color 
(A

w/t
) allele of domestic sheep. The duplication of ASIP is 

linked to the typical white coat colour sheep species 
(Bickhart and Liu, 2014), because the white coats are 
favoured in sheep for wool production that is easily dyed. 
Moreover, the duplications of the KIT gene in the pigs are 
determined by the dominant white locus (Pielberg et al., 
2002; Rubin et al., 2012). Moreover, Brenig et al. (2013) 
identified three major duplication KIT locus variations in 
White Galloway and White Park cattle that could 
represent the fundamental mutation for dominant white, 
patch and belts phenotypes. However, colour sidedness 
in cattle is determined by a first allele on chromosome29 
(Cs29), which results from the translocation of a 492-
kilobase chromosome 6 segment encompassing KIT to 
chromosome 29 through a process of micro homology 
mediated end joining, and a second allele on 
chromosome 6 (Cs6), derived from the first by 
repatriation of fused 575-kilobase chromosome 6 and 29 
sequences to the KIT locus via non-allelic homologous 
recombination (NAHR) in several Brown Swiss and 
Belgian Blue cattle (Durkin et al., 2012). In White 
Galloway and White Park cattle, the effects of the 
modified KIT locus result in mottled markings rather than 
color sidedness (Brenig et al., 2013). Additionally, Durkin 
et al. (2012) found that colour sided Dutch witrik and 
Ethiopian Fogera cattle were shown to carry 
chromosome 29 allele; Austrian pstertaler sprinzen, 
Czech red-spotted cattle and French vosgienne the 
brown Swiss carry chromosome 6 allele; and Irish moiled, 
Swedish mountain and domestic yak carried both the 
chromosome 29 and 6 alleles. Similarly, the coloured 
side and white color of yak breeds are caused by the 
sequential translations of KIT chromosome 6 and 29 
alleles (Zhang et al., 2014), due to introgression in yak 
after domestication via well-documented hybridization 
of Bos taurus and Bos grunniens (Durkin et al., 2012; 
Medugorac et al., 2017). 
 
 
COPY NUMBER VARIATIONS AND MORPHOLOGY 
 
The feather growth and comb shape are the defining 
morphological traits of the chicken and are caused by 
CNVs. Dominant mutation in pea comb of chickens 
significantly reduces the size of the comb and wattles 
(Wright et al., 2009; Figure 2). Chickens dissipate up to 
15% of their body heat through the comb and wattles due  

https://www.nature.com/articles/s41588-018-0056-5#auth-1
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Figure 1. Copy number variation of the ASIP (Sheep) and KIT (cattle) genes contribute to phenotype (coat colours). 
Sources: Durkin et al. (2012), and Norris and Whan (2008). 

 
 
 
to lack of sweat (Whittow, 2000); therefore, chicken 
reduce heat loss through pea comb phenotype to 
adaptive cold environments (Wright et al., 2009). Bickhart 
and Liu (2014) reported that important genes identified in 
chickens that have been modified by CNVs are the pea 
comb phenotype. Duplication of the first intron of the 
SOX5 gene in male and female chickens of pea comb 
phenotype keeps reducing the size of combs (Wright et 
al., 2009). In developing countries like Ethiopia, farmers’ 
selects indigenous chicken for breeding and marketing 
purpose based on comb and wattle types (Bekele et al., 
2016). For instance, the market price of double comb 
(Pea-comb) is more than single comb (Wild-type) of 
chickens (Bekele et al., 2016). A sex-linked late feathering 
allele K containing two copies of PRLR has been 
introduced to commercial flocks and used widely for 
sexing hatchlings (Wang et al., 2010). The late feathering 
locus has been linked to a CNV positioned at the Z 
chromosome, where duplication of partial copies PRLR 
and SPEF2 genes show mutant K alleles (Wang et al., 
2010). This mutation causes reduced fertility and 
retarded development of fly feathers. Recent work 
indicated that PRLR expression in the skin of one-day old 
early feathering and late feathering chicks did not show 
significant difference, whilst SPEF2 expression in the skin 
of one-day old displayed a significant difference between 
early feathering and late feathering chicks (Zhao et al., 
2016), suggesting that SPEF2 gene is good candidate 
genes for chicken feathering, but PRLR is not. 
 
 

ASSOCIATION OF CNV WITH DISEASES 
 

In the history of livestock evolution, CNVs of the genes is 
associated with immune system in different environments. 
Bickhart et al. (2016) found that CNVs duplication of the 
KRTAP9-1 gene paralog of KRTAP9-2 involved tick 
resistance in indicine cattle.  Similarly,  the  CNVs  of  the 

ULBP17 gene encoded was related to the immune 
system in yak (Zhang et al., 2016) as well as pathogen 
and parasite resistance in cattle (Alvarez and Akey, 2012; 
Bickhart et al., 2012; da Silva et al., 2016a). Although 
CNVRs of the BoLA-DQA2, BoLA-DQA3 and BoLA-DQB 
genes are associated with immune response in yak 
(Zhang et al., 2016), the CNVR of TICAM1 is candidate 
gene for response to Trypanosome congolense infection 
(Noyes et al., 2011). The MFGE8, COL13A1, CFTR, 
BDKRB1, PTGS2, MR1, PECAM1, and LRFN5 genes 
are involved in immune system response of South African 
Nguni cattle (Wang et al., 2015). Genomic CNVs are an 
important type of genetic variation in livestock immune 
development in different environments. 

 
 
IMPLICATION OF GENOMIC CNV ON LIVESTOCK 

 
Livestock genomics and marker-assisted selection 
enhances genetic progress through increased genetic 
variation, accurate predictions of breeding values, high 
intensities of selection and shorter generation intervals 
(Pryce and Daetwyler, 2011). For instance, with genomic 
selection, the generation interval of dairy cattle from five 
years could be reduced to two years (Pryce and 
Daetwyler, 2011). This indicates the vital roles of 
genomic selection dairy industries worldwide (Hayes et 
al., 2013). Molecular genetics research began in livestock 
nearly 33 years have been passed, nevertheless, the 
livestock breeder have been focused on gene 
sequencing of all the major livestock species (Rothschild 
and Plastow, 2014). Recent advances in genomics 
studies use new genotyping tools that allowed breeders 
to identify specific genomic segments (Bickhart and Liu, 
2014). Consequently, human population grew from an 
estimated 7.52 billion people to approximately 9.73 billion 
people in 2050  
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Figure 2. Copy number variation of the SOX5 gene contributes to phenotype (pea-
comb chickens) (A) Wild-type male, (B) wild-type female, (C) pea-comb male and 
(D) pea-comb female. Source: Wright et al. (2009).  

 
 
 
(http://www.world-ometers.info/world-population). Thus, 
this is an opportunity for animal’s breeders to apply 
genomics selection in livestock in response to demand 
for livestock products, especially those that have high 
nutrition (meat and milk). In addition, the development of 
the Illumina BovineHD BeadChip (Wu et al., 2015; Durán 
Aguilar et al., 2016; Prinsen et al., 2016; Xu et al., 2016), 
the Illumina BovineSNP50 BeadChip (Ben Sassi et al., 
2016), next-generation sequencing (Bickhart et al., 2012; 
Keel et al., 2016; Zhang et al., 2016) and whole genome 
sequence (Keel et al., 2016) have allowed breeders to 
apply genomic in livestock selection by low cost 
genotyping (Van Raden et al., 2009). As a result, this 
genotyping array gives breeders an opportunity to 
consider young bulls at earlier ages (Bickhart and Liu, 
2014). 
 
 
CONCLUSIONS AND LIMITATION 
 
Copy number variations (CNVs) can cause radical 
changes in  phenotype  variation,  gene  expression,  and 

evolutionary adaptation, through gene dosage effects, 
disruption of transcript arrangement, and regulatory 
polymorphisms. The CNV distributed within and among 
livestock could be modified by mutation, selection, 
domestication and demographic history. Several studies 
revealed that copy number variable regions (CNVRs) 
could be potentially associated with growth (LEPR, 
MICAL-L2, KCNJ12 CHKB, KLF6 and MYH3), milk 
production (PLA2G2D, NIBP, DGAT1, and VPS28), 
reproduction (TSEG2, AKR1C3 and IZUMO1), coat color 
(ASIP, TYR, TYRP1, KIT, KITLG, PMEL, MC1R and MIT), 
morphology (SOX5, SPEF2) and health (TICAM1, 
ULBP17, MHC) in livestock. This knowledge will be 
extremely pertinent from a molecular perspective and 
practical applications of genomic CNVs in animal 
breeding. 

Several studies have investigated CNV in the livestock 
genome by using comparative genomic hybridization 
arrays, the Illumina BovineHD BeadChip, the Illumina 
BovineSNP50 Bead Chip, whole genome sequence and 
next-generation sequencing. However, in previous studies, 
CNVRs  comprise  ∼2–7%  of  the cattle genome (Keel et 

https://www.baidu.com/link?url=e3w8tVpg-hN41TMIyzWYzanuB9P0-NRQnYPqF85DVlvifOyBGSIuSj1zkzCezlmsuIKgnccJAmc60hIGU54XHMt6qdNfe3WorFajhaYHpnS6O4t59Se6lrLucDD7jeEcWpAnbOo8B5JfoDmRtHuEdZxRNyFUboXgUo807lUWmzRuTJ5okkwEmvpNIzu6Jy57&wd=&eqid=af9d240d00014e79000000065bb8d515
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al., 2016). Therefore, in livestock species, questions 
remain about the genome frequency of CNVs. In addition, 
in most of livestock species, the extent to which CNV 
affect production, reproduction, health, coat color and 
morphology is not well characterized such as, sizes, and 
locations, chromosomal properties, along with 
evolutionary processes. Most importantly, there is little or 
no works on genomic CNVs of tropically adapted 
livestock, particularly those adapted to hot climate 
(Camel, goats), survival under low feed (East African 
Boran cattle), and disease resistance (Sheko, NDama 
cattle breeds). Therefore, application of genomics CNVs 
in livestock break the bridging between breeders and 
livestock producer, however, there are still gaps on 
genotypes and overlapping genes. 
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