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The objective of this study was to ascertain the effects of pH and temperature on nutrient uptake 
efficiency of 3 wastewater protozoan isolates (Aspidisca (A), Trachelophyllum (B) and Peranema (C)) 
that have previously been screened for nutrient uptake ability. The study was carried out in shake flask 
at pH 5, 6, 7, 8 and 9 and incubation temperatures of 25, 30 and 35

o
C for 96 h. The results revealed 

optimum pH ranges for the uptake of phosphate and nitrate to be 7 to 9 and 5 to 7, respectively. 
Maximum nutrient uptake was found to occur at 25

o
C with phosphate concentration decreasing from 

64.74 to 10.21 mg/l, 63.09 to 8.54 mg/l and 64.47 to 6.36 mg/l, for isolates ‘A’, ‘B’ and ‘C’, respectively. 
Also, nitrate concentration was found to decrease from 24.71 to 4.91 mg/l for isolate ‘A’, 24.47 to 11.15 
mg/l for isolate ‘B’, and 24.58 to 15.00 mg/l for isolate ‘C’ at the same temperature. An increase in COD 
was observed in mixed liquor inoculated with the test isolates. The study has been able to give an 
insight into the optimum temperature and pH for phosphate and nitrate uptake by the isolates. 
 
Key words:  Nitrate, pH, phosphate, temperature, uptake. 

 
 
INTRODUCTION 
 
Wastewater may contain high levels of nutrients, which 
when excessively released to the environment can lead 
to the undesirable growth of microorganisms and hence 
eutrophication. The two major eutrophic nutrients present 
in effluents from wastewater are nitrogen and phosphorus 
compounds (Dicicco, 1979; Sahset et al., 2006). The pre-
sence of these nutrients in wastewater, causes ecological 
impacts and affect public health, thus the control of their 
emission into receiving water bodies is therefore essen-
tial (Amir et al., 2004; Hosni et al., 2007). 
Although biological nutrient removal has been attributed 
mostly to bacteria, there is now increasing evidence that 
protozoa play important roles in nutrient recycling in 
aquatic ecosystems (Coran, 1986; Jacqueline and Barry, 
1995). Other studies have reported the involvement of 
protozoa in enhanced mineralization of nutrients, like 
carbon, nitrogen and phosphorus in terrestrial environ-
ment (Sherr et al., 1983; Anderson and Griffic, 2001). 
Also, several protozoa have been implicated in the excre- 
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tion of mineral nutrients, thus resulting in accelerated use 
of carbon sources by other organisms. 

Despite the fact that protozoa are known to enhance 
the mineralization of nutrients (phosphorus and nitrogen) 
in aquatic microcosms and in activated sludge, little is 
known on the effect of temperature and pH on their 
nutrient removal efficiency. This then forms the basis of 
this investigation. 
 
 
MATERIALS AND METHODS 
 
All chemicals used were of analytical grade. All flasks were 
incubated in a rotary shaker, at a shaking speed of 100 rpm. Aliquot 
samples were taken at time zero and every 24 h for the analysis of 
the above mentioned parameters. The duration of incubation for 
each experiment setup was 96 h.  

Three protozoa (Aspidisca (A), Trachelophyllum (B) and 
Peranema (C)) were used for this study. They were isolated from 
the aerobic zone of Daasport wastewater treatment plant in 
Pretoria, South Africa, between October and November, 2006. The 
isolates have previously been screened for phosphate and nitrate 
removal efficiency (Akpor et al., 2007). 

In order to evaluate the effect of pH and temperature on 
biological phosphate and nitrate uptake by the test protozoa,  mixed  
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Figure 1. Average phosphate concentrations in mixed liquor inoculated with the isolates at 
different pH. Initial and final means concentrations at time zero and after 96 h incubation. A, 
B and C represents the wastewater protozoan isolates, Aspidisca, Trachelophyllum and 
Peranema species, respectively. 

 
 
 
liquor was obtained from the anaerobic zone of Daasport waste-
water treatment plant in Pretoria, South Africa. The mixed liquor 
was filtered, using Whatman No. 1 filter paper and then supple-
mented with CH3COONa, MgSO4.7H2O and KNO3 in concentrations 
of 5, 0.5, and 0.18 g/l, respectively before sterilization in an 
autoclave. Prior inoculation with the test protozoa isolates, the 
following antibiotics were added to the mixed liquor: penicillin  (10 
µg/mℓ), streptomycin (66 µg/mℓ) and tetracycline (100 µg/mℓ). This 
was done to inhibit any contamination by bacteria. 

The study was performed in two phases: In the first phase, the 
impact of pH variation; and in the second phase, the influence of 
temperature variation on nutrient uptake by the test isolates was 
investigated. Phosphate and nitrate were analyzed, using the 
ascorbic acid and salicylate methods, respectively, as described in 
standard methods (APHA, 2001). Chemical oxygen demand (COD) 
was determined, using the closed-reflux method, as described also 
in standard methods. 
 
 

RESULTS AND DISCUSSION 
 
The results of the effect of pH on phosphate uptake by 
the respective isolates in mixed liquor sample are shown 
in Figures 1 and 2. As can be seen from Figure 1, 
optimum pH range for phosphate uptake was found to be 
from 7 to 9, for isolate ‘A’ and ‘B’, and from 8 to 9 for 
isolate ‘C’. However, in all the isolates, the highest uptake 
was observed at pH 9, reducing from 68.01 to 4.11 mg/l, 
68.98 to 5.86 mg/l and 68.50 to 23.25 mg/l, for isolates 
‘A’, ‘B’ and ‘C’, respectively.  

This result is in conformity with what have been reported 
by earlier workers.  In a study conducted by Sahset et al. 
(2006), on the effect of pH on phosphate removal from 
wastewater by electro-coagulation with iron plate elec-
trodes, the highest phosphate removal was observed at a 
pH range of 7 to 9. A similar result was obtained by 
Huigiang (2007). However, our result was at variance 
with the report of Yan et al. (2007). In their report, when 
the effect of various initial pH values on anaerobic and 
aerobic transformations of soluble ortho-phosphate were 
investigated, anaerobic phosphate release decreased 
when initial pH increased from 6.4 – 6.8, but increased as 
pH was raised from 6.8 – 8.0. Raising pH values to 8 
have been reported to lead to a reduction in phosphate 
concentration (Zhu et al., 2001). 

In the case of nitrate uptake, optimum uptake was 
observed at a pH of 6 - 7 for isolate ‘A’, 5 - 8 for isolate 
‘B’ and 5 to 6 for isolate C (Figure 2). In all the 3 isolates, 
highest uptake of nitrate was noticed at pH 6, decreasing 
from 17.68 to 3.20 mg/l for isolate ‘A’, 16.12 to 7.62 mg/l 
for isolate ‘B’ and from 17.80 to 7.23 mg/l for isolate ‘C’. 
Although some workers (Zawaideh and Zhang, 1998) 
have reported that at normal pH ranges, nitrate removal 
is usually less than 50% without buffer treatment. As 
stated earlier, an attempt was made to buffer our pH but 
this was observed not to support the growth of our iso-
lates, therefore there was no result to compare the effect  
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Figure 2. Average nitrate concentrations in mixed liquor inoculated with the isolates at different 
pH. Initial and final means concentrations at time zero and after 96 h incubation. A, B and C 
represents the wastewater protozoan isolates, Aspidisca, Trachelophyllum and Peranema 
species, respectively. 

 
 
 

of a buffered pH and a non-buffered pH on nitrate 
removal. 

Nese and Ennil (2004) have reported that the most 
effective pH for nitrate removal is at 2 for powdered 
activated carbon but in the presence of other absorbents, 
pH value did not affect nitrate removal. The acidity or 
alkalinity of wastewater is known to affect biological 
treatment. It is reported that the pH of wastewater needs 
to remain between 6 and 9 to protect organisms. 
Extremely low or high pH values were not tested in this 
study; this is because such pH concentrations cannot 
support the growth of our isolates, of which pH is 
important. For biological nutrient removal to be accom-
plished, the environment must support the growth of the 
microorganisms (Warangkana and Randall, 1997). Acids 
and other substances that alter pH can inactivate treat-
ment processes when they enter wastewater from 
industrial or commercial sources (Metcalf and Eddy, 
1999). 

The effect of temperature on phosphate and nitrate 
uptake by the test protozoan isolates are shown in 

Figures 3 and 4. As shown in the figures, phosphate and 
nitrate uptake was observed to be optimum at tempe-
rature range of 25 to 30

o
C. Highest uptake was, however 

observed at 25
o
C, decreasing (in the case of phosphate 

uptake) from 64.74 to 10.21 mg/l for isolate ‘A’, 63.09 to 
8.54 mg/l for isolate ‘B’ and 64.47 to 6.36 mg/l for isolate 
‘C’. At the same temperature of 25

o
C, nitrate concen-

tration decreased from 24.7 to 4.91 mg/l for isolate ‘A’, 
24.47 to 11.15 mg/l for isolate ‘B’ and from 24.58 to 15.00 
mg/l for isolate ‘C’. At a temperature of 35

o
C, concen-

trations of phosphate and nitrate removed were observed 
to be minimal. This trend was irrespective of isolate. 

Temperature has been known to have an effect on 
growth processes of protozoa. For example, cell volume 
often decreases with increasing water temperature. It has 
also been observed that gross growth efficiency, for 
protozoan species may increase, decrease or remain 
unchanged in response to increasing water temperature 
(Caron et al., 1986, Brooks, 1996). In general, biological 
treatment activity is reported to accelerate in warm tem-
peratures and slows in cool temperatures,  but  extremely  
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Figure 3. Average phosphate concentrations in mixed liquor inoculated with the isolates at 
different temperature. Initial and final means concentrations at time zero and after 96 h 
incubation. A, B and C represents the wastewater protozoan isolates, Aspidisca, 
Trachelophyllum and Peranema species, respectively. 

 
 

0

5

10

15

20

25

30

35

40

25 30 35 25 30 35 25 30 35

A B C

Temperature 
o
C

m
g

-N
O

3
/l

Initial Final
 

 
Figure 4. Average nitrate concentrations in mixed liquor inoculated with the isolates at different 
temperature. Initial and final means concentrations at time zero and after 96 h incubation. A, B 
and C represents the wastewater protozoan isolates, Aspidisca, Trachelophyllum and 
Peranema species, respectively. 
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Figure 5. Concentrations of mixed liquor COD at different pH. Initial and final means 
concentrations at time zero and after 96 h incubation. A, B and C represents the 
wastewater protozoan isolates, Aspidisca, Trachelophyllum and Peranema species, 
respectively. 
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Figure 6. Concentrations of mixed liquor COD at different temperatures. Initial and final 
means concentrations at time zero and after 96 h incubation. A, B and C represents the 
wastewater protozoan isolates, Aspidisca, Trachelophyllum and Peranema species, 
respectively. 
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hot or cold temperatures can stop treatment processes 
(Metcalf and Eddy, 1999). 

Temperature is also reported to be one of the key 
parameters that affects the reaction kinetics and perfor-
mance of biological nutrient removal systems. There are 
however, conflicting reports on the effect of temperature 
on enhanced biological nutrient removal systems (Erdal 
et al., 2003; Thongchai et al., 2003). Marais and Jenkins 
(1992) have reported that the optimum operating 
temperature for biological nutrient removal processes 
should range from 28 to 33

o
C. 

As shown in Figures 5 and 6, COD concentrations in 
mixed liquor were observed to increase in presence of 
the test isolates. This was irrespective of pH and incuba-
tion temperature. Concentrations of COD in mixed liquor 
were observed to increase from 261.36 to 654.56 mg/l, 
241.15 to 813.80 mg/l and 243.56 to 900.24 mg/l at pH 6, 
for isolates A, B and C, respectively. In the case of tem-
perature, highest COD increase was observed at 25

o
C for 

isolates A and B and at 30
o
C for isolate C, thus 

increasing from 290.97 to 694.36 mg/l, 249.06 to 970.95 
mg/l and 250.15 to 820.23 mg/l for isolates A, B and C, 
respectively.   

Although some workers (Lee and Welander, 1996) 
have reported a decrease in COD in similar studies, this 
was not observed in this study. Ryu et al. (2007), when 
investigating the effect of pH on COD removal in acti-
vated sludge system, revealed that maximum COD 
removal efficiency is obtained when influent wastewater 
pH is adjusted to 7.0. This disparity may have been due 
to the type of wastewater used. In this study, the waste-
water used was mixed liquor that was supplemented with 
sodium acetate salt. 
 
 
Conclusion 
 
This study has been able to show the optimum pH and 
temperature for nutrient uptake by the test isolates, which 
was previously not well known. Although these findings 
cannot be considered to be exhaustive, as further work is 
going on to ascertain the effect of other nutrient supple-
ments in the mixed liquor on nutrient removal by the 
isolates, it has still given an insight to the optimum pH 
and temperature for nutrient uptake by wastewater 
protozoa. This knowledge will help in an effective biolo-
gical wastewater treatment. 
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