Reducing ammonia volatilization from compound fertilizers amended with zeolite

W. B. M. Lija¹, O. H. Ahmed¹,²* and S. Kasim¹

¹Department of Crop Science, Faculty of Agriculture and Food Sciences, Universiti Putra Malaysia Bintulu Sarawak Campus, 97008 Bintulu, Sarawak, Malaysia.
²Institute of Tropical Forestry and Forest Product, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.

Accepted 23 July, 2012

Ammonia volatilization is a direct loss of available nitrogen in agriculture. The objective of this study was to determine the effect of amending NPK fertilizer with different rates of clinoptilolite zeolite on ammonia volatilization, soil exchangeable ammonium, and available nitrate. Seven treatments evaluated were: 250 g soil alone (T1), 3.28 g ammonium nitrate (AN) without additive (T2), 44.6 g 5:3:2 formulated fertilizer + 31.77 g zeolite (T3), 44.6 g 5:5:5 formulated fertilizer + 26.36 g zeolite (T4), 37.17 g 6:6:6 formulated fertilizer + 18.92 g zeolite (T5), 22.30 g 10:10:10 formulated fertilizer + 4.06 g zeolite (T6), and 14.87 g 15:15:15 commercial fertilizer (T7). The ammonia loss was measured using close-dynamic air flow system method. Soil pH, exchangeable ammonium and available nitrate at the end of this study were determined using standard procedures. The mixture of formulated fertilizer and zeolite significantly reduced ammonia volatilization. Zeolite in the formulated compound fertilizers did not significantly affect soil exchangeable ammonium and available nitrate. Amending N, P, and K compound fertilizer could minimize ammonia loss.

Key words: Ammonium nitrate, zeolite, ammonia volatilization, soil exchangeable ammonium, soil available nitrate.

INTRODUCTION

The use of nitrogen fertilizers worldwide is about 80 million tons N per annum (Follett et al., 1991; Freibauer et al., 2001). However, nitrogen fertilizers such as ammonium nitrate and urea are noted for high N loss through ammonia volatilization (Prasertsak et al., 2001; Cai et al., 2002). Ammonia volatilization is an important problem in agriculture. It is a direct loss of available N for plant uptake (Asman et al., 1994).

Some researchers used acidic materials to reduce ammonia volatilization in acidic soils. For example, triple superphosphate and humic acids (HA) have been used to minimize ammonia loss but HA alone was not effective in controlling ammonia volatilization (Ahmed et al., 2006b, 2008; Shamsuddin et al., 2009). Furthermore, ammonia loss has also been controlled using phosphoric acid through reduction of microsite pH (Fenn and Richards, 1989; Fenn et al., 1990; Fan and Mackenzie, 1993; Siva et al., 1999). However, this material is not only expensive, but it also produces corrosive end product when it is mixed with urea. Additionally, it requires special precautions in handling and storage.

Zeolites can be used to minimize ammonia loss because they can absorb important nutrients such as ammonium (NH₄⁺) (Ahmed et al., 2010) and potassium (K). These nutrients absorbed are timely released for optimum plant uptake. Clinoptilolites can be used to amend NPK fertilizer to reduce ammonia loss. This is possible partly because of their high cation exchange capacity (CEC) and great affinity for NH₄⁺ (Stumpe et al., 1984; 1985; Ming and Dixon, 1986; Ferguson and Pepper, 1987; He et al., 2002).

To date, there is lack of information on ammonia volatilization via mixing ammonium nitrate (AN), Egypt...
rock phosphate (ERP), muriate of potash (MOP), and zeolite. This kind of compound fertilizer with clinoptilolite may not only minimize ammonia loss from AN but it could improve retention of nutrients and their timely release for plant uptake. A laboratory study was carried out to evaluate the effect of different amounts of zeolite added to NPK fertilizer from AN, ERP, and MOP on ammonia loss.

MATERIALS AND METHODS

The soil used in this experiment was sandy loam, Typic Tualemkuts (Bekenu series) taken from Universiti Putra Malaysia Bintulu Campus at 0 to 15 cm depth. The soil was air dried and sieved to pass a 5 mm sieve and its pH was determined in water at a ratio of 1:2.5 soil: distilled water suspension and 1 M KCl using a glass electrode (Peech, 1965). Soil CEC was determined by the leaching method followed by steam distillation technique (Bremner, 1965).

Total N of the soil and zeolite were determined by the kjeldahl method described by Bremner (1965). Total P and K in the soil and zeolite were extracted by Aqua Regia method. Soil available P and exchangeable cations were extracted using the leaching method (Cottenie, 1980). Total P and available P were determined using the blue method.

Total cations and exchangeable cations (K, Ca and Mg) were determined using atomic absorption spectrophotometry (AAS). Soil texture was determined using the hydrometer method. Organic carbon of soil was determined using loss of ignition method (Piccolo, 1996). CEC of zeolite was determined using CsCl method (Ming and Dixon, 1986).

Treatments were surface-applied and the amount of fertilizers used was calculated from the standard recommendation of Malaysian Agricultural Research and Development Institute (MARDI, 1990) for Masmadu maize (Zea mays L). The treatments per 250 g of soil evaluated were:

- A. 250 g soil alone (T1).
- B. 3.28 g AN without additive (T2).
- C. 44.6 g 5:3:2 formulated fertilizer (12.83 g compound fertilizer + 31.77 g zeolite) (T3).
- D. 44.6 g 5:5:5 formulated fertilizer (18.24 g compound fertilizer + 26.36 g zeolite) (T4).
- E. 37.17 g 6:6:6 formulated fertilizer (18.25 g compound fertilizer + 18.92 g zeolite) (T5).

The closed-dynamic air flow system method (Siva et al., 1999; Ahmed et al., 2006a, b) was used to determine the daily ammonia loss for 12 days. The system consisted of an exchange chamber 500 ml Erlenmeyer flask containing 250 g of soils and 250 ml Erlenmeyer flask containing 75 ml of boracic acid, bromocresol green and methyl red indicator as ammonia trap. Both Erlenmeyer flasks were stoppered and fitted with an inlet/outlet. The inlet of the chamber was connected to an air pump and the outlet was connected by polyethylene tubing to the ammonia trap. Air was passed through the chambers at a rate of 2.50 L/min/chamber. This incubation study was conducted at room temperature for 12 days. The boric acid indicator traps were replaced every 24 h. The release ammonia was captured in the trapping solution and back-titrated with 0.01 M HCl, until the colour changed from green to purple to measure the ammonia released. The measurement process was continued until the loss of less than 1% of the N added to the AN was recorded. A 250 g of soil were placed in the exchange chamber and moistened to 70% field capacity.

After 12 days of incubation, incubated soil was air dried and crushed to mix well with applied fertilizer. The pH, exchangeable NH$_4^+$ and available NO$_3^-$ of incubated soil was determined. The pH of the soil was determined as mentioned previously. For exchangeable NH$_4^+$ and available NO$_3^-$, they were extracted using 2 M KCl and determined by steam distillation (Keeney and Nelson, 1982). The experimental design was a completely randomized design with three replications for each treatment. Analysis of variance (ANOVA) was conducted to test treatment effect and means of treatments were compared using Duncan’s new multiple range test (DNMRT) (SAS, 2001).

RESULTS AND DISCUSSION

The selected physical and chemical properties of Bekenu series are presented in Table 1. The selected chemical and physical properties of this soil were comparable with those reported by Paramananthan (2000) except for organic carbon and CEC. The selected physical and chemical properties of zeolite are also shown in Table 1. The CEC of zeolite was relatively lower than expected 12 days of ammonia (NH$_3$) loss were daily recorded during

<table>
<thead>
<tr>
<th>Property</th>
<th>Soil</th>
<th>Zeolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH$_{water}$</td>
<td>4.7</td>
<td>7.03</td>
</tr>
<tr>
<td>pH$_{KCl}$</td>
<td>3.43</td>
<td>6.37</td>
</tr>
<tr>
<td>Organic carbon (%)</td>
<td>3.6</td>
<td>nd</td>
</tr>
<tr>
<td>Texture</td>
<td>SL</td>
<td>nd</td>
</tr>
<tr>
<td>CEC (cmol/kg)</td>
<td>12.8</td>
<td>75.4</td>
</tr>
<tr>
<td>Total N (%)</td>
<td>0.084</td>
<td>0.037</td>
</tr>
<tr>
<td>Total P (%)</td>
<td>0.009</td>
<td>NA</td>
</tr>
<tr>
<td>Total K (%)</td>
<td>0.023</td>
<td>0.709</td>
</tr>
<tr>
<td>Exchangeable K (cmol/kg)</td>
<td>0.174</td>
<td>22.29</td>
</tr>
<tr>
<td>Exchangeable Ca (cmol/kg)</td>
<td>0.717</td>
<td>50.06</td>
</tr>
<tr>
<td>Exchangeable Mg (cmol/kg)</td>
<td>0.525</td>
<td>2.21</td>
</tr>
</tbody>
</table>

CEC, Cation exchange capacity; SL, sandy loam; nd, not determined; NA, not available.

Table 1. Selected physical and chemical properties of soil and zeolite.
according to Ahmed et al. (2008), maximum ammonia loss occurred on day three of incubation. This observation may be due to differences in soil chemical and physical properties such as organic matter, texture, total organic carbon and pH. This observation was also possible because of sources of NPK fertilizers. The total ammonia loss over 12 days of incubation is shown in Table 2. Interestingly, ammonia losses for treatments with zeolite (T3, T4, T5 and T6) were significantly lower than that of ammonium nitrate alone (T2). There was no ammonia loss for soil alone (T1). This suggests that zeolite can reduce NH₃ loss when compound fertilizers are amended with clinoptilolite zeolite.

There were significant differences in pH. Even though ammonium nitrate alone (T2) reduced soil pH compared to most of the fertilizers with zeolite, ammonia loss was higher for T2 because it had no zeolite to control retention of ammonium ions in the soil. As shown in Table 2, there was no significant accumulation of exchangeable NH₄ for soil only and treatments with zeolite compared with commercial fertilizer.

A study has shown that ammonium-exchange zeolite does only act as a slow-release fertilizer in a medium textured and porous soil (Lewis et al., 1984; Latifah et al., 2010). There was significant difference between treatments in terms nitrate accumulation. T3 caused higher accumulation of available nitrate compared to T2 and T6 because of the treatment had the highest amount of zeolite which could have ensured a better equilibrium between ammonium and nitrate.

Conclusion

Formulated fertilizer with higher amount of zeolite (T3, T4, T5 and T6) effectively reduced ammonia volatilization compared to a commercial compound fertilizer and AN alone. However, the treatments had no effect on
exchangeable ammonium and available nitrate (except for T3 which had the highest amount of zeolite) accumulation.

ACKNOWLEDGEMENTS

The authors acknowledge the financial support of this research by Ministry of Higher Education Malaysia and Universiti Putra Malaysia, Malaysia.

REFERENCES

Follet RF, Keeney DR, Cruzel RM (1991). Managing Nitrogen for Groundwater Quality and Farm Profitability (eds), SSSA, Madison, WI

