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biochemical characteristics. The methods used for 
characterization are based largely on morphological ob-
servations, subsequent classifications based on nume-
rical taxonomic analyses of standardized sets of phenol-
typic characters and, the use of molecular phylogenetic 
analyses of gene sequences (Labeda et al., 2012). Mem-
bers of the genus have high Guanine and Cytosine 
content in their DNA and aerial mycelia (Anderson and 
Wellington, 2001). They are considered as one of the 
most important sources of antibiotics (Dharmaraj, 2010; 
Ayari et al., 2012; Sirisha et al., 2013). They produce 
about two thirds of the clinically useful antibiotics that are 
natural in origin (Jensen et al., 2005a) including strepto-
mycin, erythromycin, tetracycline and neomycin. Indeed 
Streptomyces genus in the marine environment is largely 
unexplored, although true indigenous marine 
Streptomyces species have been described (Bull et al., 
2005), suggesting  a promising source of novel and 
unique bioactive metabolites (Maldonado et al., 2005; 
Moore et al., 2005; Dharmaraj, 2010; Ayari et al., 2012). 
Increasing number of novel metabolites of commercial 
interest was isolated from marine Streptomyces (Lam, 
2006, Wu et al., 2006; Dharmaraj, 2010; Jayaprakashvel, 
2012). Potent and diverse bioactivities were reported, 
they included antibacterial, antifungal, antitumor, and 
anticancer activities (Newman and Cragg, 2007; Olano et 
al., 2009). 

Large number of bioactive products, with medicinal and 
agricultural application, are synthesized by non ribosomal 
peptides synthetases (NRPS) and polyketides synthases 
(PKS type I and II) (Ayuso-sacido and Genolloud, 2005; 
Savic and Vasiljevic, 2006). Polyketides synthases are 
multienzyme complexes that synthesize polyketides by 
sequential decarboxylative condensation of acyl 
coenzyme A units (Hopwood, 1997). NRPSs are multi-
functional enzyme complexes organized into modules. 
Each module contains three essential domains: Adeny-
lation (A), thiolation (T), and condensation (C). Evaluation 
of the biosynthetic potential, expressed in gene detection, 
has been extensively described in terrestrial 
Streptomycetes (Metsa-Ketela et al., 1999); but very little 
is known in marine counterparts. The presence of highly 
conserved sequences in PKSs, and NRPS systems 
among terrestrial and marine organisms have been used 
to design PCR primers, targeting ketosynthase (KS) and 
malonyl transferase in PKS-I, ketoacylsynthase (KSα) in 
PKS-II and adenylation domains in NRPS (Ayuso-sacido 
and Genilloud, 2005; Pathom-aree et al., 2006). 

Streptomyces have been isolated from different parts of 
Jordan, including hot spring areas (Abussaud et al., 
2013), arid habitats (Saadoun et al., 2008), forest 
(Saadoun et al., 2007), and soil (Saadoun and 
Gharaibeh, 2002; Saadoun et al., 1999). Since marine 
environments, which constitute a rich source of novel and 
bioactive marine microorganisms is attracting a major 
focus  of  many  natural  products  research  efforts,   and 

 
 
 
 
since the Gulf of Aqaba represents the only marine 
access of Jordan, we chose this site for our study. Gulf of 
Aqaba environment is unique in terms of its special 
marine life, represented mostly by intensive coral reef 
ecosystems and sea grass meadows; it is a narrow deep 
basin with an average width of 14 km and a total length of 
180 km located in the northernmost part of the Red Sea.  

As far as we know, this is the first report for the iso-
lation of marine Streptomyces from the Gulf of Aqaba, 
Jordan. Therefore, this study was initiated to evaluate the 
bioactivity of Streptomyces isolates from the Gulf of 
Aqaba-Jordan; and to screen for the presence of PKS 
/NRPS genes associated with bioactivity. 
 
 
MATERIALS AND METHODS  
 
Isolation and characterization of Streptomyces 
 
A total of 295 sediment samples were collected from the Gulf of 
Aqaba. Samples were obtained at different depths (1 to 40 m), they 
were placed in sterile universal bottles, and immediately processed 
in the laboratory, according to the following methods (Mincer et al., 
2002; Jensen et al., 2005b): Method 1 (dilution), 1 g of wet sedi-
ment was added to 4 ml sterile seawater, heated for 6 min at 55°C 
to reduce non spore forming bacteria. Aliquots of the sample were 
spread onto the isolation media. Plates were incubated at 30°C for 
7 to 45 days.  Method 2 (dry / stamp): 1 g of sediment was dried 
overnight in laminar hood, then ground lightly. Serial dilutions were 
made by pressing autoclaved foam-plug onto the sediment, then 
repeatedly onto the surface of isolation media. The plates were 
incubated at 30°C for 7 to 45 days. Method 3 (dilute / heat): 1 g of 
dried sediment was added to 3 ml of sterile seawater, then heated 
to 55°C for 6 min. 50 µl aliquots of the suspension were inoculated 
onto the isolation media, plates were incubated at 30°C for 7 to 45 
days. Method 4 (dry / stamp+ dilute/ heat): tThe dried sediment was 
processed using method 2, then as in method 3 before inoculation. 
Plates were incubated at 30°C for 7 to 45 days.  

Each sample was incubated into each of four media: Starch-
yeast extract agar medium (SYB; Soluble starch 10 g/l, yeast 
extract 4.0 g/l, peptone 2.0 g/l, agar 18 g/l); Starch- casein agar 
medium [SCA; Soluble starch 10 g/l, casein (dissolved in 0.3 M 
NaOH) 1.0 g/l,  agar 15 g/l)]; Starch- nitrate broth medium (SNB; 
Starch 20 g/l, KNO3 2 g/l, K2HPO4.3H2O 1 g/l, MgSO4.7H2O 0.5 g/l, 
NaCl 0.5 g/l, CaCO3 3.0 g/l, Trace salt solution 1.0 ml); and 
Oatmeal agar (OA; Oat meal  20 g/l,  trace salt solution 1.0 ml, Agar 
20 g/l). Isolation media were supplemented with 100 µg/ml of 
cycloheximide and 50 µg/ml of nalidixic acid to inhibit the growth of 
yeasts, fungi and bacteria. All samples were processed in tripli-
cates. Suspected Streptomyces colonies were purified on starch 
casein agar. Pure cultures were maintained on starch casein agar 
slants at 4°C. They were sub-cultured every three months. For long 
term storage, isolates were stored in 20% glycerol at -20°C. 
 
 
Cultural, morphological and physiological characteristics 
 
Isolates were characterized to the genus level according to the 
International Streptomyces Project (ISP) (Shirling and Gottlieb, 
1966) and Bergey's manual of Determinative Bacteriology 
(Buchanan and Gibbons, 2002). For cultural and morphological 
characteristics of the colonies and the ability to produce soluble 
pigments, the isolates were inoculated onto the media described by 
Shirling and Gottlieb (1966), and included inorganic salt-starch
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Table 1. Primer sequences used for the detection of NRPS, PKSI, and PKSII genes from Streptomyces isolates. 
 

Target 
Gene 

Primer 
Name 

Oligonucleotide sequences  (5`-3`)  
Product 
Size(bp) 

References 

NRPS 
A3F 
A7R 

GCSTACSYSATSTACACSTCSGG 
SASGTCVCCSGTSCGGTAS 

700-800 Ayuso-Sacido and Genilloud (2005) 

PKS-I 
K1F 
M6R 

TSAAGTCSAACATCGGBCA 
CGCAGGTTSCSGTACCAGTA 

1200-1400 Ayuso-Sacido and Genilloud (2005) 

PKS-II 
KSα 
KSβ 

TSG CST GCT TGG AYG CSA TC 
TGG AAN CCG CCG AAB CCG CT

613 Mesta Ketela et al. (2002) 

 
 
 
agar, oatmeal agar, yeast extract-malt extract agar, and Czapek-
Dox agar. The plates were incubated at 30°C in darkness and 
examined after 7, 14, and 21 days of incubation. The production of 
melanin pigment, in different media, was determined according to 
the methods of ISP. The morphology of aerial mycelia was 
described following Bergey’s Manual (Buchanan and Gibbons, 
2002). 

Carbohydrate utilization was determined by growing isolates on 
basal mineral salts agar medium supplemented with 1% carbon 
source at 28°C (Pridham and Gottlieb, 1948; Benedict et al., 1955). 
Tolerance to NaCl was studied using 4, 7, 10, and 13% NaCl 
concentration in starch casein agar medium [starch (10 g/l), casein 
(1 g/l), and agar (15 g/l0]. 
 
  
Screening for antimicrobial activity of Streptomyces 
 
Antimicrobial activity was determined using agar well diffusion 
method (Augustine et al., 2005a). Streptomyces isolates were 
inoculated in starch casein broth medium prepared with 75% 
seawater. After incubation for 7 days at 30°C with shaking (150 
rpm), the supernatants were tested against Gram-positive bacteria: 
Bacillus subtilis ATCC66 33, Staphylococcus aureus ATCC 6538, 
Staphylococcus epidermidis clinical isolate, Micrococcus luteus 
ATCC 10260, β-hemolytic streptococci clinical isolate. Gram-
negative test strains included: Escherichia coli clinical isolate, 
Pseudomonas aeruginosa clinical isolate, Bordetella bronchiseptica 
ATCC 19395, Klebsiella sp. clinical isolate, plus the yeast Candida 
albicans ATCC 10231. Antimicrobial activity was expressed as the 
diameter of the inhibition zones (Laidi et al., 2006). Clinical isolates 
were obtained from the central laboratory of the ministry of health, 
Amman, Jordan. Test microorganisms were stored on slants at 4°C, 
and subcultures monthly. Streptomyces isolates (S34) showed the 
highest activity, and was selected for further studies. 
 
 
Detection of NRPS, PKS-І, and PKS-П genes 
 
In order to evaluate the biosynthetic potential of bioactive com-
pounds from Streptomyces isolates, degenerate primers: A3F/A7R, 
K1F/M6R and KαF/KβR were used (Alpha DNA / Montreal) to detect 
the presence of NRPS, PSK-I and PKS-II genes in all Streptomyces 
isolates obtained from sediment samples from the Gulf of Aqaba. 
 
 
DNA extraction  
 
Streptomyces isolates were inoculated in Tryptic Soy broth (Sigma) 
prepared with 70% seawater, and incubated at 30°C for 48 h with 
shaking (150 rpm). Genomic DNA was extracted using Wizard 

Genomic DNA Purification Kit (Promega, USA) according to the 
manufacturer instructions. 
 
 
PCR primers 
 
The oligonucleotide primers used for detection of NRPS, PKS-I, 
and PKS-II NRPS genes were obtained from Alpha DNA (Quebec) 
(Table 1). 
 
 
PCR amplification
 
PCR amplification of NPRS, PKS-I, and PKS-II genes were 
performed on My Cycler (Bio-Rad, USA) in a final volume reaction 
of 50 µl, containing 25 µl master mix (Promega, USA), 2 ml of each 
primer and 5 ml of the extracted DNA. NPRS and PKS-I were 
amplified with primers A3F/A7R and K1F/M6R, respectively. They 
were performed as recommended by Ayuso-sacido and Genilloud 
(2005) and Ayuso et al. (2005) using the following programs: 5 min 
at 95°C and 35 cycles of denaturizing for 30 s at 95°C, annealing 
for 2 min at 55°C for K1F/M6R and 59°C for A3F/A7R, and 
extension for 4 min at 72°C, followed by final extension for 10 min 
at 72°C whereas, the amplification of PKS-II with primer KSα/KSβ 
was performed using the following temperatures: 2 min at 95°C, 30 
cycles of denaturizing of 1 min at 96°C, annealing of 1 min at 64°C, 
1.5 min at 73°C  and final extension of 8.5 min at 73°C (Pathom-
aree et al., 2006). 
 
 
Gel electrophoresis 
 
PCR products were analyzed using agarose gel electrophoresis by 
loading 10 µl of each PCR sample and 100 bp DNA Ladder into 1% 
agarose gels (Promega, USA). The electrophoresis gel was run 
with 100 V for 1 h, then examined and photographed using gel 
documentation system. 
 
 
Identification of Streptomyces sp. S34 
 
Isolate S34 was identified according to the description of the 
Streptomyces species recorded in Bergey's Manual and 
International Streptomyces Project (Buchanan and Gibbons, 2002). 
 
 
Antimicrobial bioassay of isolate S34 
 
Antimicrobial activity of isolate S34 was evaluated in Starch casein 
broth medium by agar diffusion method against Gram-positive 
bacteria: S. aureus ATCC 6538, Gram-negative bacteria: E. coli and 
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Table 2. Antimicrobial activity of different color series of Streptomyces against test microorganisms. 
 

Test microorganism 
Streptomyces color series Total number of positive 

isolates (percentage) White Grey Green Blue Red Pink 

S. aureus 13 3 7 1 1 0 25 (89.2) 
P. aeruginosa 3 1 0 1 0 0 5 (17.8) 
M .luteus 9 4 4 1 0 0 18(64.0) 
S. epidermidis 10 3 3 1 1 1 18(64.0) 
β. hemolytic Streptococcus 3 1 2 0 1 0 7 (25.0) 
Klebsiella 3 3 0 1 1 0 8 (28.5) 
E. coli 8 2 6 1 0 1 18 (64.0) 
B. subtilis 8 3 1 1 1 0 14 (50.0) 
Bordetella bronchiseptica 4 1 1 0 1 0 7 (25.0) 
C. albicans 4 2 0 0 1 0 7 (25.0) 

 
 
 

Table 3. PCR detection of NRPS, PKS-I and PKS-II biosynthetic systems in the Streptomyces isolates. 
 

Isolate 
Active 

Isolates 

NRPS PKS-I PKS-II 
Inactive 
Isolates 

NRPS PKS-I PKS-II 

A3F/A7R 
Positive 

K1F/M6R 
positive 

KSα/KSβ 
positive 

A3F/A7R 
positive 

K1F/M6R 
Positive 

KSα/KSβ 
positive 

No. of Streptomyces isolates 29 21 25 17 20 19 6 15 
 
 
 
active against Gram-positive bacteria; one isolate was 
active against Gram- negative bacteria. Only 15 isolates 
showed inhibitory activity against both Gram- positive and 
Gram-negative bacteria, whereas 5 isolates inhibited both 
Gram-positive, Gram- negative and C. albicans. Out of 
the 28 isolates that exhibited antimicrobial activity, 25 
isolates were active against S. aureus, 18 against S. 
epidermidis, 18 isolates against Micrococcus luteus, 17 
against E. coli ,14 against B. subtilis, 8 against Klebsiella 
sp, 7 against C. albicans, 7 against Bordetella 
bronchiseptica, 7 against B-hemolytic Streptococci, and 5 
against P. aeruginosa. Streptomyces isolate S34, 
showed very good activity with a wide spectrum, and thus 
was chosen for further studies. Furthermore, the antimic-
robial activity was stable in all media (that is, starch 
casein nitrate broth, starch nitrate broth, and Sabouraud 
broth). 
 
 

Detection of NRPS, PKS-І, and PKS-П genes 
 

Amplification of NRPS, PKS-I, and PKS-II genes, using 
A3F/A7R, K1F/M6R and KαF/KβR, was performed with all 
Streptomyces isolates. The prevalence of these genes is 
summarized in Table 3. 
 
 

Identification of Streptomyces isolates S34 
 

According to the description of the Streptomyces species 
recorded   in  Bergey's  manual  (2002)  and  International 

Streptomyces Project (Shirling and Gotlieb, 1966), isolate 
S34 appeared to be highly related to S. rochei, but 
requires further identification (Table 4). 
 
 
Optimization of antimicrobial compounds production 
from Streptomyces S34 
 
For the optimal production of antimicrobial activity, the 
following factors were optimized: Seawater content, type 
of medium, incubation time, pH, incubation temperature, 
carbon, and nitrogen sources. Results are summarized in 
Table 5 and Figure 2  
 
 

Thermal stability and the effect of proteolytic 
enzymes on the antimicrobial activity of strain S34 
 
Cell free supernatant of isolate S34 was heated to 100°C 
for 5, 15, 30 and 60 min. Results show that the activity of 
supernatant was retained during heat treatments even at 
100°C for 1 h. The sensitivity of antimicrobial activity to 
proteolytic enzymes was tested at 37°C; the activity was 
stable after incubation with pepsin and trypsin for 1 h. 
These results suggested non proteinaceous nature of the 
antimicrobial compound(s) produced by isolate S34. 
 
 
DISCUSSION 
 
Several studies dealing with bioactive compounds from
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Table 4 Identification of Streptomyces isolates S34. 
 

Character Streptomyces S34 Streptomyces rochei 

Gram stain Positive Positive 
Cell shape Filamentous Filamentous 
Color of aerial mycelium Gray Gray 
Spore chain morphology  Spiral Spiral 
Melanoid pigment Positive Positive 
Diffusible pigment Negative Negative 
Growth on Czapek's medium Good Moderate 
 
Carbon utilization:   
No carbon - - 
D-Glucose + + 
D-Xylose + + 
L-Arabinose + + 
L-Rhamnose + + 
D-Fructose + + 
D-Galactose + + 
Raffinose - - 
D-Mannitol + + 
I-Inositol + + 
Salicin + + 
Sucrose - - 
 
Antagonistic activity 

 
Antibacterial and Antifungal 

 
Antibacterial and Antifungal 

 
 
 

Table 5. Optimization of antimicrobial compounds production from Streptomyces S34. 
 

Parameter under optimization Variation of the tested parameter Optimum antimicrobial  activity 

Sea water content 0, 25, 50,75, and 100% 50% 
Medium component NB,SDB,TSB,SYB, SNB,SCNB,GYMB SNB 
Incubation period 2,3,4,5,6,8,10,12, and 14 days 4-5 days 
pH From 3.0 to 12.0 with 0.5 intervals 5.5 and 8.5-9 
Temperature From 20 to 50°C with 5 intervals 30°C 
Agitation rate From 0 to 250 with 50 differences 150-200 rpm 

 
 
 
the genus Streptomyces isolated from different habitats in 
marine environments (sediments, invertebrates, and coral 
reefs) have been reported. Members of Streptomyces, 
like terrestrial counterparts, are promising source for 
production of bioactive compounds (Maldonado et al., 
2005; Moore et al., 2005; Parthasarathi et al., 2012a, b; 
Haritha et al., 2012). Since the marine environment in 
Jordan is still unexplored and unexploited, this study was 
performed to isolate Streptomyces and investigate their 
antagonistic properties. Streptomyces isolates were iden-
tified based on cellular and colony morphology, utilization 
of carbon, and physiological characteristics (Holt et al., 
1994). The observed properties indicated that the isolates 

belonged to the genus Streptomyces. Most of the isolates 
(59%) belonged to white color series, followed by grey 
and green color series. Dominance of white and grey 
color series was reported in several studies (Saadoun 
and Gharaibeh, 2002; Parthasarathi et al., 2012a; b).  

Preliminary screening of antimicrobial activity of 
Streptomyces isolates showed that more than half of our 
isolates (57%) were active against at least one of the test 
microorganisms. Similarly, the majority of Streptomyces 
isolated from soils in Jordan showed antimicrobial activity 
(Saadoun et al., 1999). The proportion of active isolates 
depends on the methods of preliminary screening and on 
the type of culture used (broth or agar) (Augustine et al., 
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Figure 2. Optimum conditions for the production of antibacterial metabolites from Streptomyces 
S34: Sea water content (1), medium component (2), incubation period (3), pH (4), temperature 
(5), agitation rate (6). 
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Figure 2. Contd. 
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2005a, b). During screening, Streptomyces isolates were 
subjected to the same growth and incubation conditions; 
it appeared that each isolate required specific growth and 
antimicrobial production conditions (medium, tempera-
ture, pH, and agitation). In addition, the size of sample, 
stability of antibiotic, bioassay method and test micro-
organisms appear to affect the number of active isolates 
(Srivibool and Sukchotiratana, 2006). It was reported that 
Streptomyces isolates were more active against Gram- 
positive bacteria than Gram-negative bacteria 
(Silambarasan et al., 2012; Valli et al., 2012). In this 
study also Streptomyces isolates showed a significant 
antimicrobial activity against S. aureus, S. epidermidis, 
and B. subtilis, than Gram-negative P. aeruginosa. 
Difference in sensitive between Gram -positive and 
Gram-negative bacteria might be due to the cell wall 
structure; the outer polysaccharide membrane present in 
Gram- negative bacteria which acts as lipopolysaccharide 
barrier; the lack of this barrier in Gram -positive bacteria 
makes the cell wall more susceptible (Silambarasan et 
al., 2012; Valli et al., 2012). For this reason, the amount 
of antibiotic required for inhibition of Gram-positive 
bacteria was more than that required for Gram-negative 
inhibition (Selvin et al., 2004; Sahin, 2005; Srivibool and 
Sukchotiratana, 2006). 

Screening study of the occurrence of biosynthetic 
pathways of metabolites is of great value to under-
standing the ecological impact of organisms and fitness 
of populations (Ehrenreich et al., 2005). Several previous 
studies assessed the biosynthetic potential of soil 
Streptomycetes were performed (Metsa-Ketela et al., 
2002). In the present study, PCR screening of NRPS 
(700 bp), PKS-I (1400 bp) and PKS-II (613 bp) genes in 
marine Streptomycetes using degenerate primers revea-
led that NRPS genes were detected in the majority of 
isolates (81.6%). PKS-I and PKS-II sequences were also 
detected in most of the isolates tested, but with relatively 
lower percentage (63.2 and 65.3%, respec-tively). High 
prevalence of NRPS genes (68%) as well as PKS-I 
sequences were reported in most of the Actinomycetes 
isolated from marine sediments, of the deepest site of 
Mariana Trench in the western Pacific Ocean; whereas 
PKS-I sequences were identified in only 13% of the 
strains (Pathom-aree et al., 2006). Addi-tionally, NPRS 
and PKS genes were reported with high frequency in 
other marine organisms including marine and fresh water 
cyanobacteria (Ehrenreich et al., 2005) and from  marine 
dinoflagellates (Snyder et al., 2005). Similarly, a study of 
Ayuso-Sacido and Genilloud (2005) revealed that the 
NRPS sequences were widely distributed in soil 
Actinomycetes (79.5%), but PKS-I was identified only in 
56.7%; whereas among Streptomyces isolates, NPRS 
and PKS-I genes were detected in most of the isolates 
with higher frequency 97 and 79%, respectively (Ayuso-
Sacido and Genilloud 2005). Also, NPRS, PKS- I and 
PKS-II sequences showed high occurrence in Streptomyces 

Kouadri et al.          3513 
 
 
 
isolated from tropical soil samples (60.0, 72.4 and 69.2%, 
respectively) (Ayuso et al., 2005). Upon comparing the 
Streptomyces local isolates, with and without antimicro-
bial activity, we observed that higher detection percent-
tages were obtained for the PKS- I in the group of active 
isolates than in the group of inactive isolates (Table 4). 
This relationship between the occurrences of biosynthetic 
gene sequences and the production of antimicrobial 
activities was not observed for the NPRS and PKS-II se-
quences (Table 4). Our results differed from that obtained 
by Ayuso et al. (2005) who reported that the percentages 
of positive NRPS and PKS-I amplifications (except for 
PKS-II sequences) were almost two-fold higher in the 
active compared with the inactive group.  

Ayuso-Sacido and Genilloud (2005) reported that the 
NPRS primers (A3F/A7R), PKS-I primers (K1F/M6R), 
and PKS-II primers (KSα/KSβ) amplified the highly con-
served sequences of adenylation domains associated 
with NRPSs and ketosynthase (KS) domains associated 
with type I PKS. The lack of amplification of these genes 
in some isolates might indicate their absence or that they 
were less conserved, hence low homology with the 
primers. On the other hand, some isolates obtained in 
this study were negative for NPRS and PKS genes, but 
they showed bioactivity against test microorganisms, 
these results suggested that the activities detected were 
produced by systems other than PKS and NRPS genes, 
such as aminoglycoside resistance gene (Ayuso et al., 
2005). Other isolates did not show any antimicrobial acti-
vity in spite of the occurrence of NPRS and PKS sys-
tems. It is possible that these detected genes may be 
silent (nonfunctional) (Hutchinson, 1999, 2003). Studies 
of sequenced genomes of Streptomyces coelicolor and 
Streptomyces avermitilis have demonstrated numerous 
silent pathways (Challis and Hopwood, 2003; Knight et 
al., 2003), or that the products of these genes may be 
involved in primary metabolism (Pathom-aree et al., 
2006), or that fermentation conditions used were not 
optimal for antibiotic production. In fact, the genome of 
Streptomyces contained several gene clusters of NPRS 
and PKS genes; Pathom-aree et al., (2006) reported that 
the genome of S. coelicor contained five NPRS and three 
PKS-I clusters, and only four NPRS clusters have known 
to be involved in the synthesis of known compounds. This 
may indicate that a huge number of bioactive compounds 
are still unidentified. Of the 49 Streptomyces isolates, 
S34 showed high antimicrobial activity against test micro-
organisms. The isolate was identified based on the mor-
phological and cultural characteristics. Isolate produced 
powdered colony on the surface of agar plate, it is Gram 
positive and filamentous in nature, belonged to grey color 
series. S34 showed similar characteristic as that of S. 
rochei. 

Isolate S34 was selected to optimize the production of 
active metabolites. Production of antimicrobial metabo-
lites  was  significantly influenced by cultural and environ- 
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mental factors. Influence of these factors has been 
evaluated in marine Streptomyces by several workers 
(Saha et al., 2005; Narayana and Vijayalakshmi, 2008; 
Sunga et al., 2008; Arasu et al., 2009; Singh et al., 2009; 
Thakur et al., 2009). In this study, isolate S34 produced 
heat stable non proteinaceous metabolites that have 
broad spectrum and high activity against pathogenic 
bacteria and yeast tested. 
 
 

Conclusions 
 

Marine Streptomyces species, isolated from the Gulf of 
Aqaba/Jordan, was found to be highly diverse and pro-
duced wide spectrum antimicrobial agents. The optimal 
medium, nutrients, pH, temperature, and other culture 
conditions promoted the effectiveness of the antimicrobial 
agents. The majority of the isolates showed activity 
against Gram positive bacteria, lower activity was 
observed toward Gram negative bacteria and yeast. 
Streptomyces sp. S34 had wide spectrum activity (it 
inhibited Gram-positive, Gram-negative bacteria, and 
yeast), strong activity, which was determined by largest 
inhibition zone diameter (30 mm), and antimicrobial 
activity at both acidic and alkaline pH (5 to 5.5 and 8 to 
9.5). Furthermore, antimicrobial activity showed tempera-
ture stability. Isolate S34 produced non proteinaceus heat 
stable antimicrobial metabolites. It can be concluded that 
marine Streptomyces strains isolated from the Gulf of 
Aqaba have a great potential as a source of secondary 
metabolites with antibacterial activity. However, further 
investigation is needed to isolate and characterize the 
active secondary metabolites.  
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