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In this study, assays were carried out to evaluate the efficiency of cactus Opuntia stricta cladodes as a 
coagulant for removal of cyanobacteria cells. To carry out the coagulation assays, water from eutrophic 
reservoir Bodocongó, in Brazilian semiarid, with cyanobacteria bloom of Microcystis aeroginosa, 
Plankthotrix isothrix and Cylindrospermopsis raciborskii were sampled. This water was submitted to 
coagulation with different forms of O. stricta cladodes (crude, pulverized and solution), concentration 
(10; 50 and 100 mg/L) and time (5, 15, 30, 60 and 120 min). In order to assess cell removal, readings 
were made in aliquots of 5 mL of samples analyzed by triplicates counting on sedimentation chambers 
using an inverted optical microscope, according to the Utermöhl method.  Dosage of 100 mg/L from the 
solution form of O. strica cladodes gave the best cell and turbidity removal. Colonial species were fast 
removed than filaments. The most removal occurred in the first 30 min of experiments. No significant 
differences were observed for pH changes in the experiments. O. stricta cladodes gave satisfactory 
results in reducing cyanobacteria cell in water; however, complete removal was not obtained; further 
studies are necessary to evaluate the best concentrations and the mechanisms of cyanobacteria 
removal.  
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INTRODUCTION  
  

Eutrophication is considered the Earth‘s most important 
water quality problem (Schindler, 2012). It often results in 
blooms of potentially toxic cyanobacteria that complicate 
the use of lakes and reservoirs and can cause potential 
public health risk (Azevedo et al., 2002; Huisman et al., 
2018). Cyanobacteria have adapted to survive in a 
variety of aquatic and terrestrial environments and have 
been found globally (Rigosi et al., 2014). Harmful 
cyanobacteria have been increasingly gaining the 
attention of scientists and government agencies  because 

they are known to produce various bioactive compounds, 
and some of them show beneficial therapeutic effects; 
thus, used as dietary supplements as well as mood 
enhancers (Jensen et al., 2001). Other cyanobacteria can 
produce cyanotoxins, which are harmful to humans, 
animals, and plants and fall into five different types of 
toxins: (i) hepatoxins (cylindrospermopsin, microcystins 
and nodularins); (ii) neurotoxins (anatoxin-a and 
saxitoxins); (iii) dermatotoxins; (iv) cytotoxins; (v) and 
irritant toxins [lipopolysaccharides (LPSs)] (Graham et al., 
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2010).  

Cyanotoxin can be accumulated into aquatic products 
via contaminated feeds, direct contact with contaminated 
water (living environment) and biomagnification through 
the food web (Ibelings and Chorus, 2007; Vasconcelos et 
al., 2013). Plants are not usually killed by the 
environmentally relevant concentration, but their growth 
and crop yields are affected (Babica et al., 2006; 
Bittencourt-Oliveira et al., 2016; Svirčev et al., 2017). In 
addition, the soil may retain toxins when extra water flows 
through, and it can bioaccumulate toxins during non-
bloom seasons (Pflugmacher et al., 2007; Corbel et al., 
2014). Humans are exposed to cyanotoxin through 
drinking water, inhalation, dermal contact and foods 
(Carmichael et al., 2001; Cheung et al., 2013; Lee et al., 
2017). 

Thus, controlling eutrophication and mitigating potential 
toxic cyanobacteria is an essential task (Lürling et al., 
2016). Conventional chemicals, like algicidies are used to 
remove cyanobacterial blooms but their application may 
come with shortcomings such as toxins and nutrient 
release or unwanted ecotoxicological side effects 
(Jančula and Maršálek, 2011; Merel et al., 2013). 
Removal of cyanobacteria from the water column using a 
combination of coagulant and ballast are a promising 
technique for controlling cyanobacterial bloom. The flock 
and lock and flock and sink techniques remove 
cyanobacteria out of the water column while remaining as 
intact cells where after the cyanobacteria and their toxins 
can be degraded on the sediment (Pan et al., 2011; 
Noyma et al., 2016; Magalhães et al., 2017). For this, the 
use of local soils, clays or waste products can be a faster, 
cheaper and easy to handle alternative.  

In this perspective, natural plant-based coagulants 
have been tested (Miller et al., 2008; Nishi et al., 2011; 
Camacho et al., 2017).  The main advantages of using 
this for water treatment are apparent; they are cost-
effective, unlikely to produce treated water with extreme 
pH and highly biodegradable (Daza et al., 2016). These 
advantages are especially augmented if the plant from 
which the coagulant is extracted is indigenous to a rural 
community (Yin, 2010). In the era of climate change, 
depletion of the earth's natural resources and widespread 
environmental degradation, the application of these 
coagulants is a vital effort, aligned with global sustainable 
development initiatives. 

Application of cacti species for water treatment is 
rather recent compared to other natural coagulants such 
as common bean (Phaseolus vulgaris) (Antov et al., 
2010) nirmali seed (Strychnos potatorum) (Babu and 
Chaudhuri, 2005) or Moringa oleífera (Muthuraman and 
Sasikala, 2014; Oladoja and Pan, 2015). The most 
commonly studied cactus genus for water treatment is 
Opuntia, which represents one of the most diverse and 
distributed genera of plants (Zhang et al., 2006; Miler et 
al., 2008; Ortiz et al., 2013; Oladoja, 2015). It has since 
been introduced all over the world  and  can  be  found  in  

 
 
 
 
temperate, subtropical and tropical regions (Izuegbuna et 
al., 2019). Besides Opuntia, other cactus species 
including Cactus latifaria have also been successfully 
used as natural coagulants (Diaz et al., 1999). 

The high coagulation capability of Opuntia is most likely 
attributed to the presence of mucilage which is a viscous 
and complex carbohydrate stored in cactus inner and 
outer pads that has great water retention capacity (Saenz 
et al., 2004). Previous studies have established that 
mucilage in Opuntia cactis contains carbohydrates such 
as l-arabinose, d-alactose, l-rhamnose, d-xylose, and 
galacturonic acid (Trachtenberg and Mayer, 1981).  Miller 
et al. (2008) reported that galacturonic acid is possibly 
the active ingredient that affords the coagulation 
capability of Opuntia spp. though it should be noted that it 
only accounts for only 50% of turbidity removal.  

Among Opuntia species, only a few works are found in 
literature using O. stricta for water treatment (Zhang et 
al., 2006), however, this species is resistant to the 
carmine cochineal pest (Dactylopius spp.) being widely 
cultivated, especially in the Brazilian semiarid (Santos et 
al., 2018). It is noteworthy that no study was carried out 
to evaluate the coagulation potential of Opuntia species 
for the removal of cyanobacteria. Therefore this study 
analyzed the potential efficiency of O. stricta cladode as a 
coagulant for the removal of cyanobacteria cells. These 
coagulants are not only naturally reproducible but may 
also offer many other advantages like local availability, 
adaptability, and lesser health hazards than residual 
mineral coagulants or synthetic polymers.  
 
 
MATERIALS AND METHODS 
 

Study site 
 

Bodocongó reservoir is located in Campina Grande, Brazilian 
semiarid (7º13'11" S, 35º52'21" W), at an altitude of 548 m above 
de sea level. The climate conditions are a warm semiarid (BSwh in 
the Köppen system).  The temperature of annual mean is between 
25 and 31ºC and rainfall of 700 mm/year. The reservoir is part of 
Paraíba river basin; it has a surface area of 371897 m2, a mean and 
maximum depth of 3.5 and 7.0 m, respectively, a mean total water 
volume of 1019830 m3, which may vary considerably depending on 
climate conditions.  The urbanization processes around the 
reservoir promote frequently sewerage and wastewater discharge 
into Bodocongó‘s waters, and also a decline in riparian vegetation. 
It is a hipereutrophic reservoir with mean concentration of a total 
Potasium of 396.0 µg/L (Abílio et al., 2006).  

For the assays, water samples were taken from different sites in 
the reservoir on January, 2019. At this time there was a 
cyanobacterial bloom, with contributions of Microcystis aeruginosa 
(Kützing) Kützing 1846, Sphaerocavum brasilense De Azevedo & 
C.L. Sant' Anna 2003, Cylindrospermopsis raciborskii 
(Woloszynska) Seenayya & Subba Raju in Desikachary 1997 and 
Plankthotrix isothrix (Skuja) Komárek and Komárková 2004.  
 
 
Preparation of coagulant 
 

The cactus O. stricta were collected from experimental campus of 
Brazilian  National  Semiarid  Institute  (INSA,  for  this   acronym  in  
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Figure 1. Schematic representation of experimental design. 

 
 
 
Portuguese). To assays, the cladodes were used in three forms: 
Crude form, pulverized and pulverized solution. The collected 
cladodes were washed with ultrapure water, spines were removed 
and then stored in refrigerator at 4ºC, to assays with crude form. 
Other part of cactus was sliced into strips 1 cm wide, freeze and 
lyophilized at -80ºC. The dried cactus was milled using a Wiley mill 
and sieved with the aid of sieves (ABNT, 2010); a powder was 
obtained with particles of approximately 100 μm in diameter (Miller 
et al., 2008). A part of this is used in pulverized assays and others 
were diluted to 1% stock solution (concentration = 1000 mg/L) to 
pulverized solution assays. The solution of the lyophilized was used 
because studies of Subramonian et al., (2014) pointed out different 
absorption sites between the solid and diluted strata. 
 
 

Experimental design 
 

The efficiency of O. stricta to remove cyanobacteria was tested in a 
laboratory scale. The experiments were composed by three 
treatments (form, concentration and time) with 3 to 5 levels repeated 
three times (Figure 1).  

Aliquots of 1000 mL water of Bodocongó reservoir were 
transfered to 2000 mL graduated beckers. Water was treated with 
designated treatment (final concentration of 10, 50 and 100 mg/L) 
or left untreated (controls), at 25ºC. After 5, 15, 30, 60 and 120 min, 
pH, turbidity and total dissolved solids (TDS) were measured with 
HORIBA U52 multiparameter. Samples with 5 mL were fixed with 
2% lugol solution for quantitative analyzes using inverted 
microscope (Zeiss Axiovert), as described by Utermöhl (1958).   
 
 
Data analyzes  
 

Results were examined by analysis of variance (ANOVA), followed 
by Fisher‘s multiple comparison test for all measured parameters 
(pH, turbidity, TDS  and  cyanobacteria  cells),  for  each  treatment. 

Normality was assessed by Kolmogorov-Smirnov test and the 
homoscedasticity by Fisher‘s test. The effects of combined 
treatments were estimated by two-way ANOVA. For this statistical 
analyzes, values with p<0.05 were considered significant.  The 
program ‗Statistica‘ version 7.0/2004 (Statsoft) was used. 
 
 
RESULTS 
 
Significant differences were observed in the density of 
cyanobacteria, TDS and turbidity, when compared to the 
forms of O. stricta used after 120 min exposure. The best 
results occurred when the solution was used (Table 1). 
Among the concentrations tested, significant differences 
were observed in all forms used, for all variables except 
pH and TDS. The best coagulant effects were observed 
at dose C2 (50 mg/L), except when solution was used, 
when C3 dosage were more effective, however, not 
significantly different. The effects of the interaction 
between form and concentration were observed only for 
the turbidity variable (Table 1).  

Significant statistical interaction was observed regarding 
exposure time and O. stricta forms to all variables, except 
pH (Fcyanobacteria cell= 8.3, p<0.01; FTDS=40.9, p<0.01; 
FTurbidity=5.9, p<0.01).  

For all treatments were observed Cyanobacteria cell 
removal, that ranged from 30(±4.3) to 70(±2.7).  
Considering the time factor, significant differences were 
observed to coagulation process, however cell removal 
occurred majorly in the first 30 min of the experiments 
(Figure 2A).  Colonial  species  were  fast  removed  in all  
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Table 1. Mean and standard deviation of Cyanobacteria cell, pH, total dissolved solids (TDS) and turbity for different forms and concentration of O. stricta treatments after 120 min.  
 

Variable Control  
Crude form 

 
Pulverized 

 
Solution  

 
Form* 

Interation (Form 
x Concentration) 

 
C1 C2 C3 

 
C1 C2 C3 

 
C1 C2 C3 

Cyanobacterial 
cell (Cell/mL) 

106570 
(±1150)

a
  

61668 
(±1100)

b
 

56486 
(±920)

c
 

76220 
(±930)

b
  

58944 
(±543)

b
 

34592  
(±341)

c
 

60475  
(±568)

b
  

50510  
(±786)

b
 

31998  
(±552)

c
 

30994  
(±540)

c
  

CF=P≠S ** 

                 

pH 8.0 (±0.1) 
 

8.04 7.92 7.7 
 

8.1 8.1 8.0 
 

7.8 7.8 7.7 
 

** ** 

TDS (g/L) 1.7(±0.1)
a
 

 
1.5(±0.1)

a
 1.4(±0.1)

a
 1.5(±0.1)

a
 

 
1.7(±0.1)

a
 1.6(±0.1)

a
 1.7(±0.1)

a
 

 
1.5(±0.1)

a
 1.2(±0.1)

b
 1.0(±0.1)

a
 

 
CF=S≠P ** 

Tubidity (NTU) 
58.1 

(±1.5)
a
  

31.7 
(±2.0)

b
 

28.7 
(±2.2)

c
 

30.6 
(±1.5)

b
  

36.8 
(±2.7)

b
 

48.8 
(±7.2)

b
 

47(±7.0)
b
 

 

28.7 
(±2.8)

b
 

25.9 
(±1.7)

c
 

23.0 
(±2.6)

c
  

CF=S≠P <0.05 

 

Data with same letter did not differ significantly (p>0.05) among concentrations applied. *ANOVA for Form treatment – CF (crude form), P (Pulverized), S (Solution) 
** Not differ significantly (p>0.05) 

 
 
 
treatment. Filaments were optimally removal after 
30 min of experiment.  

pH in water increased in pulverized treatments 
and decreased in crude form and pulverized 
solution treatments, but no significant differences 
were observed (Table 1). These results indicated 
that the use of O. stricta does not alter pH of 
water and this efficiency is not strictly dependent 
on pH.  

The optimal conditions to remove TDS of water 
occurred with pulverized solution in C3 
concentration (Figure 2B), however the efficiency 
were lower than 30%. In pulverized treatments an 
increase in TDS were observed in the first 5 min 
of the experiment to C2 and C3 concentration. 

Turbidity removal ranged from 19(±10.9) to 
52(±5.8)%. The optimal results were obtained to 
solution treatment at C3 concentration (Figure 
2C). Significant effect was observed in the 
interaction between form and concentrations, and 
form and time of experiment in the efficiency of 
turbidity removal (Table 1). In Pulverized 
treatments, a gradual increase in turbidity occurred 
after the first 15 min of experiments when C3 
dosage was applied. Significant turbidity removals 
were  observed  after  30 min  of  the  experiments 

using crude form and 60 min using solution 
treatments (Figure 2C).   
 
 
DISCUSSION 
 
O. stricta is a viable alternative for the removal of 
cyanobacteria in water. Considerable cyano-
bacteria cell (30-70%) and turbidity (19-52%) were 
removed after 120 min of the experiments. In this 
case the coagulation activity was qualified as 
present, especially in pulverized solution form. 
Miller et al. (2008) considered coagulation activity 
qualified as ―absent‖ if turbidity removal is below 
30%.  

The predominant coagulation mechanism for 
Opuntia spp. is adsorption and bridging, whereby 
clay particles do not directly contact one another 
but are bound to a polymer-like material from 
Opuntia spp. It was also thought that adsorption 
may occur through hydrogen bonding or dipole 
interactions and this possibility was ascribed to 
the likelihood that natural electrolytes from within 
the Opuntia spp. pad, particularly the divalent 
cations, which are known to be important for 
coagulation  with  anionic  polymers  facilitated  by  

the adsorption (Oladoja, 2015). 
The findings from studies on the screening of 

green biobased materials as coagulants for water 
and wastewater purification showed that these 
evolving type of coagulants hold a lot of potential 
as substitute to the conventional synthetic metal 
or polymer based coagulants in water and 
wastewater treatment operations (Yin, 2010). 
Regarding cyanobacteria removal by coagulation, 
good results have been reported, depending on 
the characteristics of organic matter present in 
water, the prevalent cyanobacteria species, and 
the type and concentration of coagulant (Heng et 
al., 2009; Henderson et al., 2010; Shen et al., 
2011). The results demonstrated a good potential 
of O. stricta to remove colonial and filamentous 
organisms. According to Li et al., (2018), colonial 
species are first removed because they are free of 
protruding appendages, or have mucilage 
(polymeric substances), while, filamentous could 
not be wrapped by coagulants. 
   Natural coagulants exhibit highly effectual 
turbidity removal capabilities, with some of them 
removing up to 99% of initial turbidity (Nish et al., 
2011; Oladoja and Pan, 2015). In the results, 
turbidity  removal  was  about 52%, not exceeding  
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Figure 2. Removal efficiency of cyanobacteria cells, TDS and turbidity at different concentrations and forms of O. stricta along time.  

 
 
 

21 NTU. 
The absence of removal and increase in water turbidity 

observed may have occurred due to the addition of the O. 
stricta in pulverized form, increasing the organic load. 
Similar increases in color and turbidity in water treated 
with green biobased coagulants have been observed in 
other studies, using M. oleifera, particularly when the 
initial color and turbidity are relatively low 
(Ndabigengesere and Narasiah, 1998).  

It was observed that coagulation activity reduced when 
the O. stricta dose is too low or too high, with best results 
at intermediate dosage (50 mg/L); this is consistent with a 
bridging removal mechanism. The bridging mechanism 
required a stoichiometric relationship between particle 
concentration and coagulant dose (Oladoja, 2015). Such 
efficiencies are certainly comparable to the established 
chemical coagulants (e.g. aluminum).  Optimum  dosages 

are generally within the range of 10 to 60 mg/L. Natural 
coagulants are most effective at basic waters as evident 
by the optimum pH values from 7 to 10 (Zhang et al., 
2006; Miller at al., 2008). Furthermore, the pH of the 
water is not affected during coagulation and the pH 
adjustment may not be necessary for subsequent 
treatment processes. 

The presence of humic substances in natural surface 
water may significantly alter Opuntia dose for optimal 
coagulation (Zhang et al., 2006). Therefore, O stricta may 
prove useful as primary coagulant for subsequent 
treatment through slow sand filters; however, its 
efficiency should also be further investigated. Analysis of 
size and nature of flocks achieved through coagulation 
using O. strict is coherent with the previous suppositions 
that potential mechanism of coagulation through Opuntia 
is  adsorption  and  inter-particle bridging (Oladoja, 2015).  
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One of the snags of the use of green biobased 
coagulants is the substantial increase in the organic load 
of the treated water, which may result in the possibility for 
undesired and increased microbial activities. Organic 
matter is regarded as the source of odor, color, and taste, 
and a precursor of disinfection by-products in drinking 
water treatment, so, considering our results, we suggest 
the use of O. stricta to water before irrigation practice.  

This is the first record of use of O. stricta cladodes to 
removal cyanobacterial cell. Other studies are necessary 
to evaluate the performance of O. stricta to remove 
cyanotoxins as well as to improve its efficient and 
compare it to inorganic coagulants.  
 
 
Conclusion 
 
Cactus O. stricta was an abundant natural product, cost 
effective, safe for human health that can be used to 
remove cyanobacteria in water used for irrigation. The 
potential to remove Cyanobacterias can be explored for 
water treatment for consumption associated with other 
coagulants-flocculants. 
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