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Tropospheric ozone concentration has been rising in the last decades, due to industrial and other 
human activities. For plants, ozone constitutes one of the most damaging air pollutants. Main effects of 
ozone on forest species are reviewed: visible symptoms caused by acute exposure at the anatomical, 
structural and metabolic level, and the long run effects on growth and development derived from 
chronic exposure. Particular attention is given to photosynthesis and the effects on stomatal 
functioning, as major ozone injuries are inflicted to the plant after entering through the stomata. Plant 
detoxification capacity, carbohydrate allocation, growth and development are also revised, as well as 
the effects at the ecosystem level, defence mechanisms of plants against ozone, and their sensitivity 
and tolerance. The rising problem of tropospheric ozone contamination should awaken the international 
awareness and measures should be taken to control ozone atmospheric levels considering their 
transnational implications. 
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INTRODUCTION 
 
The ozone (O3) layer that is formed in the stratosphere by 
ionisation of oxygen absorbs most ultraviolet radiation 
coming from the sun, thus protecting life from an excess 
of high energy radiation harmful to living organisms. 
Thinning of this stratospheric layer (between 20 and 30 
km altitude) is the cause of more ultraviolet radiation 
passing through and producing tropospheric ozone. Most 
atmospheric ozone (ca. 90%) is stratospheric, while the 
tropospheric ozone concentration is usually small, in the 
order of a few ppb (Seinfeld and Pandis, 2006).  

The increment of tropospheric ozone concentration, 
dispersion and effects have been related the industrial 
activities (Borell et al., 1997; Martin et al., 1991; Millán et 
al., 2000). The reaction of nitrogen oxides (NOx) with 
ultraviolet light, oxygen and exhaust gases generates O3, 
which adds to that brought down from the stratosphere by  
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vertical winds produced during electrical storms. Ozone 
concentration is minimal by night but builds up to 
phytotoxic levels in the atmosphere during calm, warm, 
sunny weather when pollutants accumulate in stagnant 
air. This situation is typical of spring and summer days. 
Accumulation also occurs during atmospheric inversions 
in valleys and basins. The combination of these 
processes contributes to maintain a basal concentration 
of about 20 to 45 ppb (nmol/mol) in intermediate latitudes 
of the northern hemisphere. The concentration of O3 has 
been registered since the end of the XIX century, 
indicating an increment at a rate between 1 and 2.5% 
annually (Jonson et al., 2006).  

In Japan, concentrations above 100 ppb have been 
recorded in both urban and mountainous areas 
(Watanabe et al., 2012). In a polluted atmosphere in 
which emissions of NOx and volatile organic compounds 
feed the photochemical reactions, O3 concentration may 
reach levels as high as 200 to 400 ppb (Emberson et al., 
2003; Fiala et al., 2003). It has been stated that ozone is 
the most damaging air pollutant to plants (Gimeno et al., 
1995; Peñuelas et al., 1999),  cultivated crops  as  well as 
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forest vegetation (Treshow and Stewart, 1973) and 
numerous shrub species (Findley et al., 1997a). 
Nowadays, susceptibility to ozone is a criterion to choose 
a plant crop, especially for ornamental woody plants 
(Sacramento Tree Foundation, 2010).  

The aim of this review was to emphasize the 
importance of tropospheric ozone contamination, 
underlining its effects on forests and natural ecosystems. 
Until recently, most research on ozone damage was 
focused on commercial crops, and the effects on forests 
were not considered as important as those caused by 
pests and diseases. We try to give a global scope of 
ozone damage on plant growth and development, from 
the physiological to the ecosystem level. In a context of 
global climate change, the interaction of ozone with 
increasing CO2 concentrations and with the water 
balance of plants should increase public awareness of 
the problem.  
 
 
SYMPTOMS OF OZONE-DERIVED TOXICITY IN 
WOODY PLANTS  
 
Symptoms of ozone damage may be visible symptoms 
such as brown or red-brown punctures or chlorotic bands 
in the leaves, caused by acute, high ozone 
concentrations during short periods, or premature leaf 
senescence and reduced growth and productivity, usually 
caused by moderate, chronic concentrations during long 
periods. Morpho-anatomical symptoms include tissue 
collapse, interveinal necrosis, and markings on the upper 
surface of leaves known as stipple (numerous tiny spots 
of different pigmentations), flecking (silver or bleached 
straw white spots), mottling (irregular blotches of green, 
light green, and yellow), yellowing, bronzing, or 
bleaching. Ozone-affected leaves may show the most 
severe injuries within the palisade tissue (Paoletti et al., 
2009). The main way of O3 entrance into the plant is the 
stomata. Certain species are sensitive to very low levels 
(0.05 ppm). Furthermore, ozone produces other toxic 
compounds, such as hydrogen peroxide (H2O2), 
superoxide (O2

-
), atomic oxygen (O), and hydroxyl radical 

(·OH). Some visible symptoms frequently attributed to O3 
are black, reddish or brownish spots in the limb 
(Fumagalli et al., 2001; Hayes et al., 2007). In a more 
advanced stage, old leaves appear brilliant white mottled. 
Conifers frequently show a yellow to brown mottling and 
tipburn, pink spots or a yellow to brown or orange-red 
flecking and banding of the needles (Anttonen and 
Kärenlampi, 1996; Baker and Allen, 1996; Vollenweider 
et al., 2003).  

On the other hand, many toxic effects caused by ozone 
to some woody plants, including premature aging, may 
occur in the absence of visible symptoms (Günthardt-
Goerg, 1996; Günthardt-Goerg et al., 1996; 1997; 
Vollenweider et al., 2003). Foliar damage attributed to 
tropospheric ozone was first observed to be phytotoxic to  
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Vitis vinifera in southern California in the 1950s (Richards 
et al., 1958) and in the 1960s, "X" disease of ponderosa 
pines within the San Bernardino Mountains was likewise 
determined to be due to O3 (Karnosky et al., 2007). Foliar 
O3 symptoms have been verified for seedlings under 
controlled chamber conditions, but due to complex 
interactions within forest stands, evidence of similar 
losses within mature tree canopies remains difficult to 
find. Investigations on tree growth, O3 flux, and stand 
productivity are being conducted along natural O3 
gradients and in open-air exposure systems to better 
understand O3 effects on forest ecosystems (Karnosky et 
al., 2007). 

In ozone affected plants, stomata lose turgor and close. 
Toxic radicals alter the membrane permeability, 
chloroplasts disaggregate and the whole metabolism is 
affected. Some species, e.g. poplars, are especially 
susceptible, and in ash, although no visual symptoms are 
obvious, the epidermis may collapse and chloroplasts 
may start to degenerate. Ozone toxicity is determined by 
its absorption process through the stomata and the plant 
mechanisms of detoxification and reparation (Massman, 
2004; Wieser and Matyssek, 2007). In addition to the 
external O3 concentration, the uptake of O3 by plants is 
primarily influenced by stomatal conductance (gs), which 
is strongly dependent on climatic conditions, varying 
between species and site characteristics (Manzanera and 
Martinez-Chacon, 2007), the position of leaves within the 
canopy as well as leaf and plant age (Matyssek et al., 
2004). However, ozone concentration in the intercellular 
space is very low, probably because it is decomposed 
after uptake (Laisk et al., 1989). 
 
 
OZONE EFFECTS ON PHOTOSYNTHESIS  
 
Ozone has a marked effect on photosynthesis, limiting 
the net assimilation rate and the chlorophyll content. 
However, the major alterations take place in the electron 
transport chain and in the carbon fixation role of ribulose-
1, 5-bisphosphate carboxylase oxygenase (Rubisco). In 
ponderosa pine needles following exposure to ozone, an 
observed broadening of the chlorophyll absorption band 
has been interpreted as a consequence of chloroplast 
disorder and granulation of the thylakoid membranes 
(Ustin et al., 2009). Indirectly, stomatal guard cell function 
is impaired by ozone. Photosynthesis as a whole is 
variably affected by limiting the net assimilation rate, the 
chlorophyll content, the electron transport chain, the 
carbon fixation role of Rubisco and the stomatal guard 
cell function. These effects also depend on the genotype 
and the stage of development. Furthermore, defence 
mechanisms are weakened and ozone-killed tissues are 
readily infected by certain fungi, decreasing the 
detoxification capacity of the plant and consequently, 
increasing damage (that is, Massman, 2004). Greitner 
and Winner (1989) demonstrated that ozone reduced  the  
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photosynthetic rate in Alnus frangula and observed that 
the plant cells of the root nodules were damaged, but not 
those of the Frankia symbiont. Alterations of 
photosynthesis vary depending on the species, clone or 
ecotype and developmental stage.  
Normally, woody perennials are more tolerant than 
deciduous broadleaved species (Calatayud et al., 2010). 
Another general rule is that more tolerant species to other 
types of stress, for example hydric stress, are also more 
tolerant to ozone. This occurs in mediterranean 
schlerophylous species, such as Quercus ilex (Calatayud 
et al., 2010) and Pinus halepensis (Alonso et al., 2001). 
Other cases of intraspecific diversity in the capacity of 
response to ozone absorption have been tested in long 
run Open Top Chamber (OTC) experiments with two 
ecotypes of Quercus coccifera (Elvira et al., 2004), where 
one-year old plants of ecotype garriga show a decrease 
in net assimilation and gs for two years, as compared to 
plants of other ecotype. Also, younger leaves show less 
damage and less chlorophyll destruction than mature 
leaves (Broadmeadow and Jackson, 2000) and a greater 
capacity of detoxification (Alonso et al., 2001; Massman, 
2004).  
 
 
EFFECTS ON GROWTH AND DEVELOPMENT 
 
Plant growth is often stunted (Leisner and Ainsworth, 
2012). Findley et al. (1997b) demonstrated that ozone 
concentrations below the sensitivity threshold to cause 
visible foliar symptoms nevertheless cause growth and 
flowering drop in Buddleia davidii. Diameter growth and 
size-growth relationships are also affected in spruce and 
beech (Pretzsch and Dieler, 2011). Root development is 
inhibited by ozone (Bassirirad, 2000) and it has been 
postulated that ozone may cause greater and earlier 
disruption of below-ground growth with long-term 
consequences for productivity. As a result the hydraulic 
capacity to provide the transpiring shoots with water is 
reduced. This reduction in root capacity could reduce 
photosynthesis and plant water use. Total root biomass is 
reduced, the fraction of plant biomass in root tissues 
declines, and the number and branching patterns of roots 
is altered by ozone. Root dry weight show a tendency 
towards reduction in Q. pyrenaica plants fumigated with 
30 ppb ozone (−45%, p < 0.1), and biomass partitioning 
was significantly altered in this species: reduction in root 
growth was stronger than reduction in above-ground 
biomass (13%); thus, above-ground biomass/below-
ground biomass ratio increased significantly in this 
species (50%), but other oak species were not so 
sensitive (Calatayud et al., 2011).  

Ozone effects on roots or on the above-mentioned ratio 
have been reported as a consequence of reduction in 
CO2 assimilation but also of photo-assimilate allocation 
from source tissues of the leaves to sink tissues in the 
roots (Andersen, 2003). Under natural conditions, root re-  

 
 
 
 
duction and changes in biomass partitioning in tree 
species may reduce resistance to wind throw 
(Broadmeadow and Jackson, 2000). In many species, it 
is expected that ozone-driven severe symptoms and 
strong effects on photosynthesis are parallel to the 
highest biomass reductions. However, effects at leaf-
level, and especially visible injury, are frequently 
uncoupled with growth or biomass reductions: the latter 
effects can be limited if, for example, leaves become 
affected toward the end of the growing season, when 
growth has already stopped or is reduced (Novak et al., 
2007), or by compensatory responses of younger or non-
affected leaves.  
Present tropospheric ozone concentrations and those 
projected for later this century are toxic to trees and have 
the potential to reduce the carbon sink strength of these 
forests (Wittig et al., 2009). Current ambient O3 (40 ppb 
on average) significantly reduced the total biomass of 
trees by 7% compared with trees grown in charcoal-
filtered controls, which approximate preindustrial ozone 
concentration in the atmosphere. Above and 
belowground productivity were equally affected by 
ambient levels in these studies. Elevated concentrations 
of 64 ppb reduced total biomass by 11% compared with 
trees grown at ambient levels, while an elevated O3 
concentration of 97 ppb reduced total biomass of trees by 
17% compared with charcoal-filtered controls. The root-
to-shoot ratio was significantly reduced by elevated O3 
amounts, indicating a greater sensitivity of roots to this 
contaminant. At elevated O3 concentrations, trees had 
significant reductions in leaf area, Rubisco content and 
chlorophyll content, which may underlie significant 
reductions in photosynthetic capacity. Trees also had 
lower transpiration rates, and were shorter in height and 
had reduced diameter when grown at elevated 
concentrations.  

Further, at elevated tropospheric O3, gymnosperms 
were significantly less sensitive than angiosperms. Taken 
together, these results demonstrate that the carbon-sink 
strength of northern hemisphere forests is likely reduced 
by current O3 and will be further reduced in future if O3 
amount rises. This implies that a key carbon sink 
currently offsetting a significant portion of global fossil 
fuel CO2 emissions could be diminished or lost in the 
future (Wittig et al., 2009). Radial growth and structure of 
five 5-year-old trembling aspen (Populus tremuloides) 
clones and the wood characteristics of paper birch 
(Betula papyrifera) were affected by the interaction of 
ozone in an atmosphere with elevated concentrations of 
CO2 (Kostiainen et al., 2008). Material for the study was 
collected from the Aspen FACE (Free-Air CO2 
Enrichment) experiment in Rhinelander, WI, where the 
samples had been exposed to four treatments: control, 
elevated CO2 concentration (560 ppm), elevated O3 
concentration (1.5 times ambient) and their combination 
for five growing seasons. Wood properties of both 
species were altered in response to exposure to the treat- 



 

 
 
 
 
ments. Ozone also may cause changes in flowering 
timing and less flower and fruit production (Hayes et al., 
2012; Leisner and Ainsworth, 2012). Seed germination 
rate may be reduced, as well as pollen germination and 
growth, as it has been observed in Pinus strobus (Benoit 
et al., 1983), Prunus, Malus and Pyrus (Black et al., 
2000; Hormaza et al., 1996). 
 
 
EFFECTS AT THE ECOSYSTEM LEVEL 
 
Ozone weakens forest plants, which become more 
susceptible to drought and diseases. In a climatic change 
context of CO2-rich atmosphere, it is expected that 
stomatal regulation should difficult ozone absorption. 
However, experiments combining both gases show a 
high variability in response (Fiscus et al., 2005). After four 
years of experiments using an open-air exposure system, 
trying to assess the impact of elevated atmospheric CO2 
and O3 on the O3-sensitive species trembling aspen 
(Populus tremuloides) and paper birch (Betula 
papyrifera), as compared to the O3-tolerant species sugar 
maple (Acer saccharum), the responses to these 
interacting greenhouse gases have been remarkably 
consistent in pure aspen stands and in mixed aspen/birch 
and aspen/maple stands, from leaf to ecosystem level, 
for O3-tolerant as well as O3-sensitive genotypes and 
across various trophic levels. These two gases act in 
opposing ways, and even at low concentrations (1.5 
times ambient, with ambient averaging 34-36 ppb during 
the summer daylight hours), ozone offsets or moderates 
the responses induced by elevated CO2. After three years 
of exposure to 560 µmol/mol CO2, the above-ground 
volume of aspen stands was 40% above those grown at 
ambient CO2, and there was no indication of a 
diminishing growth trend. In contrast, O3 at 1.5 times 
ambient completely offset the growth enhancement by 
CO2, both for O3-sensitive and O3-tolerant clones 
(Karnosky et al., 2003).  

More recently, leaf biomass production was monitored 
in the same aspen, birch and maple stands for seven 
years, concluding that the overall effect of elevated ozone 
was to decrease leaf mass by 13%. Interactions with CO2 
concentration, forest community composition and stand 
development process were observed. Ozone also 
retarded nitrogen cycling (Talhelm et al., 2012). Another 
good example of ozone effects at ecosystem level is the 
San Bernardino Mountains forest, California, formerly 
covered by Pinus ponderosa and P. jeffreyi (Arbaugh et 
al., 1998). Those pines lose foliage and vigour, and were 
attacked by bark beetles, due to drought and ozone-
driven weakening. Other ozone-tolerant species 
outcompeted both pines and the species composition 
changed. Mediterranean plants are often adapted to 
different oxidative stress factors (e.g., high temperature, 
strong sun-light and drought) that can make them more 
tolerant  to  ozone stress, as molecular  responses  to  all  
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these stresses may be convergent (Bussotti, 2008; 
Calatayud et al., 2010; Pell et al., 1997). Overall, the 
results recorded until now are consistent with previous 
studies comparing related evergreen and deciduous 
species, which showed a much higher tolerance in 
evergreen species (Calatayud et al., 2010).  

Ozone may influence chemical processes of litter and 
organic matter decomposition with impact on soil 
microorganisms and roots, as observed in ponderosa 
pine (Olszyk et al., 2001). Furthermore, some species 
show natural selection responses in sensitivity to ozone 
(Berrang et al., 1991). Interspecific competence may also 
be altered, as leguminous plants in general are more 
sensitive to ozone. This has a potentially negative effect 
on nitrogen fixation (Andersen, 2003). 
  
 
DEFENCE MECHANISMS OF PLANTS AGAINST 
OZONE 
 
Reactive oxygen species formation takes place in normal 
plant metabolism by partial reduction of molecular 
oxygen. When O2 accepts one or two electrons, produces 
superoxide (O2

-
) or peroxide (O2

2-
) anions, or the hydroxyl 

radical (
.
OH), which are dangerously reactive, oxidizing 

proteins and causing DNA mutations. Also, singlet 
oxygen can be produced from the photosynthetic light-
harvesting chlorophyll molecules and is highly reactive. 
To avoid those dangerous free radicals and reactive 
oxygen species, plants possess different protection 
systems. In fact, there is formation/destruction equilibrium 
of those toxic radicals but this equilibrium may be 
affected by several factors, such as drought, solar 
radiation, high temperature or ozone contamination, 
among others. Several enzymes delete those radicals. 
Ascorbate peroxidase plays this protective role in 
chloroplasts, cytoplasm and mitochondria, using 
ascorbate as a substrate to reduce peroxide. In fact, 
ascorbic acid and apoplastic ascorbate are antioxidants 
that react with free radicals in plant cells. Other 
antioxidant cell protectants, such as glutathione, react 
with singlet oxygen. For instance in spruce (Picea abies), 
superoxide dismutase activity declined under ozone 
stress, while the redox states of the ascorbate and the 
glutathione pools were not affected by any treatment, 
suggesting that spruce needles seem to be able to 
acclimate to ozone stress by increasing their ascorbate 
pools and protecting pigments (Kronfuss et al., 1998). 
Alonso et al. (2001) exposed two year old Aleppo pine 
(Pinus halepensis) plants to high ozone concentrations. 
These authors observed that the pines activated 
protection mechanisms against oxidative stress in the 
newest needles, as opposed to older needles, which 
were damaged. Younger needles show higher 
detoxification capacity thanks to the induction of 
antioxidant enzyme activity. Those detoxification 
mechanisms decrease ozone impact but at a high  photo- 
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asimilate expense, thus depending on environmental and 
ecophysiological conditions, such as hydric stress. Plant 
responses to ozone are therefore expressed as 
phenologic and physiological changes, indicating that 
plants activate their protection systems in increasing 
ozone atmospheres (Alonso et al., 2001). 
  
 
SENSITIVITY AND TOLERANCE 
 
Identification and classification of ozone-sensitive species 
has been difficult and controversial. For instance, holm 
oak (Quercus ilex ssp. ilex) show stippling symptoms and 
was more sensitive to ozone than Q. ilex ssp. ballota, 
Olea europaea cv. vulgaris and Ceratonia siliqua, in a 
two year long OTC experiment of exposition to ozone 
(Ribas et al., 2005). However, other authors have not 
recently included holm oak as a sensitive species 
(Calatayud et al., 2010; 2011). Differences in O3 
sensitivity between pioneer and climax forest tree species 
has been reviewed by Matyssek et al. (2010), based on 
recent evidence from novel phytotron and free-air ozone 
fumigation experiments in Europe and America. As 
previously mentioned, O3 counteracts some effects of 
elevated CO2 on plant growth, the response being 
governed by genotype, competitors, and ontogeny rather 
than by the species. Complexity in O3 responsiveness 
increased under the influence of pathogens and 
herbivores (Matyssek et al., 2010). Gerosa and Ballarin-
Dente (2003) identified risk areas for trees and shrubs in 
Lombardy, Northern Italy, by combining distribution maps 
of sensitive species and ozone concentration maps with 
critic levels. In the particular case of shrub species, a 
methodology of damage monitoring based on 
symptomatology has been developed both in Europe and 
USA (Bussotti et al., 2006; 2009; Ferretti et al., 2008). 
Mills et al. (2011) collected a database with 644 cases of 
ozone pollution and their effects in 18 European 
countries. 22.9 % of the cases referred to shrubs, 39% 
were for crops (27 species), and 38.1% were for (semi-) 
natural vegetation (95 species). The effects of ozone 
could be generalized, fitting better with the modelled 
accumulated stomatal flux over a threshold 3 nmol/m

2
/s 

than with the Accumulated Ozone concentrations over a 
Threshold of 40 μg/m

3
 h (AOT40) index. In the mid 90’s, 

the AOT40 index was adopted for defining O3 exposure 
instead of one, 10, 12 or 24 h average concentrations, 
recognizing the importance of cumulative exposure 
approaches (Kärenlampi and Skärby, 1996). However, a 
consensus has recently evolved that O3 phytotoxic effects 
are more closely related to the amount of pollutant 
entering the plant through the stomatal pores and 
reaching the sites of damage within the leaves 
(Musselman et al., 2006). 

Ozone sensitivity has shown to be a genetic trait in 
black cherry, where families differed significantly in their 
response to ozone treatments in severity of adaxial stipple, 

 
 
 
 
but not in leaf senescence or growth. Family heritability 
estimates for foliar injury, calculated by treatment and 
week of measurement, were generally above 0.5 under 
90 and 120 ppb ozone treatments. The relative ozone 
sensitivity of these cherry families in Continuously Stirred 
Tank Reactor (CSTR) chambers corresponded well with 
susceptibility rankings of their 27-year-old parents, 
replicated in a clonal seed orchard, and growing under 
ambient ozone exposures. The existence of localized, 
heritable variation in ozone sensitivity in wild populations 
has obvious implications for the use of bioindicators in 
forest health monitoring (Lee et al., 2002). The ozone 
sensitivity in oak species, namely Quercus ilex, Q. 
faginea, Q. pyrenaica and Q. robur is the result of the 
interaction between ozone uptake and species-specific 
leaf characteristics, e.g., leaf habit, thickness, stomatal 
density (Calatayud et al., 2011). Leaf Mass per Area 
(LMA), has been used to distinguish between ozone-
tolerant and ozone-sensitive species. This index is also 
considered an index of sclerophylly, with the threshold at 
7.5 mg/cm

2
 (Bussotti, 2008), reaching 9.7 mg/cm

2
 in Q. 

faginea and 15.2 in Q. ilex. Sclerophyllous adaptations 
include the development of cells with thick walls and 
more supportive tissue that can affect gas diffusion inside 
the leaves.  

Thick leaves are considered to be more ozone-tolerant 
than thinner leaves (Bennet et al. 1992; Karlsson et al. 
2004; Lyons et al. 2000; Pääkkönen et al., 1995a; 
1995b), in part because of differences in the gas-phase 
diffusion pathways (Chappelka and Samuelson, 1998). 
The presence of cells with thick walls strongly influences 
the length of the diffusion pathway for ozone and 
modifies the interaction with oxidative constituents of the 
apoplast. The density of the cell wall (degree of cross-
linking, suberification or lignification) would also be 
expected to influence the tortuosity of the diffusion 
pathways for ozone (Lyons et al., 2000). The dense 
trichoma layer presents in the lower leaf surface of Q. ilex 
increases boundary layer resistance, and eventually may 
increase the surface of reaction with ozone, contributing 
to its depletion. In addition to these processes, leaves 
with higher LMA values have been correlated with higher 
antioxidant capacity levels (Matyssek et al., 2007) and a 
high tissue density is considered to be able to better feed 
detoxification processes (Bussotti, 2008).  
 
 
CONCLUSION 
 
Public opinion is increasingly aware of the risks of ozone 
to human health, the environment and forests in 
particular. Efforts to limit tropospheric ozone have been 
undertaken by industrialised countries of the northern 
hemisphere, and expectedly will extent all around the 
world. We have tried to underline the damage on forests 
and natural ecosystems. We have revised ozone damage 
on  photosynthesis,  plant growth and development,  from  



 

 
 
 
 
the individual to the ecosystem level. Implications of 
tropospheric ozone contamination should be considered 
at three levels: coordinated efforts among countries to 
reduce ozone pollution; adoption of measures of 
environmental management to mitigate ozone effects; 
and search for species or ecotypes with greater tolerance 
to ozone and more capacity of detoxification, taking into 
account the genetic diversity and phenotypic plasticity of 
plant species.  
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