Free radical scavenging and cytotoxic activity of five commercial standardized extracts (red wine, green tea, pine bark, polygonum and pomegranate)

García-Becerra Ledy*, Leos-Rivas Catalina, Oranday-Cárdenas Azucena and Rivas-Morales Catalina

Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Biológicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de los Garza Nuevo León, C.P. 66451 México.

Accepted 29 November, 2012

The objective of extract standardization is to obtain optimum and consistent quality of herbal preparations with defined components. This paper presents the radical scavenging effect of extracts against DPPH free radical (2,2-diphenyl-1-picrylhydrazyl) and cytotoxic activity in vitro on the cervical cancer cell line HeLa of five commercial standardized extracts rich in phenolic compounds: red wine (Vitis vinifera), green tea (Camellia sinensis), pine bark (Pinus maritime), polygonum (Polygonum cuspidatum), and pomegranate (Punica granatum). It shows radical scavenging activity in the following order, according to their median effective concentration (ECs): P. cuspidatum 85 µg/ml, C. sinensis 11 µg/ml, P. maritima 7 µg/ml, V. vinifera 6 µg/ml, P. granatum 1 µg/ml and for positive control, vitamin E was 21 µg/ml. The cytotoxic activity, according to their half maximal inhibitory concentration (ICs) was: P. granatum 22 µg/ml, C. sinensis 13.4 µg/ml, P. cuspidatum 12.8 µg/ml, P. maritima 11 µg/ml, and V. vinifera 7 µg/ml and for positive control, Triton X-100 was 3 µg/ml. Our results indicate that low concentrations of red wine, pomegranate, and pine bark extracts have high radical scavenging effect as well as cytotoxic activity on HeLa cells. Therefore, these extracts may be an important source for phytopharmaceuticals development.

Key words: Radical scavenging, cytotoxicity, HeLa cells, standardized extracts.

INTRODUCTION

Standardization extract can be defined as establishing reproducible pharmaceutical quality by comparing one product with established reference substances and defining minimum quantities of one or several compounds (Rodriguez-López, 2009). The extract standardization process is an indicator of quality and quantity that determines the quantitative and/or qualitative presence of a compound or group of compounds, in addition to presenting the extract in powdered form. A number of currently marketed standardized extracts are derived from a variety of plants and used as feedstock in nutritional supplement manu-

*Corresponding author. E-mail: ledy84@hotmail.com. Tel: 14939311.
There are reports that some antioxidants reduce certain types of cancer by inhibiting cell growth and preventing damage caused by free radicals in cancer, thus protecting healthy cells (Martínez-Flores et al., 2002; Gutiérrez-Maydata, 2002; Sagar et al., 2006; Hertog et al., 1993). The aim of this research is to assess the in vitro cytotoxic activity and free radical scavenging, or antioxidant activity, of five standardized extracts of pomegranate (P. granatum) to 50% of pycnocerogen, polygonum (P. cuspidatum) to 50% resveratrol, and pomegranate (P. granatum) to 40% ellagic acid. These extracts were kind gifts of Malabar Natural Products and Greenside S.A de C.V. The percentage composition was evaluated at each analysis and certificate for the compound or group of compounds were reported in each extract.

Cytotoxic effect with CellTiter Blue®

The adherent cervix adenocarcinoma cell line HeLa (ATCC: CCL-2) was maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% heat-inactivated fetal bovine serum, 10 U/ml penicillin, and 10 µg/ml streptomycin. Cell cultures were used at 80% confluency, and trypan blue exclusion assays were performed to check cell viability. Cells were plated in 96 well micro plates at a density of 3 000 cells/well and incubated for 24 h in a humidified 37°C chamber with 5% CO2. After 24 h, 100 µL of the extract solutions (0.1, 1, 10, 25, or 50 µg/ml, prepared in DMEM) were added to the cells and incubated for another 24 h under the same conditions. Subsequently, 50 µL was removed from each well as a positive control and was replaced with 50 µL Triton X-100. The micro titer plates were incubated for another 30 min, and 10 µL CellTiter Blue® reagent (Promega, USA) was added to each well. After 24 h, the absorbance was measured at 550 nm with a 630-nm differential filter using a micro plate reader (BIO-TEK, USA). The results are expressed as percentage viability by determining the half maximal inhibitory concentration (IC50, inhibition concentration that causes 50% inhibition of growth or cell death) (Williamson et al., 1998).

DPPH (2, 2-diphenyl-1-picrylhydrazyl) free radical scavenging

The radical scavenging capacity of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical (Sigma Chemical Co., USA) was determined according to the following method (Garcia-Becerra et al., 2010): Solutions of different concentrations of extracts (0.1, 1, 10, 25 and 50 µg/ml) as well as of vitamin E for the positive control (Sigma Chemical Co.) were prepared. Methanol (CTR Scientific, Mexico) was added to a final volume of 100 µL. Next, 2 ml of a methanolic solution of DPPH (20 µg/ml) was added to each tube and incubated at room temperature for 20 min in the dark. The control was prepared without extract, and a blank was prepared with methanol for baseline correction. After incubation, the absorbance was measured at 517 nm in a spectrophotometer (Thermo Spectronic Genesys 20, USA). A decrease in the absorbance of the reaction mixture indicates radical scavenging capacity. DPPH radical inhibition caused by the extracts and vitamin E was calculated using the following formula:

\[
\text{Radical scavenging DPPH} (\%) = \frac{ABS_{t=0\text{min}} - \text{ABS}_{t=20\text{min}}}{\text{ABS}_{t=0\text{min}}} \times 100
\]

Where, \(\text{ABS}_{t=0\text{min}}\) is the absorbance at 0 min and \(\text{ABS}_{t=20\text{min}}\) is the absorbance after 20 min of incubation. The results are expressed as the median effective concentration (EC50), which is defined as the concentration at which a sample causes a 50% decrease of the initial concentration of DPPH.

Statistical analyses

Data are expressed as the means ± SD from three independent experiments. For cytotoxicity, the percent viability was compared with control wells in terms of IC50, and radical scavenging activity by the EC50 using linear regression analyses. Statistical comparisons of results were performed using a Student’s t-test and p < 0.05 was considered statistically significant.

RESULTS AND DISCUSSION

All extracts exhibited cytotoxic activity on HeLa cells. Table 1 shows the IC50 of cytotoxic activity and the EC50 of the radical scavenging activity found for each extract. The range of IC50 is presented at low concentrations in the range of 7 to 22 µg/ml, with the red wine extract the most active with an IC50 of 7 µg/ml. The highest cytotoxic effect was by the pomegranate extract at 22 µg/ml. Radical scavenging activity, expressed as EC50, showed a wider range of 1 to 85 µg/ml. The most powerful antioxidant was pomegranate extract at 1 µg/ml and the highest EC50 was the polygonum extract at 85 µg/ml. There are published reports of biological activity about the five tested extracts in this paper as an antioxidant and cytotoxic agent in some cell lines. However, in these studies, all experiments were performed with extracts, fractions, or plant compounds. It is important to note that the advantage of standardized extracts is that they always contain a defined composition of the compound or group of compounds. Thus, this favors the formulated pharmaceutical, food, or cosmetic products, as standardization satisfies one of the requirements requested by the Pharmacopoeia.

There are reports from several authors regarding the antioxidant and cytotoxic activity of a methanol extract from pomegranate rind on the MCF-7 breast cancer cell line. By determining the amount of polyphenols using the Folin-Ciocalteu phenol reagent and using DPPH to determine the free radical scavenging activity, they determined that the component with the highest activity was ellagic acid. Ellagic acid possessed strong apoptotic effect as the pomegranate extract at 22 µg/ml. Ellagic acid possesses strong apoptotic activity and free radical scavenging activity (Dikmen et
Pomegranate has been tested on several cell lines derived from various tissues, including breast, colon, lung, and prostate. However, breast and prostate showed the most promising results (Adhami et al., 2009; Sturgeon and Ronnenberg, 2010; Koyama et al., 2010). A report found that in HeLa cells, pomegranate extract was one of the least effective extracts tested (McDougall et al., 2008). These results were corroborated in our investigation because pomegranate extract showed the lowest cytotoxic activity on HeLa cells with an IC₅₀ of 22 µg/ml.

However, pomegranate had the highest free radical scavenging activity with an EC₅₀ of 1 µg/ml. The positive control, vitamin E, had an EC₅₀ of 21 µg/ml, and we determined that there was no significant difference between pomegranate extract and vitamin E (Student's t-test, p < 0.05).

The red wine extract used in this study showed 30% of polyphenolic compounds and showed a lower IC₅₀ concentration of 7 µg/ml. This is the closest value to the positive control, Triton X-100, which had an IC₅₀ of 3 µg/ml (Figure 1B). Therefore, this is a statistically significant difference. Triton X-100 is a non-ionic surfactant widely used in cell biology to permeate cell membranes. However, based on the results obtained here, it would be interesting to use a natural drug in the future with a similar action as Triton X-100 as chemotherapy to corroborate these effects and statistically evaluate the relationship. The objective of this study was a first attempt to evaluate standardized extracts and check for relevant activity using Triton X-100 as a positive control. There are reports in the literature showing that the polyphenols in red wine cause cell cycle arrest and induce apoptosis in the human lymphoblastic leukemia cell line, Jurkat (Sharif et al., 2010; Sharif et al., 2009).

In a previous study, the cytotoxic activity of polyphenols from red and white wine, including resveratrol, was investigated on the following cell lines: HeLa, MDA-MB-361, MDA-MB-453, and PBMCs. White wine polyphenols have a greater effect than red wine compounds, but both are active. In addition, the HeLa cell line was most susceptible to polifenoles (Matić et al., 2010). Our results confirm the cytotoxic effect for the red wine extract on HeLa cells, and it will be interesting to discover the mechanisms involved in the cytotoxic effect. As shown in Figure 1G, the red wine extract completely destroyed the cell monolayer, and because the method used to assess the cytotoxic effect did not involve washing, this gives a more accurate result and indicates no cells were lost due to washing. However, based on the results obtained here, it would be interesting to use a natural drug in the future with a similar action as Triton X-100 as a positive control. There are reports in the literature showing that the polyphenols in red wine cause cell cycle arrest and induce apoptosis (Mao et al., 2008) and indicates no cells were lost due to washing. Therefore, our protocol eliminates the possibility of lost cells, the V. vinifera extract showed an IC₅₀ of 7 µg/ml.

Resveratrol (trans-3, 5, 4′-trihydroxystilbene) is a phytoalexin found in a variety of plants including grapes, red wine, berries, and nuts. However, the plant P. cuspisatum has become the main source for obtaining resveratrol. Resveratrol has several biological activities, such as antioxidant, anticoagulant, anti-inflammatory, cardioprotective, and anti-cancer properties (Mao et al., 2010; Pei-Chi et al., 2010; Abbott et al., 2010; Kramer and Wesierska-Gadek, 2009; Kraft et al., 2009; Lin et al., 2010). Pre-treatment with resveratrol followed by administration of taxol causes a synergist effect; however, the combination of these compounds considerably decreases the activity of taxol on bladder cancer cells (Mao et al., 2010).

Regarding cytotoxicity, a report has shown that resveratrol induces apoptosis and causes cell cycle arrest in the human hepatoma cell line Huh-7 (Pei Chi et al., 2010). Resveratrol also inhibits HeLa cell proliferation by blocking the S phase of the cell cycle and prevents angiogenesis by inhibiting the expression of vascular endothelial growth factor (VEGF) (Kraft et al., 2009). Previous study shows an association between the antioxidant effect and the antiproliferative effects by P. cuspisatum on DPPH in lung cancer cells and found compelling activity of scavenging of the DPPH free radical and a high antiproliferative effect (Lin et al., 2010). As shown in Table 1, the extract of polygonum had the highest EC₅₀ of 85 µg/ml and an IC₅₀ of 12.8 µg/ml (Figure 1E), and thus, our data are interesting and consistent with those previously reported, it is of great interest to continue studying resveratrol obtained from P. cuspisatum.

Green tea has been widely studied for its polyphenols

<table>
<thead>
<tr>
<th>Sample</th>
<th>IC<sub>50</sub> values (µg/ml)</th>
<th>EC<sub>50</sub> values (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin E (PC)</td>
<td>-</td>
<td>21</td>
</tr>
<tr>
<td>Triton X-100 (PC)</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Red wine (Vitis vinifera)</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Pine bark (Pinus maritima)</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>Polygonum (Polygonum cuspidatum)</td>
<td>12.8</td>
<td>85</td>
</tr>
<tr>
<td>Green tea (Camellia sinensis)</td>
<td>13.4</td>
<td>11</td>
</tr>
<tr>
<td>Pomegranate (Punica granatum)</td>
<td>22</td>
<td>1</td>
</tr>
</tbody>
</table>

PC, Positive control; -, Not detected.
because it has high antioxidant activity. In recent years, after this antioxidant was found to offer protection against the occurrence of cancer, studies evaluated the effects of green tea extracts on different cell lines. Several mechanisms of action were detected. Specifically in HeLa cells, pre-incubation of the ethanolic extract of green tea showed an IC\textsubscript{50} of 256 µg/ml as assessed with the Kit II method of proliferation. Its mechanism of action is associated with inactivation of cytosolic thioredoxin reductase (Wang et al., 2008), and green tea also affects the function of VEGF and hypoxia-inducible 1α (HIF-1α) in HeLa cells (Zhang et al., 2006) and inhibits HeLa cell proliferation upon irradiation with a laser light (Sommer et al., 2010). Green tea extract also decreases cell proliferation of the breast cancer cell line MDA-MB231 (Sartippour et al., 2002). In the previous investigations, polyphenols inhibited proliferation and cell death.

The results from this study are consistent with reports regarding the cytotoxic effect of green tea polyphenols on HeLa cells, particularly because the IC\textsubscript{50} was 13.4 µg/ml and the scavenging effect of free radicals showed an EC\textsubscript{50} of 11 µg/ml. This shows better activity than the positive control (vitamin E) used in this trial with no statistically difference (Student's t-test, p < 0.05). This particular result can be compared to a report in which a mixture of extracts from several plants was used, including green tea, and a synergistic effect was determined to enhance the antioxidant effect (Jain et al., 2011) of the green tea flowers that have strong antioxidant activity of 11.6 µg/ml as measured by the DPPH method (Yang et al., 2007).

\textit{P. massoniana} and \textit{P. pinaster} bark have been widely studied, and an extract of \textit{P. maritima} was standardized to 90% in pycnogenol (monomeric and oligomeric polyphenols). Some clinical trials have demonstrated the efficacy of pycnogenol in situations such as dysmenorrhea, seminal fluid analysis, attention deficit disorder, venous insufficiency, and microangiopathy (Navarro-Moll et al., 2010; Shen et al., 2010). This suggests the bark has important biological actions. A report showed that flavonoid-rich extracts of \textit{P. massoniana} have cytotoxic activity on HeLa and MDA-MB-23133 cells and that they inhibit proliferation, induce apoptosis, and cause cell cycle arrest in HeLa cells (Ma et al., 2008). Similarly, we have evaluated the antioxidant effect of extracts of \textit{P. pinaster} by DPPH, ABTS [2, 2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)], and HNTTM [tris (2, 4, 6-trichloro-3, 5-dinitrophenyl) methyl] with excellent results (Touriño et al., 2005), and our findings add to the information regarding the biological activity of extracts of the genus \textit{Pinus}. The extract used in \textit{P. maritima} showed good cytotoxic activity (IC\textsubscript{50} of 11 µg/ml) and free radical scavenging activity (EC\textsubscript{50} of 7µg/ml) with no statistically significant difference compared to vitamin E (Student's t-test, p < 0.05). Pycnogenol and \textit{Pinus} extracts have a wide range of biological activities, including antioxidant and free radical scavenging activity, anti-inflammatory and cardioprotective activity, prevention of allergy, asthma, and high cholesterol, improvement in venous and menstrual disorders and attention deficit disorder, as well as antimicrobial and antiviral activity (Iravani et al., 2011). These effects are on HeLa cells found in this investigation in addition to the cytotoxic effect.

Conclusion

The five extracts tested in this work showed cytotoxic activity in HeLa cells in the following order, according to...
their IC₅₀: Pomegranate (P. granatum) 22 µg/ml, green tea (C. sinensis) 13.4 µg/ml, polygonum (P. cuspidatum) 12.8 µg/ml, pine bark (P. maritima) 11 µg/ml, and red wine (V. vinifera) 7 µg/ml. The extracts tested in this work showed free radical scavenging activity measured by the DPPH method without statistically significant differences compared to vitamin E except the polygonum extract. The extracts were as follows, according to their EC₅₀: polygonum (P. cuspidatum) 85 µg/ml, green tea (C. sinensis) 11 µg/ml, pine bark (P. maritima) 7 µg/ml, red wine (V. vinifera) 6 µg/ml, and pomegranate (P. granatum) 1 µg/ml. The antioxidant activity of phenolic compounds and their cytotoxic effects are closely related (Romero-Cerecero et al., 2011; Lin et al., 2010), and our results support this.

Standardized extracts can be directly used in in vitro and in vivo assays as well as clinical trials (Romero-Cerecero et al., 2011; Hernández-Pérez and Herrera-Arellano, 2011). These compounds have standardized which can use as quality markers, ensuring the composition of assets present.

ACKNOWLEDGEMENTS

We thank Consejo Nacional de Ciencia y Tecnología (CONACYT) for their support (204643). We also thank Dr. Roberto Montes de Oca for providing the HeLa cells and Malabar Productos Naturales and Greenside S.A de C.V for the providing the extracts.

REFERENCES

of polyphenols from red wine on teratocarcinoma cell, a model of cancer stem-like cell. Invest New Drugs 29:239-247.