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Table 1. Morphological characteristics and putative levels of resistance of cocoyam accessions used for the study 
 

Accessiona Color of petiole/petiole base Tuber flesh color Reaction to P. myriotylumb 

“Local White” Green/white White Susceptible 
RO1054 Green/green White Tolerant 
RO2063 Purple/pink Pink Susceptible 
RO3015 Purplish/white Yellowish/white Fairly resistant 

 
aAccessions RO1054, RO2063 and RO3015 were selections of the Cocoyam Breeding Program, Institute of Agricultural 
Research for Development (IRAD), Ekona, Cameroon. bData obtained from Jay P. Johnson Biotechnology Laboratory, 
ROTREP Cocoyam Breeding Program, Institute of Agricultural Research for Development (IRAD), Ekona, Cameroon. 

 
 
 
tons in 2000 to 5.068 tons in 2007 (Olagunju and Adesiji, 
2011). The cocoyam root rot disease caused by P. 
myriotylum Drechs is the most damaging disease of 
cocoyam. As part of an ongoing research effort to 
improve cocoyam, notably in the development of cultivars 
that are resistant/tolerant to the root rot disease, the 
causal pathogen has been well characterized 
(Pacumbaba et al., 1992; Pacumbaba, 1996; Tambong et 
al., 1999). Although resistance or tolerance to the coco-
yam root rot disease has been observed in some 
cocoyam types, however, the mechanism of tolerance/ 
resistance is not known. 

Plants possess various defense mechanisms that 
enable them to survive under biotic or abiotic stress. 
Among several defense tactics, induced defense mecha-
nisms against plant pathogens which involve the 
hypersen-sitive response, reactive oxygen species, and 
pathogenesis-related (PR) proteins have received 
considerable research attention in many crop species 
(Hammond-Kosack and Jones, 1996; Rahimi et al., 1996; 
Reiss and Bryngelsson, 1996; Van Loon, 1999). 
Pathogenesis-related (PR) proteins are a group of plant 
proteins some of which are normally present in low 
amounts in the non stressed plant, but whose production 
becomes massively increased and new ones induced, 
when plants are subjected to biotic or abiotic stresses. 
Many of these proteins associated with host defense 
have been characterized as chitinases, ß-1,3-
glucanases, peroxidases and thaumatin-like proteins 
(TLP). Among the PR proteins, chitinases, glucanases 
and osmotins expressed in plants attacked by fungi are 
thought to limit fungal growth. This antifungal biological 
function has been demonstrated in vitro against several 
fungi (Anfoka and Buchenauer, 1997; Ji and Kie, 1996; 
Lawrence et al., 1996; Yun et al., 1996; Zhang et al., 
1996). The hydrolases, chitinase and glucanase which 
degrade the ß-1,4-linkage between N-acetylglucosamine 
residues of chitin and glucans in fungal cell walls, and 
thaumatin-like proteins are also known to be induced in 
plants by adverse environmental factors (Bowles, 1990; 
Cruz-Ortega and Ownby, 1993; Hincha et al., 1997; 
Yalpani et al., 1994).  

 Another indirect role of ß-1,3-glucanases and 
chitinases is that they act as elicitors of defense 

reactions, that is they release oligosaccharides from cell 
walls of both fungi and plants that in turn activate the 
accumulation of phytoalexins, extensins, proteinase 
inhibitors and lignin in the attacked host plant (Ham et al., 
1991). PR proteins occur in many plants where they also 
play a developmental role (Leubner-Metzger and Meins, 
1999). 

Due to the involvement of PR proteins in host 
resistance, genes encoding such PR proteins could be 
exploited to engineer resistance in crops (Sharma et al., 
1993). The root rot problem in cocoyam could be solved if 
genes conditioning resistance against Pythium 
myriotylum were identified and either bred in or cloned 
and genetically engineered into cocoyam. A logical first 
step would be to understand the host resistance 
response that is deployed during pathogen infection or 
attempted infection. Also, identified genes may be 
targeted for over-expression to develop resistant 
cultivars. Broglie et al. (1991) found that transgenic plants 
over-expressing a basic bean chitinase exhibited 
increased resistance against Rhizoctonia solani.  

The objective of this study was to determine and 
characterize host-specific defense related proteins 
induced in cocoyam, their serological relationship to 
known PR proteins and if there is temporal accumulation 
of these PR proteins in response to P. myriotylum 
infection.  
 
 
MATERIALS AND METHODS 
 
Plant inoculation and protein extraction for enzymatic activity 
assays 
 
Five plants from each of the cocoyam breeding accessions 
RO3015, RO2063, RO1054 and “Local White” (Table 1) were 
inoculated at the roots with a suspension of 1 × 104 mycelial 
fragments/ml or zoospores of P. myriotylum or distilled water in a 
split root system. P. myriotylum used for inoculation was a gift from 
Dr. Tambong. A hyphal tip was grown on lima bean sucrose agar 
(LBSA, pH 7.0) at 31°C in the dark for 5 days prior to being used for 
inoculum preparation. The inoculum was derived by macerating 5-
day old flocculent mycelia cultures with distilled deionized water in a 
Waring blender. The final inoculum concentration was adjusted to 1 
× 104 mycelial fragments per ml. The split root system was set up 
such that about 8-10 cocoyam roots in the potted soilless medium 
were carefully extended through the holes at bottom of the pot into 



214
 
 
 

 
 
 
a P
pot,
soil 
prot
inoc
colle
extr

F
sam
RO3
extr
thes
resi
inoc
repr
inoc
prel
h fo
grou
Tris
mer
siev
rpm
 
 
Con
 
Afte
cold
(Bol
85%
fuge
diss
mer
plac
Prot
Spin
acco
of th

4         Afr. J. 

m inoculum con
 while the rest 
(Figure 1). Thi

teins in the a
culated root sam
ected at 0, 2, 
raction and furth
or SDS-PAGE

mples from co
3015 plants, we
raction and ana
se accessions 
stant) and sus
culation was 
resented the tim
culated sample
iminary experim
ollowed by cru
und (10:1; w/v) 
s-HCl, 1% (w/v)
rcaptoethanol, w
ved through aut

m for 20 min at 4

ncentration and

er centrifugation
d acetone, incu
llag et al., 1996

% saturation (B
ed at 10,000 rp
solved in 0.1 
rcaptoethanol a
ced in 1.5 ml m
tein samples we
n® 6 chroma
ording to the m
he purified samp

Biotechnol. 

ntaining saucer 
of the roots re
s set up was u

analysis. During
mples from ino
4, 6 and 8 d

her analysis by s
, IEF and Imm

ontrol and inoc
ere collected 8 
alysis. Since th
were selected

sceptible cocoy
chosen for 

me point where 
 plants of the

ments. Root sam
ude protein ext

in extraction b
) polyvinylpyroll
with a mortar a
toclaved chees
°C.   

d partial purific

n, the supernata
bated at -20°C
6) or was precip
ollag et al., 19

pm for 10 min a
M Tris-HCl, p

and 20% (v/v) g
microfuge tubes
ere desalted an
atography colu
anufacturer’s pr
ple was then de

 
Figure 1. Sch
cocoyam plant
roots were ma
collection.  

placed outside
mained undistu
sed in order to 
g sample colle

oculated and co
days post inocu
specific enzyma
munobloting, no
culated RO105
days after inoc

here was no re
d to represent 
yams only. The

sample collec
the maximum e
se accessions 

mples were stor
traction. The f
uffer (pH 6.8), 
lidone (PVP:40

and pestle at 4°
ecloth and cen

cation of samp

ant was mixed 
 for 2 min to p
pitated with am
996). The prec
at 4°C. The pro
pH 6.8, contain
glycerol. Aliquo
s and stored at
nd further purifie
mns (Bio-Rad
rotocol. The pro

etermined.   

hematic of the
ts to study indu
aintained in the 

e the bottom of 
urbed in the pot

exclude pathog
ection, only n
ontrol plants, w
ulation for prot
atic activity assa
on-inoculated r
54, RO2063 a
culation for prot
esistant cocoya
tolerant (parti

e eighth day a
ction because 
enzyme activity 

was recorded
red at -70°C for
frozen roots w
containing 0.1n
) and 1% (v/v)
°C. Samples w

ntrifuged at 15,0

ples 

(1:5 v/v) with i
precipitate prote

mmonium sulfate
ipitate was cen

otein pellet was 
ning 5% (v/v) 

ots of 100 µl w
t -70°C until us
ed using Micro B
d, Hercules, C
otein concentrat

e split root me
uced defense r

pathogen inoc

the 
tted 
gen 
on-

were 
tein 
ays. 
root 
and 
tein 
am, 
ally 
fter 

it 
for 

d in 
r 48 

were 
n M 
) 2-

were 
000 

ice-
eins 
e at 
ntri-
re-
2-

were 
sed. 
Bio-
CA) 
tion 

Determ
 
The p
to the 
CA) a
purific
 
 
Assay
 
Chitin
 
The su
brillian
Germa
consis
buffer,
The m
reacte
supern
resulta
was ex
CM-ch
 
 
ß-1,3-
 

Carbo
mg/ml
substr
of 0.1 
extrac
then c
nm (M
Enzym
unit of
 
 
SDS-P
 
Sodium

ethod used in 
responses. The
culum until time

mination of pro

rotein concentr
method of Bra

and samples w
cation. 

ys for enzymat

nase assay 

ubstrate used fo
nt violet (CM-
any). The rea
sted of 100 µl o
, pH 5.0 and 10

mixtures were in
ed samples we
natant read at 
ant curve was u
xpressed as un
hitin hydrolyzed 

-glucanase ass

oxymethyl-curdla
; Lowe Bioch

rate. The assay
 M sodium ace

ct. The mixture w
centrifuged at 5
Microplate Rea

matic activity wa
f activity was eq

PAGE 

m  dodecyl  sulf

 

inoculating 
e inoculated 
e of sample 

otein concentr

ration in all sam
adford, using a 
were used for 

tic activity 

or this assay wa
-chitin RBV, 2
ction mixture 
of substrate, 20

00 µl crude prote
cubated for 1, 1

ere centrifuged
550 nm. The 

used to calculat
nits/µg protein. O

per minute. 

say 

an remazol bril
emica, Germa

y mixture contai
etate buffer, pH
was incubated a
000 g for 10 m
ader Model 5
as determined a
qual to 1 µg CM-

fate  polyacrylam

ration 

mples was mea
protein kit (Bio
electrophoresis

as carboxymeth
2 mg/ml; Low
in a 1.5 ml 

00 µl of 0.1 M 
ein extract from
10, 20 and 30 m
d at 5000 g f
log phase of t
te the enzymati
One unit was eq

liant blue (CM-
any) was used
ned 100 µl of s

H 5.0 and 100
at 37°C at 1, 15
in and superna

550; Bio-Rad, 
as described fo
-curdlan hydroly

mide  gel  electr

sured accordin
o-Rad, Hercules
s without furthe

hyl chitin remazo
we Biochemica
microfuge tub
sodium acetat

m cocoyam roots
min at 37°C. Th
for 10 min an
the slope of th
ic activity, whic
quivalent to 1 µ

-curdlan RBB, 
d as glucanas
substrate, 200 µ
µl crude protei

5, 30 and 60 min
atant read at 59

Hercules, CA
or chitinase. On
yzed per minute

rophoresis  was

g 
s, 
er 

ol 
a, 
e 
e 
s. 
e 
d 
e 
h 
g 

4 
e 
µl 
n 
n, 
5 
). 
e 

e. 

s 



 
 
 
 
carried out on 0.75 mm 18% (30:0.8 acrylamide/bis-acrylamide) 
slab gels to determine purity of the crude protein extracts, 
differences between samples, and resolve proteins for western 
blotting, according to the protocols of Bollag et al. (1996). The 
resolving gel was prepared by combining acrylamide (18.48%), 
0.375 M Tris-HCl, pH 8.8, 0.1% SDS, 50 l 10% ammonium 
persulfate and 5 l TEMED. The stacking gel (5%) contained 
5.159% total acrylamide, 0.125 M Tris-HCl, pH 6.8, 0.04% SDS, 30 
l of 10% ammonium persulfate and 5 l TEMED. Mini gels (6 cm x 
8 cm x 0.75 mm) were cast in slabs according to the BIO-RAD mini 
gel procedures (Bio-Rad, Hercules, CA). After gels were cast, 
protein samples were combined (4:1) with sample buffer (5x) 
containing 60 mM Tris-HCl, pH 6.8, 25% glycerol, 2% SDS, 14.4 
mM 2-mercaptoethanol and 0.1% bromophenol blue. The solution 
was mixed and heated at 95°C for 4 min, centrifuged briefly (1 s) 
and sample volumes corresponding to approximately 20 g was 
loaded in each well. Samples were resolved at 150 V constant 
voltage for 1.4 h. Proteins were fixed and stained for 8-10 min in 
Coomassie gel stain solution containing 0.1% Coomassie Blue R-
250, 45% methanol and 10% glacial acetic acid. Gels were 
destained overnight in a solution containing 10% each of methanol, 
and glacial acetic acid, photographed and image processed using 
the AlphaImager computer software. The molecular masses of 
resolved proteins were estimated by coelectrophoresis of marker 
proteins (Bio-Rad) of molecular masses ranging from 6.5 to 200 
kDa.  
 
 
Isoelectric focusing and detection of chitinase and glucanase 
in overlay gels 
 
Isoelectric focusing was carried out on 0.4 mm gels using the Bio-
Rad Mini IEF Cell (Bio-Rad, Hercules, CA). The gels were prepared 
by combining 2 ml 24.25% acrylamide+0.75% bis-acrylamide, 0.5 
ml water-free glycerol, 500 µl 3/10 ampholyte and 5.5 ml distilled 
water. After degassing the solution for 5 min, 15 µl ammonium 
persulfate, 50 µl 0.1 % riboflavin and 3 µl TEMED were added and 
gels cast according to the equipment manufacturer’s protocol. 
Protein samples were loaded (5 µl, approx. 4.5 µg/well) directly on 
the gel. Samples were focused for 15 min at 100 V, 15 min at 200 V 
and 1 h at 450 V. Overlay slab gels (7.5%) were cast according to 
the protocol of Bollag et al. (1996). They contained either 0.04% 
CM-Chitin RBV or CM-Curdlan RBB in 0.2 M sodium acetate buffer, 
pH 5.0.  
 
 
Detection of enzyme activity on overlay gels 
 
After IEF was complete, the focused gels were overlaid with the 
overlay gels and the gels sandwich incubated under moist 
conditions at 37C overnight (12 h). Chitinase was detected by 
incubating the overlay gel in freshly made 0.01% (w/v) fluorescent 
brightener 28 (Calcofluor white M2R) in 0.5 M Tris-HCl (pH 8.8) at 
26C for 10 min. The gels were rinsed in distilled deionized water at 
26C for 10-15 min. Chitinase isozymes were visualized as clear 
zones on a UV light source. Gel pieces representing different bands 
were cut and incubated in distilled deionized water overnight after 
which the pH of each piece was determined.    
 
 
Western blotting 
 
SDS-PAGE was carried out using 18% polyacrylamide gels as 
described earlier. After SDS-PAGE, proteins were transferred onto 
Immun-Blot® PVDF or nitrocellulose membranes using the Bio-Rad 
Mini Transblot® electrophoretic transfer cell (Bio-Rad, Hercules, 
CA) following the manufacturer’s instructions. Electroblotting was 
completed  in 1 h at 100 V, constant  voltage. After  electro-transfer, 
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the membrane was blocked for 1 h with 1% (w/v) BSA in Tris 
buffered saline (TBS; 20mM Tris, 500mM NaCl, pH 7.4) containing 
0.05% Tween 20 (TBS-T) and washed with TBS-T twice for 15 min 
each. The primary polyclonal antibodies for chitinase (PR-3) and 
glucanase (PR-2) were gifts from Dr. Tomas Bryngelsson; the 
antibodies were raised from barley leaves inoculated with the 
powdery mildew fungus, Erysiphe graminis f. sp hordei syn. 
Blumeria graminis f. sp hordei. Anti-osmotin antibody raised against 
osmotin purified from NaCl- adapted cultured tobacco cells, a gift 
from Dr. Meena Narsimhan, Purdue University, USA, was also 
used. Anti-PR-3 anti-chitinase and anti-PR-2 anti-glucanase 
antibodies were diluted 1:250, while anti-osmotin was diluted 
1:3000, in blocking buffer. The antibodies were incubated in this 
solution overnight (11 h) at room temperature. The next day, the 
membranes were washed in two changes of TBS-T each for 15 min 
and subsequently incubated for 2 h in the secondary antibody 
diluted 1:1000 (goat anti-rabbit IgG [H+L] alkaline phosphatase 
conjugate in 10mM Tris, 150mM NaCl, 1mM MgCl2, pH 8.0) (Bio-
Rad, Hercules, CA) for chitinase and glucanase, and 1:5000 (rabbit 
anti-chicken IgG [H+L] alkaline phosphatase conjugate in 10mM 
Tris-HCl, 250 mM NaCl, pH 8.0) (Jackson ImmunoResearch 
Laboratories Inc, West Grove, PA) for osmotin, with blocking buffer, 
followed by two washes with TBS-T as above. The protein bands 
were revealed by incubating the membranes with constant shaking 
in 25 ml of alkaline phosphatase substrate containing 250 µl 
nitroblue tetrazolium (NBT) in aqueous dimethyl formamide [DMF] 
containing MgCl2 and 250 µl BCIP (5-bromo-4-chloro-3-indoyl 
phosphate in DMF). Color development was stopped, by rinsing the 
membranes three times in distilled water. 
 
 
Statistical analysis of data 
 
Enzymatic activity measurements were subjected to the analysis of 
variance procedure. Treatment means were compared using Tukey 
HSD test (p≤0.05). The SAS statistical software was used in all data 
analyses.   
 
 

RESULTS 
 
Chitinase activity 
 
There was a significant increase in chitinase activity in 
roots of all inoculated plants, compared to the controls. 
Constitutive levels of chitinase activity ranged from 10-60 
units/µg of protein. Chitinase activity increased up to 4-
fold in roots of inoculated RO1054 (tolerant) plants at 8 
dpi (Figure 2A). In the susceptible “Local White”, 
chitinase activity also increased significantly (up to 6-fold) 
in roots of inoculated plants at 6 dpi (Figure 2B), and then 
sharply declined. The time course of chitinase activity in 
the tolerant RO3015 showed significant activity in roots of 
inoculated plants at 4, 6 and 8 dpi (Figure 2C), while in 
the susceptible RO2063, high and significant chitinase 
activity was observed at 6 and 8 dpi (6-fold increase) 
(Figure 2D). These results show there was a systemic 
increase in chitinase activity, in cocoyam roots resulting 
from inoculation with P. myriotylum. 
 
 
ß-1,3-glucanase 
 
ß-1,3-glucanase activity was only significantly induced in
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sion of induced systemic resistance to any subsequent 
nonspecific or specific pathogen of cocoyam capable of 
attacking an already pathogenically challenged cocoyam 
plant. Tolerance (partial resistance) in RO1054 could be 
contributed by the synergistic induction of these two 
hydrolases. In many host-pathogen interactions involving 
active defense or induced resistance, the pathogenesis-
related (PR) endohydrolases with chitinase or -1,3-
glucanase activity, including the thaumatin-like proteins, 
have been detected in the attacked plant (Anfoka and 
Buchenauer, 1997; Rahimi et al., 1996; Reiss and 
Bryngelsson, 1996; Van Loon, 1999). -1,3-glucanase 
and chitinase are produced in many active defense 
responses involving fungi. The substrates for these 
enzymes are present as structural components of several 
fungal pathogens. Evidence from in vitro studies shows 
that the action of these enzymes leads to inhibition of 
fungal growth or hyphal lysis (Mauch et al., 1988; 
Woloshuk et al., 1991). However, it is unclear why 
chitinase accumulates in plants attacked by oomycetes 
since the oomycetes lack chitin in their cell wall. It 
appears therefore, that the accumulation of chitinase in 
this host-pathogen interaction is either induced by 
nonspecific elicitors or part of the induced resistance 
repertoire, which mainly helps to strengthen the plant’s 
defense system in preparation for subsequent pathogen 
attack.  

In Western analysis, using anti-osmotin polyclonal 
antibodies from NaCl-adapted tobacco cells, we detected 
a single protein band (42 kDa) commonly expressed in 
the roots of the inoculated accessions. Proteins of the 
PR-5 family have been placed into two major groups 
based on their cellular localization. Among these 
proteins, the osmotin-like proteins, which are said to be 
basic and mainly vacuolar (Jacobs et al., 1999; Kombrink 
and Somssich, 1995), are known to exhibit antifungal 
activity (Velazhahan et al., 1999). 

This is the first time a study examining induced defense 
response in cocoyam has been undertaken. Apart from 
work done on a related aroid (Colocasia esculenta) in 
which cultivars were screened for induction of PR protein 
in response to infection by Phytophthora colocasiae (Ho 
and Ramsden, 1998), no attempts at understanding the 
mechanism of cocoyam resistance to the root rot disease 
have been undertaken at the molecular level.  

In this study, we observed a significant increase in 
chitinase activity in the roots of both tolerant and sus-
ceptible cocoyam infected with P. myriotylum, however, 
multiple chitinase bands were expressed only in roots of 
the tolerant cocoyam. Our results also show that the 
closely related thaumatin-like (TL) protein, osmotin (PR-
5), is induced in cocoyam in response to P. myriotylum 
attack. The increased chitinase and -1,3-glucanase 
activity in healthy roots of RO1054 infected with P. 
myriotylum compared to the control, shows that these 
PRs were systemically induced. Infected roots of 
inoculated   plants  were  generally  avoided  in  order  to  

 
 
 
 
exclude pathogen proteins in the analysis. It is apparent, 
however, that induction of these proteins including 
osmotins, does not afford complete protection from the 
invading pathogen. Although osmotins have been shown 
to be inhibitory to several fungi including the oomycete 
Phytophthora infestans (Woloshuk et al., 1991), it seems 
members of the PR5 group may be specialized in their 
functions, for example, possession of antifungal activity 
against only selective pathogens (Yun et al., 1996). 
Complete protection from infection would probably 
require high and rapid accumulation of hydrolytic 
enzymes and antifungal proteins or accumulation of yet 
other unidentified antimicrobial compounds in the coco-
yam roots. This work only sets the stage for one 
approach to understanding disease resistance/tolerance 
in cocoyam to P. myriotylum. Revealing the relatively 
weak defense capability of cocoyams attacked by a 
virulent isolate of P. myriotylum is of interest not only 
because it increases our understanding of the nature of 
cocoyam defenses but could offer researchers more 
rational and viable strategies for the effective control of 
this pathogen on cocoyam. For example, genetic studies 
in future research could identify genes in resistant plants 
expressing high levels of constitutive antifungal proteins 
that could be engineered into the susceptible consumer 
preferred cultivars to enhance disease resistance. 
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