First detection of \textit{bla} TEM, SHV and CTX-M among Gram negative bacilli exhibiting extended spectrum β-lactamase phenotype isolated at University Hospital Center, Yalgado Ouedraogo, Ouagadougou, Burkina Faso

K. J. Zongo1*, A. Metuor Dabire1, L. G. Compao3, I. Sanou2, L. Sangare2, J. Simpore4 and B. Zeba1

1Laboratoire d’Enzymologie de la Chimio-Résistance Bactérienne Université d’Ouagadougou, Burkina Faso. 2Laboratoire de bactériologie-Virologie/ Centre Hospitalier Universitaire Yalgado OUEDRAOGO. 3Laboratoire national de santé animale, Burkina Faso. 4Laboratoire de Biologie moléculaire et de Génétique (LABIOGENE), Université de Ouagadougou, Burkina Faso.

Received 10 May, 2014; Accepted 12 March, 2015

Resistance to a wide variety of common antimicrobials is observed among clinical strains designed as extended spectrum β-lactamase (ESBL) producers. They produce enzymatic protein which inactivate s efficiently oxyimino cephalosporin and constitutes a serious global health concern that has complicated treatment strategies. Many studies report high prevalence of ESBL producers among Gram negative bacilli. The aim of this work was to identify the presence of TEM, SHV and CTX-M families in these strains which were initially screened by phenotypic method. Gram negative bacilli resisting third or four generation cephalosporin were isolated during anti-biogram study. The presence of ESBL positivity was detected using the double disk synergy test. Minimal inhibitory concentrations (MICs) of ceftriaxon for any strain were determined using E-test manufacturing protocol. Polymerase chain reaction (PCR) analysis for β-lactamase (\textit{bla}) genes of TEM, SHV and CTX-M family was carried out using designed primers in 171 ESBL isolates producers. Among 259 Gram negative bacilli collected, 171 (66, 02%) exhibited ESBL producers’ profile. Urine samples constitute major source of ESBL producers. The highest prevalence of ESBL was observed in \textit{Escherichia coli} (75, 50%). Among ESBL isolates producers, gene prevalence of \textit{bla}-CTX-M (65, 49%) was highest, followed by \textit{bla}-TEM (25, 73%) and \textit{bla}-SHV (18, 71%) in the present study. The frequency of ESBL producing strains among clinical isolates has been steadily increased. Continual drug resistance surveillance and molecular characteristics of ESBL isolates is necessary to guide the appropriate and judicious antibiotic use.

Key words: Extended spectrum β-lactamase (ESBL), double disk synergy test, \textit{bla} TEM, \textit{bla} SHV, \textit{bla} CTX-M, PCR.

INTRODUCTION

Loss of antibacterial proprieties is now established for many antibiotics substances, particularly those of β-lactam class with regard to therapy failure observed in clinical offices. For Gram negative bacilli, the most important
mechanism of resistance is based on the production of β-lactamases, enzymatic proteins, which hydrolyze β-lactam ring (Webb, 1984) described several decades later (Abraham and Chain, 1940). In Gram negative bacilli, β-lactamases are produced and stocked in periplasmic compartment (Frère, 1998). According to catalytic mechanism, two families of β-lactamases are distinguished (Frère, 1995; Matange et al., 1999). The serine β-lactamases consist of class A, C, D and B enzymes (Ambler, 1975, 1978, 1980). Serine β-lactamases consist of class A, C and D enzymes while metallo-β-lactamases consist of class B enzymes. Our study concerns class A enzymes which consist of the following groups: Temoneira (TEM), sulfidhydyl-variable (SHV), cefotaximase (CTX-M), pseudomonas extended resistance (PER). Those chromosomal or plasmid-mediated enzymes are either penicillinases (TEM-1/2 and SHV-1) hydrolyzing penicillins, first and second generation cephalosporins or extended-spectrum-β-lactamases (ESBL). Extended-spectrum-β-lactamases (TEM-3, SHV-2 and CTX-M), a form of β-lactamases, hydrolyzing third generation of cephalosporins (like oxyiminocephalosporins); detected since 1983 (Knothe et al., 1983) are now worldwide reported. ESBL, detected at first in Klebsiella pneumoniae and Escherichia coli (Medeiros, 1984; Bradford, 2001), is now fully spread in a number of enterobacterial spcies and other kind of bacterial isolates, often responsible for nosocomial epidemic outbreak. Therapy failure due to these fastidious strains makes clinicians to prescribe more and more carbapenem antibiotics for fighting resistant strains resisting all class of antibiotic (Queenan and Bush, 2007; Poirel et al., 2007). Therefore, a research on how to control ESBL epidemiology is a noble undertaking. Molecular studies leading in many countries have allowed getting more information on genetic matrix and molecular types. In Turkey, a survey of Klebsiella spp. from intensive care units from eight hospitals showed that 58% of 193 isolates harbored ESBLs (Gunseren et al., 1999).

In Chicago, infections with TEM-type ESBLs particularly TEM-10, TEM-12, and TEM-26 were reported since 1996 (Schiaffa et al., 1996). Boyd et al. (2004) in their study, described CTX-M-type ESBLs in United States and Canada. CTX-M-12 was first detected in Kenya by Kartali et al. (2002) (Kartali et al., 2002). Characterization of ESBLs from South Africa revealed the types of TEM and SHV (especially SHV-2 and SHV-5) (Hanson et al., 2001). In Burkina Faso, bla SHV and bla TEM were first reported in 2004 in community medical center (Zeba et al., 2004). Microbial drug resistances based on ESBL were reported (Karou et al., 2009), but there is no study on determining the different types of gene encoding. Therefore, this study aimed to contribute to clear bacterial resistance epidemiology by establishing genetic profile of Gram negative bacilli that resist oxy-imocephalosporins and exhibit extended-spectrum β-lactamase at University Hospital Center Yalgado, Ouédraogo.

MATERIALS AND METHODS

Clinical specimens and strains

Bacterial strains collected during a prospective study from July 2009 to March 2012 were Gram negative bacilli that resist third generation of cephalosporin. They were isolated and diagnosis analysis of biological specimens was done. Different clinical specimens such as blood, urine, pus, ascitic fluid, peritoneal fluid, stool and rachis fluid samples were collected from different hospitalized patients. Samples were taken from infected patients who presented infectious evident symptoms like fever and purulent urine. Isolates were identified using conventional method (Kelly et al., 1985). Identification of isolates was achieved using API 20E test trips (BioMerieux S.A., Marcy l’Etoile, France).

Antibiotic susceptibility testing and ESBL detection

Antibiotic susceptibility was tested by disk diffusion method (Bauer, 1966), with antibiotic disks used to test Gram negative bacilli particularly monobactam: Aztreonam (30 µg), third generation cephalosporin like cefotaxim (30 µg), ceftriaxon (30 µg), cefazidim (30 µg), and fourth generation cephalosporins: cefepim (30 µg). Antibiotics were tested on Petri plates containing Muller Hinton agar. Measurements of inhibition area determine the clinical categories (CA-SFM, 2010; 2011; 2012). Isolates that were resistant to at least one of the antibiotics in clinical test, using NCCLS methods (NCCLS, 2000) were collected, purified and conserved at -80°C for futhers analysis. In order to screen ESBL phenotypical profile, isolates were submitted for synergy test (Jarlier et al., 1988) between third generation of cephalosporins disks (cefotaxime or cefazidime) and amoxician plus clavulanic acid.

In addition, MICs of ceftriaxone, antibiotic frequently used in clinical routine in our sanitary centers was performed as recommended by guide E-test AB BIODISK.

Molecular characterization of ESBL producing-isolates

All isolates which were positive for synergy test were screened in order to detect β-lactamase encoding genes for bla TEM, SHV and CTX-M families by previously described PCR protocols (Olivier et al., 2002; Pagani et al., 2003). DNA template was prepared from purified bacteria grown overnight at 37°C on Muller Hinton agar plates. Crude DNA extracts were obtained by suspending a colony in 100 µl of purified water and boiling at 95°C for 10 mn (Munday et al.; 2004). Mixed PCR for one reaction has the following components: 5 µl of Green buffer 5X; 1 µl of each Primer 10µM; 0.65µl of dNTPs 10 mM; 0.12 µl of Gotaq 0.5 U/µl and 15.25 µl of purified water. Reaction volume is completed to 25 µl with 2 µl of

*Corresponding author. E-mail: Zongo_kjacob@yahoo.fr. Tel: 78 30 72 48.

Author(s) agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License
Table 1. Primers used for amplification of BlaTEM, SHV and CTXM genes.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer</th>
<th>Sequence (5'-3')</th>
<th>Amplicons size (bp)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>blaTEM</td>
<td>TEM-F</td>
<td>ATAAAAATCTTGAGACGAAA</td>
<td>1080</td>
<td>Olivier et al. (2002)</td>
</tr>
<tr>
<td></td>
<td>TEM-R</td>
<td>GACAGTTACCAATGGCTTAATCA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>blaSHV</td>
<td>SHV-F</td>
<td>ATGCCGTATATTCGCCTGTG</td>
<td>1030</td>
<td>Olivier et al. (2002)</td>
</tr>
<tr>
<td></td>
<td>SHV-R</td>
<td>TTAGCGTTGCGAGTGCCT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BlaCTX-M</td>
<td>CTX-F</td>
<td>GTTACAATGTGTGAGAACGAG</td>
<td>1041</td>
<td>Pagani et al. (2003)</td>
</tr>
<tr>
<td></td>
<td>CTX-R</td>
<td>CCGTTCCGGCTATTACAAAC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Detection of ESBL Escherichia coli producer on plate. a) Pure colonies of Escherichia coli. b) Antibiogram of Escherichia coli. c) Synergy test showing ESBL E. coli producer on Petri plate.

DNA template. Primers supplied by Promega according to each β-lactamase gene type are in Table 1. PCR was carried out under the following conditions on SensoQuest Labcycler, GmbH, Germany: initial denaturation step at 96°C for 5 min, followed by 35 cycles consisting of denaturation at 96°C for 1 min, annealing at 58°C, 60°C and 50°C for TEM, SHV and CTX-M at 1 min, primer extension at 72°C for 1 min and final extension for 10 min.

Migration of PCR products watched by Green buffer (Eugentec) during 30 min at 80 V was performed on agar gel of 1%, prepared with BET at 0. 25% as final concentration.

RESULTS

Bacterial strains and antibiotic susceptibility testing

During this study, 259 Gram negatives bacilli which resist at least one- third or fourth generation of cephalosporins or monobactam were collected from different samples (Figure 2). For all the strains collected, diameters of inhibiting area around oxy-iminocephalosporins disc were less than 16 mm. Resisting bacterial species isolated were about quantitative importance: 132 Escherichia coli, 43 Klebsiella pneumoniae, 34 Pseudomonas aeruginosa, 24 Enterobacter spp., 11 Citrobacter spp 7 Acinetobacter baumannii, 6 Proteus mirabilis, and 1 Salmonella typhi. Extended-spectrum β-lactamase phenotype screening showed that 171 strains (66, 02%) were positive for synergy test, suggesting that they were extended-spectrum- β-lactamases-producers (Figure 1). The highest proportion (62.57%) of their strains was isolated from urine samples.

The MICs of ceftriaxone determined by E-test were less than 50, 100 and 256 µg/ml for 81, 57, 55.26 and 39.74% isolates (Figure 2). MICs of ceftriaxone for 73.33% of E. coli (22/30) and 80% of K. pneumoniae were less than 64 µg/ml. Among the positive isolates for synergy test, bacterial species were spread as follows: 99 E. coli (that is, 75% of E. coli), 28 K. pneumonia (that is, 65.11% of K. pneumoniae), 19 P. aeruginosa (55.88%) 15 enterobacter sp. (62.50%), 4 citrobacter sp(36,36%), 2 acinetobacter baumannii, 3 Proteus mirabilis, 1 Salmonella typhi. Except P. aeruginosa and Acinetobacter baumannii, the rest isolates belong to enterobacterial family. The study focused on bacterial resistance and no process determined community or hospital origin of isolates.

Polymerase chain reaction: Amplification of bla genes

In the electrophoresis of PCR products realized with DNA ladder, positive and negative control showed bands as previously around 875 bp for bla SHV and 1000 bp for bla TEM CTX-M (Figure 3). Molecular characterization of our
isolates (exhibiting extended spectrum β-lactamase phenotype) showed that 112 strains (65.49%) were positive for CTX-M screening; 44 stains (25.73%) for TEM screening and 32 strains (18.71%) for SHV. In all the bacterial species, some associations were found between the three types of bla genes. Eleven (11) isolates carried bla TEM, SHV, CTX-M at the same time. Finally, 134 isolates (78, 36%) were positive for β-lactamase gene screening and 37 strains did not carry any of their β-lactamase genes. Repartition of β-lactamase gene type among bacterial species was established.

Among 99 E. coli investigated, 11.11% carried single bla TEM; 7.07% carried bla SHV and 48.48% carried single bla CTX-M. 5.05% harbored bla TEM linked to bla SHV; 5.05% carried bla TEM linked to bla CTX-M; 5.05% carried bla SHV with bla CTX-M and 6.06% carried both bla TEM, bla SHV and bla CTX-M. 70.70% of E. coli carried at least bla CTX-M or CTX associated with other bla genes. Among 28 K. pneumonia screened for bla genes, 14.28% carried single bla TEM; 10.71% carried bla SHV; 25% carried single bla CTX-M and 10.71% carried bla TEM associated with bla SHV. 3.57% strains
carried bla TEM, bla SHV and bla CTX-M. 42.85% carried at least bla CTX-M.

From 15 Enterobacter sp. screened, 13.33% of strains carried bla SHV, 20% carried bla TEM associated with other genes, 20% carried bla SHV in association with bla CTX-M. 66.66% carried either bla CTX-M or CTX-M linked to other genes. Among 19 strains of P. aeruginosa, 10.52% harbored bla TEM, 31.57% carried bla CTX-M. 21.05% of strains carried bla TEM associated with bla CTX-M, while 5.26% carried bla CTX-M associated with bla SHV and 10.52% of strains harbored bla TEM, bla CTX-M and bla SHV. At least, bla CTX-M was found in 52.63% of P. aeruginosa screened. The distribution of bla genes among the bacterial species is shown in Table 2.

Our study has noted that patients of all age were affected by bla gene and ESBL (Table 3). From the results, 11.36, 9.37% and 5.35% of bla TEM, SHV and CTX-M, respectively were found on patients of less than 1 year old. For children of less than five years old, 22, 28.12 and 14.28% of bla TEM, SHV and CTX-M were found. According to sexual repartition, 40.90%, 50% and 44.64% of bla TEM, SHV and CTX-M were found in female group, while 65.90, 50 and 55.35% of bla TEM, SHV and CTX-M were found in male group.

DISCUSSION

The most important part of our strains was resistant to cefotaxim, ceftriaxim and aztreonam. The rate of resistance to those antibiotics was globally greater than 50% of isolates. Bacteriological and susceptibility study at Tunis University Hospital reported rates of resistance to β-lactam by enterobacterial at 57.90% (Larabi et al., 2003). PCR results have shown that most proportion of strains carried bla CTX-M which are ESBLs (Bonnet, 2004). There is high possibility that bla TEM and bla SHV are found in ESBL because producing strains were resistant to oxy-Iminocephalosporin (Livermore, 2008). ESBLs have become a widespread serious problem. These enzymes are becoming increasingly expressed by many strains of pathogenic bacteria with a potential for dissemination. The presence of ESBL compromises the activity of wide-spectrum antibiotics creating major therapeutic difficulties with a significant impact on the outcome of patients. The continuous emergence of ESBLs presents diagnostic challenges to the clinical microbiology laboratories.

In this study, urine represent samples indexed as extended-spectrum β-lactamase isolates producing source. Similar observations are reported in others studies (Shanthi and Sekar, 2010; Iradj and Nilufar, 2011; Saba et al., 2012). Invasive treatment using catheter at hospital centers often explains high prevalence of urinary infections (Cantón et al., 2008). In addition, in community, people practice auto medication with antibiotics that can select ESBLs isolates which may be carried at hospital notably in emergencies units and disseminated in other clinical offices (Mbutiwi et al., 2013). In this study, it was found that E.coli is frequently identified as ESBL producing isolate (Shanthi and Sekar, 2010; Abhilash et al., 2010; Umadevi et al., 2011). It is bacterial species, most adapted to and represented in digestive stratus and consequently receives plasmid-mediated gene from other bacteria.

Phenotypic tests for ESBL detection only confirm if an ESBL is produced but cannot detect the ESBL subtype. Some ESBLs may fail to reach a level to be detected by disk diffusion tests but result in treatment failure in the infected patient. Nuesch-Inderbinen and Hachler (1996) reported that molecular methods appear sensitive, are expensive, time consuming and require specialized equipment and expertise. However, definitive identification is possible only by molecular detection methods. There are so many types of β-lactamase like TEM, SHV, CTX, OXA, AmpC, etc, but majority of the ESBLs are derivatives of TEM or SHV or CTX-M enzymes and these enzymes are most often found in E. coli and K. pneumonia (Paterson and Bonomo, 2005). Keeping in view this fact, the current study investigated Gram negative bacilli among which E. coli and K. pneumoniae were most represented. The study aimed to look for the presence of TEM, SHV or CTX-M gene.

From the results of the study, the three families of β-lactamase genes screened were found with high prevalence of CTX-M, followed by TEM and SHV. PCR
The prevalence of CTX-M gene in our study is in concordance with the study of other authors (Vaida et al., 2010) who reported CTX-M-encoding genes in the majority of E. coli (96%) and K. pneumoniae (71%) isolates showing ESBL phenotype. In our study, major part of the isolates carried more than one type of gene. Among E. coli, bla TEM, bla SHV and bla CTX-M matched with each other in the same proportion (5.05%). Among Klebsiella pneumonia, bla TEM associated with bla SHV in 10, 71% of strains. 6, 43% isolates harbored all the three β-lactamase genes. CTX-M is frequently associated with other β-lactamase genes. According to Goyal et al., majority of strains (57.3%) harbored two or more ESBL genes. Bali et al. have observed in their study that 19.2% ESBL isolates carried more than one type of β-lactamase genes (Goyal et al., 2009; Bali et al., 2010). The three types of bla gene were found within group of children of less than 5 years old. This fact is relevant for using antibiotics for viral infections, that are resistant (Bergus et al., 1996). The limitation of our study is the bacterial ecology which was not identified by any process. We were not able to know for some patients, if resistant bacteria were acquired in the community or hospital.

Conclusion

Our study has shown high prevalence of β-lactamases-isolates producers among clinical strains detected through analysis of biological samples collected in different units of University Hospital Center, Yalgado OUEDRAOGO. CTX-M type (ESBL) was mostly represented, followed by TEM and SHV β-lactamases. Escherichia coli, like in other several studies, was the strain that expressed ESBL frequently and can associate with more than one type. P. aeruginosa nosocomial, fastidious strain, known for producing PER currently harbored more and more CTX-M, TEM and SHV. This fact increases risk of ESBL dissemination between plasmid receptive strains or/and between clinical units. The present study has established that β-lactamin antibiotic except cephemycin and carbapenem (ipimenem) was sensitive to ESBL. Diameters of inhibition area of oxy-iminophalosporin (cefotaxim, ceftriaxon, ceftazidim) for our isolates were seriously reduced, currently less than 20 mm. ESBL strains are usually multi-drug resistant. So, the practice of routine ESBL testing along with conven-tional antibiogram would be useful for all cases; it will help in theproper treatment of patients and also prevent further development of bacterial rug resistance. Molecular detection and identification of β-lactamases would be essential for a reliable epidemiological investi-gation of antimicrobial resistance. It is necessary to control hygiene and antibiotics consumption in hospital centers.

Conflict of interests

The authors did not declare any conflict of interest.

ACKNOWLEDGEMENTS

This work was realized in part in National Animals Health Laboratory. We think Doctor Germaine COMPAORE, director of this institution and all personal particularly Mme OUEDRAOGO Anne and Mme OUEDRAOGO Victorine for their technical assistance. The authors gratefully thank all personal of clinical bacteriology laboratory of Yalgado. We are also grateful to the CEI, Italy and to UMEOA (PACER2) for financial support.

REFERENCES

