Full Length Research Paper
ABSTRACT
The aim of this work was to select and characterize native Cuban fluorescent Pseudomonas from the rhizosphere of Oryza sativa with in vitro and in vivo antagonistic activity against Pyricularia oryzae. A total of 200 isolates were recovered with the typical growth and cultural characteristics of fluorescent Pseudomonas. The results showed that 12.5% of total isolates were capable of inhibiting mycelial growth, with different levels of inhibition between strains. Six of them (AI03, AI05, AI08, AJ01, AJ13 and AJ29) were able to reduce disease severity and incidence in vivo whereas only four (AI05, AJ13, AJ01 and AI08) showed efficient control of P. oryzae in greenhouse conditions. Pseudomonas fluorescens AI05 and Pseudomonas putida AJ13 were able to inhibit in vitro the mycelial growth of P. oryzae and to reduce symptom severity of Pyricularia infection. The production of lytic enzymes, siderophores, hydrogen cyanide (HCN), as well as the detection of genes encoding antibiotics and bacterial motility were also assessed for both strains. They were able to fix nitrogen, produce indolic compounds and to solubilize Pi. These results demonstrate the potential use of P. fluorescens AI05 and P. putida AJ13 as a biocontrol agent for the protection of rice plants from P. oryzae infection.
Key words: Biocontrol, rice blast, Pyricularia, Pseudomonas, plant growth-promoting bacteria.
INTRODUCTION
MATERIALS AND METHODS
RESULTS
DISCUSSION
CONFLICT OF INTERESTS
The authors have not declared any conflict of interests.
ACKNOWLEDGEMENT
REFERENCES
Acebo-Guerrero Y, Hernández-Rodríguez A, Vandeputte O, Miguelez-Sierra Y, Heydrich-Pérez M, Ye L, Cornelis P, Bertin P, El Jaziri M (2015). Characterization of Pseudomonas chlororaphis from Theobroma cacao L. rhizosphere with antagonistic activity against Phytophthora palmivora (Butler). Journal of Applied Microbiology 119:1112-1126. |
||||||||||
Adesemoye AO, Torbert HA, Kloepper JW (2009). Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology 58:921-992. |
||||||||||
Agrios GN (2005). Plant diseases caused by fungi. 5th ed. Plant Pathology. Burlington MA: Elsevier: 386-483. |
||||||||||
Ahmad F, Ahmad I, Khan MS (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research 163(2):173-181. |
||||||||||
Almaguer-Chávez M, Rojas TI, Dobal V, Batista A, Rives N, Aira MJ, Hernández-Lauzardo AN, Hernández-Rodríguez A (2012). Aerobiological dynamics of potentially pathogenic fungi in a rice agroecosystem in La Habana. Aerobiologia 28:177-183. |
||||||||||
Bashan Y, Holguin G, Ferrera Cerrato R (1996). Interacciones entre plantas y microorganismos benéficos. Terra 14:159-192. |
||||||||||
Bigiramana J, Fontaine R, Hofte M (2000). Bean anthracnose: virulence of Colletotrichum lindemuthianum isolates from Burundi, Central Africa. Plant Disease 84(4):491. |
||||||||||
Boddey RM, Boddey LH, Urquiaga S (1990). The acetylene reduction technique in the measurement of biological fixation of nitrogen. Editora Universida de Rural, EMBRAPA-CNPBS. Itaguaí Documents 6:37. |
||||||||||
ButaitÄ— E, Baumgartner M, Wyder S, Kümmerli R (2017). Siderophore cheating and cheating resistance shape competition for iron in soil and freshwater Pseudomonas communities. Nature Communications 8(1):414. |
||||||||||
Calderon CE, Perez-García A, de Vicente A, Cazorla FM (2013). The dar genes of Pseudomonas chlororaphis PCL1606 are crucial for biocontrol activity via production of the antifungal compound 2-hexyl, 5-propyl resorcinol. Molecular Plant-Microbe Interactions 26:554-565. |
||||||||||
Cárdenas R, Travieso E, Valdés N, Pérez N, González MC, Cepero N, et al. (2007). Monitoreo de la piriculariosis (Pyricularia grisea Sacc.) en el cultivo del arroz (Oryza sativa L.). Fitosanidad 11:1-4. |
||||||||||
Cazorla FM, Duckett SB, Bergstrom ET, Noreen S, Odijk R, Lugtenberg BJ, Thomas-Oates JE, Bloemberg GV (2006). Biocontrol of avocado dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol. Molecular Plant-Microbe Interactions 19:418-428. |
||||||||||
Chaiharn M, Chunhaleuchanon S, Lumyong S (2009). Screening siderophore producing bacteria as potential biological control agent for fungal rice pathogens in Thailand. World Journal of Microbiology and Biotechnology 25(11):1919-1928. |
||||||||||
Chen Y, Rekha P, Arun A, Shen F, La W, Young C (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcicum phosphate solubilizing abilities. Applied Soil Ecology 34:33-41. |
||||||||||
Cornelis P (2010). Iron uptake and metabolism in Pseudomonas. Applied Microbiology and Biotechnology 86:1637-1645. |
||||||||||
De Vleesschauwer D, Cornelis P, Höfte M (2006). Redox-active pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaporthe grisea but enhances Rhizoctonia solani susceptibility in rice. Molecular Plant-Microbe Interactions 19(12):1406-1419. |
||||||||||
Delaney SM, Mavrodi DV, Bonsall RF, Thomashow LS (2001). phzO, a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens 30-84. Journal of Bacteriology 183:318-327. |
||||||||||
Egamberdieva D, Lugtenberg B (2014). Use of plant growth-promoting rhizobacteria to alleviate salinity stress in plants. In Use of Microbes for the Alleviation of Soil Stresses. Springer New York 1:73-96. |
||||||||||
Estrada G, Baldani V, de Oliveira D, Urquiaga S, Baldani J (2013). Selection of phosphate-solubilizing diazotrophic Herbaspirillum and Burkholderia strains and their effect on rice crop yield and nutrient uptake. Plant and Soil 369(1-2):115-129. |
||||||||||
Filippi MCC, da Silva GB, Silva-Lobo VL, Côrtes MVCB, Moraes AJ, Prabhu AS (2011). Leaf blast (Magnaporthe oryzae) suppression and growth promotion by rhizobacteria on aerobic rice in Brazil. Biological Control 58(2):160-166. |
||||||||||
Flury P, Vesga P, Péchy-Tarr M, Aellen N, Dennert F, Hofer N, Siegfried S (2017). Antimicrobial and insecticidal: cyclic lipopeptides and hydrogen cyanide produced by plant-beneficial Pseudomonas strains CHA0, CMR12a, and PCL1391 contribute to insect killing. Frontiers in Microbiology 8:100. |
||||||||||
Ghirardi S, Dessaint F, Mazurier S, Corberand T, Raaijmakers JM, Meyer JM, Dessaux Y, Lemanceau P (2012). Identification of traits shared by rhizosphere-competent strains of fluorescent pseudomonads. Microbial Ecology 64(3):725-737. |
||||||||||
Gohel N, Chauhan H (2015). Integrated management of leaf and neck blast disease of rice caused by Pyricularia oryzae. African Journal of Agricultural Research 10(19):2038-2040. |
||||||||||
Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015). Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. Journal of Microbial & Biochemical Technology 7(2):096-102. |
||||||||||
Heng JLS, Zainual NSM (2017). Effect of encapsulated Pseudomonas putida strain PF1P on plant growth and itsmicrobialecosystem. African Journal of Biotechnology 16(41):2009-2013. |
||||||||||
Hernández-Rodríguez A, Heydrich-Pérez M, Acebo-Guerrero Y, Velázquez-del Valle MG, Hernández-Lauzardo AN (2008) Antagonistic activity of Cuban native rhizobacteria against Fusarium verticillioides (Sacc.) Nirenb. in maize (Zea mays L.). Applied Soil Ecology 36:184-186. |
||||||||||
Hernández-Rodríguez A, León-Plasencia D, Rives- Rodríguez N, Díaz-de la Osa A, Almaguer-Chávez M, Acebo-Guerrero Y (2010). Identification of native isolates of fluorescent pseudomonas with antagonistic activity against Curvularia spp. Protección Vegetal 26(2):21-29. |
||||||||||
Herrera L (2003). La fitopatología cubana. Historia, desarrollo y actualidad. Fitosanidad 7:55-62. |
||||||||||
Höfte M, Altier N (2010). Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems. Research in Microbiology 161:464-471. |
||||||||||
IRRI (2002). Standard evaluation system for rice. November 15, 17. Los Ba-os, Phillippines: International Rice Research Institute (IRRI). |
||||||||||
Jaiganesh V, Eswaran A, Balabaskar P, Kannan C (2007). Antagonistic activity of Serratia marcescens against Pyricularia oryzae. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 35(2):48-54. |
||||||||||
Kabir M, Faure D, Heulin T, Achoawk W, Bally R (1995). Oligonucleotide probes based on 16S rRNA sequences for the identification of four Azospirillum species. Canadian Journal of Microbiology 41:1081-1087. |
||||||||||
Kang SM, Radhakrishnan R, Khan AL, Kim MJ, Park JM, Lee IJ (2014). Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiology and Biochemistry 84:115-124. |
||||||||||
Karthikeyan V, Gnanamanickam SS (2008). Biological control of Setaria blast (Magnaporthe oryzae) with bacterial strains. Crop Protection 27(2):263-267. |
||||||||||
Kremer RJ, Souissi T (2001). Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Current Microbiology 43:182-186. |
||||||||||
Kumar SM, Chowdappa P, Krishna V, Sandhya H (2015). Induction of defense-related proteins and growth promotion in tomato by mixture of Trichoderma harzianum OTPB3 and Bacillus subtilis OTPB1 and Pseudomonas putida OPf1 against Phytophthora infestans. African Journal of Microbiology Research 9(2):96-110. |
||||||||||
Kumar V, Narula N (1999). Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum mutants. Biology and Fertility of Soils 28:301-305. |
||||||||||
Lane DJ (1991). 16S/23S rRNA sequencing. In Nucleic acid techniques in bacterial systematics eds. Stackebrandt, E. y Goodfellow, M.: Wiley, Chichester, United Kingdom pp.115-175. |
||||||||||
Liu K, McInroy JA, Hu CH, Kloepper JW (2018). Mixtures of Plant-Growth-Promoting Rhizobacteria Enhance Biological Control of Multiple Plant Diseases and Plant-Growth Promotion in the Presence of Pathogens. Plant Disease 102(1):67-72. |
||||||||||
Lugtenberg B, Kamilova F (2009). Plant-Growth-Promoting Rhizobacteria. Annual Review of Microbiology 63:541-556. |
||||||||||
Magar PB, Acharya B, Pandey B (2015). Use of chemical fungicides for the management of rice blast (Pyricularia grisea) disease at Jyotinagar, Chitwan, Nepal. International Journal of Applied Science and Biotechnology 3(3):474-478. |
||||||||||
Maheshkumar KS, Krishnaraj PU, Alagwadi AR (1999). Mineral solubilising activity of Acetobacter diazotrophicus, a bacterium associated with sugarcane. Current Science 76:874-875. |
||||||||||
Mavrodi DV, Ksenzenko VN, Bonsall RF, Cook RJ, Boronin AM, Thomashow LS (1998). A seven-gene locus for synthesis of phenazine-1- carboxylic acid by Pseudomonas fluorescens 2-79. Journal of Bacteriology 180:2541-2548. |
||||||||||
Mavrodi OV, Gardener BBM, Mavrodi DV, Bonsall RF, Weller DM, Thomashow LS (2001). Genetic diversity of phlD from 2,4-diacetyl phloroglucinol producing fluorescent Pseudomonas spp. Phytopathology 91:35-43. |
||||||||||
Mehnaz S (2013). Secondary metabolites of Pseudomonas aurantiaca and their role in Plant Growth Promotion. Plant Microbe Symbiosis: Fundamentals and Advances. NK Arora. Springer India pp. 373-393. |
||||||||||
Meyer JM, Abdallah M (1978). The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. Journal of General Microbiology 107:319-328. |
||||||||||
Ministerio de la Agricultura (MINAG) (2006). Instructivo Técnico de Arroz. Centro Nacional de Sanidad Vegetal, Instituto de Investigaciones del Arroz pp. 50-55. h |
||||||||||
Mishra J, Arora NK (2017). Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture. Applied Soil Ecology 125:35-45 |
||||||||||
Nautiyal C (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters 170:265–270. |
||||||||||
Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VAP, Fouts DE., Gill SR., Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Lee PC, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen J, Timmis KN, Düsterhöft A, Tümmler B, Fraser CM (2002). Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environmental Microbiology 4(12):799-808. |
||||||||||
Padovani L, Capri E, Padovani C, Puglisi E, Trevisan M (2006). Monitoring triciclazole residues in rice paddy watersheds. Chemosphere 62(2):303-314. |
||||||||||
Paneque VM (2000). Manual de técnicas analíticas para suelo, foliar y fertilizantes químicos. La Habana: INCA, 75 p. |
||||||||||
Park JK, Oh SA, Anderson AJ, Neiswender J, Kim JC, Kim YC (2011). Production of the antifungal compounds phenazine and pyrrolnitrin from Pseudomonas chlororaphis O6 is differentially regulated by glucose. Letters in Applied Microbiology 52:532-537. |
||||||||||
Pathma J, Kennedy RK,Sakthivel N (2011). Mechanisms of fluorescent pseudomonads that mediate biological control of phytopathogens and plant growth promotion of crop plants. In Bacteria in Agrobiology: Plant Growth Responses ed. Maheshwari DK.: Springer Berlin Heidelberg 4:77-105. |
||||||||||
Perneel M, Heyrman J, Adiobo A, Maeyer KD, Raaijmakers JM, Vos PD, Höfte M (2007). Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity. Journal of Applied Microbiology 103:1007-1020 |
||||||||||
Poritsanos NJ (2005). Molecular mechanisms involved in secondary metabolite production and biocontrol of Pseudomonas chlororapis PA23. Winnipeg, MB, Canada: University of Manitoba 100 p. |
||||||||||
Prabhu AS, Filippi MC, Silva GB, Lobo VLS, Moraes OP (2009). An unprecedented outbreak of rice blast on a newly released cultivar BRS Colosso in Brazil. In: Wang, G.L., Valente, B. (Eds.), Advances in Genetics, Genomics and Control of Rice Blast Disease. Springer, New York pp. 257-266. |
||||||||||
Prasanna Kumar MK, Amruta N, Manjula CP, Puneeth ME, Teli K (2017). Characterisation, screening and selection of Bacillus subtilis isolates for its biocontrol efficiency against major rice diseases. Biocontrol Science and Technology 27(4):581-599. |
||||||||||
Rasamiravaka T, Jedrzejowski A, Kiendrebeogo M, Rajaonson S, Randriamampionona D, Rabemanantsoa C, Andriantsimahavandy A, Rasamindrakotroka A, Duez P, El Jaziri M, Vandeputte OM (2013). Endemic Malagasy Dalbergia species inhibit quorum sensing in Pseudomonas aeruginosa PAO1. Microbiology 159:924-938. |
||||||||||
Ribot C, Hirschb J, Balzergue S, Tharreau D, Notteghem JL, Lebrun MH, Morelb JB (2008). Susceptibility of rice to the blast fungus, Magnaporthe oryzae. Journal of Plant Physiology 165:114-124. |
||||||||||
Rodrigues LS, Baldani VLD, Reis VM, Baldani JI (2006). Diversidade de bactérias diazotróficas endofíticas dos generos Herbaspirillum e Burkholderia na cultura de arroz inundado. Pesquisa Agropecuária Brasileira 41:275-284. |
||||||||||
Rodríguez AT, Ramírez MA, Cárdenas RM, Hernández AN, Velazquez MG, Bautista S (2007). Induction of defense response of Oryzasativa L. against Pyricularia grisea (Cooke) Sacc. by treating seeds with chitosan and hydrolyzed chitosan. Pesticide Biochemistry and Physiology 89:206-215. |
||||||||||
Rojas Badía MM, Tejera Hernández B, Larrea Murrel JA, Mahillon J, Heydrich Pérez M (2011). Aislamiento y caracterización de cepas de Bacillus asociadas al cultivo del arroz (Oryza sativa L.). Revista Brasileira de Agroecología 6(1):90-99. |
||||||||||
Saber FM, Abdelhafez AA, Hassan EA, Ramadan EM (2015). Characterization of fluorescent pseudomonads isolates and their efficiency on the growth promotion of tomato plant. Annals of Agricultural Sciences 60(1):131-140. |
||||||||||
Sarwar M, Kremer RJ (1995). Determination of bacterially derived auxins using a microplate method. Letters in Applied Microbiology 20:282–285. |
||||||||||
Sesma A, Osbourn AE (2004). The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature 431:582-586. |
||||||||||
Sester M, Raveloson H, Tharreau D, Dusserre J (2014). Conservation agriculture cropping system to limit blast disease in upland rainfed rice. Plant Pathology 63:373-381. |
||||||||||
Sharifi-Noori MS, Saud HM, Azizi E (2015). Evaluation of plant growth promoting rhizobacteria as biocontrol agents for the control of blast disease in rice. Journal of Agricultural Science Engineering 1(3):135-142. |
||||||||||
Spencer JF, Ragout AL (2001). Métodos microbiológicos. Totowa New Jersey (Estados Unidos): Humana Press Inc. pp. 173-181. |
||||||||||
Sun D, Zhuo T, Hu X, Fan X, Zou H. (2017). Identification of a Pseudomonas putida as biocontrol agent for tomato bacterial wilt disease. Biological Control 114:45-50. |
||||||||||
Tamura K, Stetcher G, Peterson D, Filipski A, Kumar S (2013). MEGA 6: Molecular Evolutionary Genetics Analysis (MEGA) software version 6.0. Molecular. Biology and Evolution 30(12):2725-2729. |
||||||||||
Thuan N, Bigirimana J, Roumen E, van der Straeten E, Hofte M (2006). Molecular and pathotype analysis of the rice blast fungus in North Vietnam. European Journal of Plant Patholology 114(4):381-396. |
||||||||||
|
Copyright © 2025 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0