The role of bioengineering in industrial processes cannot be ignored, especially in circumstances where the processes are uneconomical, demand high energy, use finite resources and emit huge amounts of carbon dioxide. Ethylene is a two-carbon unsaturated hydrocarbon that is industry's most important building block for polyester fibres, plastics, and ethylene glycol. For decades, ethylene production has relied on steam-cracking without many improvements, especially on issues of environmental impact and adoption of appropriate renewable approaches. This paper discusses selected microbial pathway modifications as novel approach to developing systems that could be alternatives to conventional ethylene production systems. Bioengineering of the ethylene pathway is suggested in view of the need to meet the criteria of high efficiency, increase sustainability and ensure product qualities and quantities that can exceed the existing approach.
Keywords: Ethylene, crude glycerol, tolerance, synthesis, bioengineering