African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12267

Full Length Research Paper

Development of simple kinetic models and parameter estimation for simulation of recombinant human serum albumin production by Pichia pastoris

Panchiga Chongchittapiban
  • Panchiga Chongchittapiban
  • Department of Chemical Engineering, Faculty of Engineering King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-utid Road, Bangmod, Toongkru, Bangkok 10140, Thailand.
  • Google Scholar
Jӧrgen Borg
  • Jӧrgen Borg
  • Pilot Plant Development and Training Institute (PDTI), 49 Soi Tientalay 25, Bangkhuntien-Chaithalay Road, Thakham, Bangkhuntien, Bangkok 10150, Thailand.
  • Google Scholar
Yaowapha Waiprib
  • Yaowapha Waiprib
  • Department of Fishery Products, Faculty of Fisheries, Kasetsart University (KU), 50 Ngam Wong Wan Road, Ladyaow, Chatuchak, Bangkok 10900, Thailand.
  • Google Scholar
Jindarat Pimsamarn
  • Jindarat Pimsamarn
  • Department of Chemical Engineering, Faculty of Engineering King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-utid Road, Bangmod, Toongkru, Bangkok 10140, Thailand.
  • Google Scholar
Anan Tongta
  • Anan Tongta
  • Division of Biotechnology, School of Bioresources and Technology King Mongkut’s University of Technology Thonburi (KMUTT), 49 Soi Tientalay 25, Bangkhuntien-Chaithalay Road, Thakham, Bangkhuntien, Bangkok 10150, Thailand.
  • Google Scholar


  •  Received: 23 November 2015
  •  Accepted: 07 September 2016
  •  Published: 28 September 2016

References

Anasontzis GE, Penã MS (2014). Effects of temperature and glycerol and methanol-feeding profiles on the production of recombinant galactose oxidase in Pichia pastoris. Biotechnol. Prog. 30(3):728-735.
Crossref

 

Arnau C, Casas C, Valero F (2011). The effect of glycerol mixed substrate on the heterologous production of a Rhizopus oryzae lipase in Pichia pastoris system. Biochem. Eng. J. 57:30-37.
Crossref

 
 

Baheri HR, Roeslert WJ, Hill GA (1997). Modeling of recombinant bacteria fermentation for enhanced productivity. Biotechnol. Tech. 11(1):47-50.
Crossref

 
 

Batista KA, Bataus LAM, Campos ITN, Fernandes KF (2013). Development of culture medium using extruded bean as a nitrogen source for yeast growth. J. Microbiol. Methods 92:310-315.
Crossref

 
 

Bushell ME, Rowe M, Avignone-Rossa CA, Wardell JN (2003). Cyclic fed-batch culture for production of human serum albumin in Pichia pastoris. Biotechnol. Bioeng. 82(6):678-683.
Crossref

 
 

Byrne B (2015). Pichia pastoris as an expression host for membrane protein structural biology. Curr. Opin. Biotechnol. 32:9-17.
Crossref

 
 

Çalik P, Ata Ö, Güneş H, Massahi A, Boy E, Keskina A, Öztürk S, Zerze GH, Özdamar TH (2015). Recombinant protein production in Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter: From carbon source metabolism to bioreactor operation parameters. Biochem. Eng. J. 95:20-36.
Crossref

 
 

Çelik E, Çalik P (2012). Production of recombinant proteins by yeast cells. Biotechnol. Adv. 30:1108-1118.
Crossref

 
 

Charoenrat T, Ketudat-Cairns M, Jahic M, Veide A, Enfors SO (2006). Increased total air pressure versus oxygen limitation for enhanced oxygen transfer and product formation in a Pichia pastoris recombinant protein process. Biochem. Eng. J. 30:205-211.
Crossref

 
 

Charoenrat T, Ketudat-Cairns M, Stendahl-Andersen H, Jahic M, Enfors SO (2005). Oxygen-limited fed-batch process: an alternative control for Pichia pastoris recombinant protein processes. Bioprocess Biosyst. Eng. 27:399-406.
Crossref

 
 

Cos O, Serrano A, Montesinos JL, Ferrer P, Cregg JM, Valero F (2005). Combined effect of the methanol utilization (Mut) phenotype and gene dosage on recombinant protein production in Pichia pastoris fed-batch cultures. J. Biotechnol.116:321-335.
Crossref

 
 

Curvers S, Linnemann J, Klauser T, Wandrey C, Takors R (2001). Recombinant protein production with Pichia pastoris in continuous fermentation - Kinetic analysis of growth and product formation. Chemie Ingenieur Technik 73:1615-1621.
Crossref

 
 

d'Anjou MC, Daugulis AJ (1997). A model-based feeding strategy for fed-batch fermentation of recombinant Pichia pastoris. Biotechnol. Tech. 11(12):865-868.
Crossref

 
 

d'Anjou MC, Daugulis AJ (2000). Mixed-feed exponential feeding for fed-batch culture of recombinant methylotrophic yeast. Biotechnol. Lett. 22:341-346.
Crossref

 
 

d'Anjou MC, Daugulis AJ (2001). A rational approach to improving productivity in recombinant Pichia pastoris fermentation. Biotechnol. Bioeng. 72(1):1-11.
Crossref

 
 

Dietzsch C, Spadiut O, Herwig C (2011a). A dynamic method based on the specific substrate uptake rate to set up a feeding strategy for Pichia pastoris. Microb. Cell Fact.10(14):1-9
Crossref

 
 

Dietzsch C, Spadiut O, Herwig C (2011b). A fast approach to determine a fed batch feeding profile for recombinant Pichia pastoris strains. Microb. Cell Fact. 10(85):1-10.
Crossref

 
 

Fickers P (2014). Pichia pastoris: a workhorse for recombinant protein production. Curr. Res. Microbiol. Biotechnol. 2(3):354-363.

 
 

Gao M, Shi Z (2013). Process control and optimization for heterologous protein production by methylotrophic Pichia pastoris. Chin. J. Chem. Eng. 21(2):216-226.
Crossref

 
 

Gonçalves AM, Pedro AQ, Maia C, Sousa F, Queiroz JA, Passarinha LA (2013). Pichia pastoris: A recombinant microfactory for antibodies and human membrane proteins. J. Microbiol. Biotechnol. 23(5):587-601.
Crossref

 
 

Hang H, Ye X, Guo M, Chu J, Zhuang Y, Zhang M, Zhang S (2009). A simple fermentation strategy for high-level production of recombinant phytase by Pichia pastoris using glucose as the growth substrate. Enzyme Microb. Technol. 44:185-188.
Crossref

 
 

Hardjito L, Greenfield PF, Lee PL (1992). A model for β-galactosidase production with a recombinant yeast Saccharomyces cerevisiae in fed-batch culture. Biotechnol. Prog. 8(4):298-306.
Crossref

 
 

Hu XQ, Chu J, Zhang SL, Zhuang YP, Wang YH, Zhu S, Zhu ZG, Yuan ZY (2007). A novel feeding strategy during the production phase for enhancing the enzymatic synthesis of S-adenosyl-L-methionine by methylotrophic Pichia pastoris. Enzyme Microb. Technol. 40:669-674.
Crossref

 
 

Jahic M, Rotticci-Mulder JC, Martinelle M, Hult K, Enfors S-O (2002). Modeling of growth and energy metabolism of Pichia pastoris producing a fusion protein. Bioprocess Biosyst. Eng. 24:385-393.
Crossref

 
 

Jahic M, Wallberg F, Bollok M, Garcia P, Enfors S-O (2003). Temperature limited fed-batch technique for control of proteolysis in Pichia pastoris bioreactor cultures. Microb. Cell Fact. 2:1-6.
Crossref

 
 

Jenzsch M, Simutis R, Lübbert A (2006). Optimization and control of industrial microbial cultivation processes. Eng. Life Sci. 6(2):117-124.
Crossref

 
 

Jungo C, Marison I, von Stockar U (2007a). Mixed feeds of glycerol and methanol can improve the performance of Pichia pastoris cultures: A quantitative study based on concentration gradients in transient continuous cultures. J. Biotechnol. 128:824-837.
Crossref

 
 

Jungo C, Urfer J, Zocchi A, Marison I, von Stockar U (2007b). Optimisation of culture conditions with respect to biotin requirement for the production of recombinant avidin in Pichia pastoris. J. Biotechnol.127:703-715.
Crossref

 
 

Khatri NK, Hoffmann F (2006). Impact of methanol concentration on secreted protein production in oxygen-limited cultures of recombinant Pichia pastoris. Biotechnol. Bioeng. 93(5):871-879.
Crossref

 
 

Kobayashi K, Kuwae S, Ohya T, Ohda T, Ohyama M, Ohi H, Tomomitsu K, Ohmura T (2000). High-level expression of recombinant human serum albumin from the methylotrophic yeast Pichia pastoris with minimal protease production and activation. J. Biosci. Bioeng. 89(1):55-61.
Crossref

 
 

Looser V, Bruhlmann B, Bumbak F, Stenger C, Costa M, Camattari A, Fotiadis D, Kovar K (2015). Cultivation strategies to enhance productivity of Pichia pastoris: A review. Biotechnol. Adv. 33:1177-1193.
Crossref

 
 

Nocon J, Steiger MG, Pfeffer M, Sohn SB, Kim TY, Maurer M, Rußmayer H, Pflügl S, Ask M, Haberhauer-Troyer C, Ortmayr K, Hann S, Koellensperger G, Gasser B, Lee SY, Mattanovich D (2014). Model based engineering of Pichia pastoris central metabolism enhances recombinant protein production. Metab. Eng. 24:129-138.
Crossref

 
 

Ohya T, Ohyama M, Kobayashi K (2005). Optimization of human serum albumin production in methylotrophic yeast Pichia pastoris by repeated fed-batch fermentation. Biotechnol. Bioeng. 90(7):876-887.
Crossref

 
 

Patkar A, Seo JH, Lim HC (1993). Modeling and optimization of cloned invertase expression in Saccharomyces cerevisiae. Biotechnol. Bioeng. 41(11):1066-1074.
Crossref

 
 

Potvin G, Ahmad A, Zhang Z (2012). Bioprocess engineering aspects of heterologous protein production in Pichia pastoris: A review. Biochem. Eng. J. 64:91-105.
Crossref

 
 

Ren H, Yuan J (2005). Model-based specific growth rate control for Pichia pastoris to improve recombinant protein production. J. Chem. Technol. Biotechnol. 80:1268-1272.
Crossref

 
 

Ren HT, Yuan JQ, Bellgardt K-H (2003). Macrokinetic model for methylotrophic Pichia pastoris based on stoichiometric balance. J. Biotechnol. 106:53-68.
Crossref

 
 

Sinha J, Plantz BA, Zhang W, Gouthro M, Schlegel V, Liu CP, Meagher MM (2003). Improved production of recombinant ovine interferon-τ by Mut+ strain of Pichia pastoris using an optimized methanol feed profile. Biotechnol. Prog. 19:794-802.
Crossref

 
 

Sohn SB, Graf AB, Kim TY, Gasser B, Maurer M, Ferrer P, Mattanovich D, Lee SY (2010). Genome-scale metabolic model of methylotrophic yeast Pichia pastoris and its use for in silico analysis of heterologous protein production. Biotechonol. J. 5:705-715.
Crossref

 
 

Suwannarat Y, Saeseaw S, Chanasutthiprapa N, Tongta A (2013). Comparison between constant methanol feed and on-line monitoring feed control for recombinant human growth hormone production by Pichia pastoris KM71. Afr. J. Biotechnol. 12(11):1267-1274.

 
 

Trinh LB, Phue JN, Shiloach J (2003). Effect of methanol feeding strategies on production and yield of recombinant mouse endostatin from Pichia pastoris. Biotechnol. Bioeng. 82(4):438-444.
Crossref

 
 

Vinayagam R, Vytla RM, Chandrasekaran M (2015). Development of a simple kinetic model and parameter estimation for biomass and nattokinase production by Bacillus subtilis 1A752. Austin J. Biotechnol. Bioeng. 2(1):1036-1040.

 
 

Vogl T, Hartner FS, Glieder A (2013). New opportunities by synthetic biology for biopharmaceutical production in Pichia pastoris. Curr. Opin. Biotechnol. 24:1094-1101.
Crossref

 
 

Wu J-M, Wang S-Y, Fu W-C (2012). Lower temperature cultures enlarge the effects of Vitreoscilla hemoglobin expression on recombinant Pichia pastoris. Int. J. Mol. Sci. 13:13212-13226.
Crossref

 
 

Yu Y, Zhou X, Wu S, Wei T, Yu L (2014). High-yield production of the human lysozyme by Pichia pastoris SMD1168 using response surface methodology and high-cell-density fermentation. Electron. J. Biotechnol. 17:311-316.
Crossref

 
 

Zalai D, Dietzsch C, Herwig C, Spadiut O (2012). A dynamic fed batch strategy for a Pichia Pastoris mixed feed system to increase process understanding. Biotechnol. Prog. 28(3):878-886.
Crossref

 
 

Zhang W, Inan M, Meagher MM (2000). Fermentation strategies for recombinant protein expression in the methylotrophic yeast Pichia pastoris. Biotechnol. Bioprocess Eng. 5(4):275-287.
Crossref

 
 

Zhang W, Li ZJ, Agblevor FA (2005). Microbubble fermentation of recombinant Pichia pastoris for human serum albumin production. Process Biochem. 40:2073-2078.
Crossref

 
 

Zhang W, Liu C-P, Inan M, Meagher MM (2004). Optimization of cell density and dilution rate in Pichia pastoris continuous fermentations for production of recombinant proteins. J. Ind. Microbiol. Biotechnol. 31:330-334.
Crossref

 
 

Zhang W, Potter KJH, Plantz BA, Schlegel VL, Smith LA, Meagher MM (2003). Pichia pastoris fermentation with mixed-feeds of glycerol and methanol: growth kinetics and production improvement. J. Ind. Microbiol. Biotechnol. 30:210-215.
Crossref