African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12267

Full Length Research Paper

Effect of arbuscular mycorrhizal fungal inoculation on growth, and nutrient uptake of the two grass species, Leptochloa fusca (L.) Stapf and Sporobolus robustus Kunth, under greenhouse conditions

Fatoumata Fall*
  • Fatoumata Fall*
  • Departement de Biologie Vegetale, Universite Cheikh Anta Diop, BP 5005 Dakar, Senegal ; Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel-Air, Route des Hydrocarbures, BP 1386 Dakar, Senegal; Laboratoire Mixte International Adaptation des Plantes et microorganismes associes aux Stress Environnementaux (LAPSE), BP 1386 Dakar, Senegal.
  • Google Scholar
Diégane Diouf
  • Diégane Diouf
  • Departement de Biologie Vegetale, Universite Cheikh Anta Diop, BP 5005 Dakar, Senegal ; Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel-Air, Route des Hydrocarbures, BP 1386 Dakar, Senegal; Laboratoire Mixte International Adaptation des Plantes et microorganismes associes aux Stress Environnementaux (LAPSE), BP 1386 Dakar, Senegal.
  • Google Scholar
Dioumacor Fall
  • Dioumacor Fall
  • Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel-Air, Route des Hydrocarbures, BP 1386 Dakar, Senegal; Laboratoire Mixte International Adaptation des Plantes et microorganismes associes aux Stress Environnementaux (LAPSE), BP 1386 Dakar, Senegal; Universite des Antilles et de la Guyane97159, Pointe-a-Pitre, Guadeloupe, France.
  • Google Scholar
Ibrahima Ndoye
  • Ibrahima Ndoye
  • Departement de Biologie Vegetale, Universite Cheikh Anta Diop, BP 5005 Dakar, Senegal ; Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel-Air, Route des Hydrocarbures, BP 1386 Dakar, Senegal; Laboratoire Mixte International Adaptation des Plantes et microorganismes associes aux Stress Environnementaux (LAPSE), BP 1386 Dakar, Senegal.
  • Google Scholar
Cheikh Ndiaye
  • Cheikh Ndiaye
  • Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel-Air, Route des Hydrocarbures, BP 1386 Dakar, Senegal; Laboratoire Mixte International Adaptation des Plantes et microorganismes associes aux Stress Environnementaux (LAPSE), BP 1386 Dakar, Senegal.
  • Google Scholar
Aboubacry Kane
  • Aboubacry Kane
  • Departement de Biologie Vegetale, Universite Cheikh Anta Diop, BP 5005 Dakar, Senegal ; Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel-Air, Route des Hydrocarbures, BP 1386 Dakar, Senegal; Laboratoire Mixte International Adaptation des Plantes et microorganismes associes aux Stress Environnementaux (LAPSE), BP 1386 Dakar, Senegal.
  • Google Scholar
Amadou Mustapha Ba
  • Amadou Mustapha Ba
  • Laboratoire de Biologie et Physiologie Vegetales, Universite des Antilles, 97159, Pointe-a-Pitre, Guadeloupe, France; Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR113 INRA/AGRO-M/CIRAD/IRD/UM2 - TA10/J, Campus International de Baillarguet, 34398 Montpellier cedex 5, France.
  • Google Scholar


  •  Received: 06 June 2015
  •  Accepted: 14 September 2015
  •  Published: 30 September 2015

References

Abdullah M, Akram M, Khan AD, Qureshi RH (1990). Internal water resources management by plants under various root environment stresses with special reference to kallar grass Leptochloa fusca (L.) Stapf. Proceedings of the National Seminar on Water Resources Development and its Management in Arid Areas, 6-8 October 1990, Quetta, Pakistan.

 

Ahmad F (2010). Leptochloa fusca (L.) Stapf cultivation for utilization of salt-affected soil and water resources in Cholistan desert. Rev. Soc. Nat. 22(1):141-149.

 
 

Anjum NA (2006). Effect of Abiotic Stresses on Growth and Yield of Brassica campestris L. and Vigna radiate (L.) Wilczek under Different Sulfur Regimes. Ph.D. thesis, New Delhi: Jamia Hamdard.

 
 

Barbour RC, Baker SC, O'Reilly-Wapstra JM, Harvest TM, Potts BM (2009). A footprint of tree-genetics on the biota of the forest floor. Oikos 118:1917-1923.
Crossref

 
 

Cavender N, Knee M (2006). Relationship of seed source and arbuscular mycorrhizal fungal inoculum type to growth and colonization of bigbluestem (Angropogon gerardii Vitman.). Plant Soil 285:57-65.
Crossref

 
 

Clark RB, Zobel RW, Zeto SK (1999).The effects of mycorrhizal fungus isolates on mineral acquisition by Penicum virgatum L. in acid soils. Mycorrhiza 9(3):167-176.
Crossref

 
 

Cruz RE, de la Zarade JF, Agganzae NS, Lorilla EB (1999). Differential mycorrhizal development of some agricultural, horticultural and forestry crops to inoculation of mycorrhizal fungi. In: Jasper D (ed) Proceedings of the international symposium on management of mycorrhizas on agriculture, horticulture and forestry. Aust. Inst. Agric Sci. Australia pp. 54.

 
 

Dabin B (1965). Application des dosages automatiques à l'analyse des sols. Cah. Orstom. Ser. Pedol. 3(4):335-366.

 
 

Declerck S, Risede JM, Delvaux B (2002). Mycorrhizal Greenhouse response of micro-propagated bananas inoculated with in vitro monoxenically produced arbuscular mycorrhizal fungi. Sci. Hortic. 93:301-309.
Crossref

 
 

Diagne O, Ingleby K (2003). Ecologie des champignons mycorhiziens arbusculaires infectant Acacia raddiana Savi. Un arbre au desert. IRD Editions. Paris. pp. 205-2280.

 
 

Diatta ILD, Kane A, Agbangba CE, Sagna M, Diouf D, Aberlenc-Bertossi F, Duval Y, Borge A, Sane D (2014). Inoculation with arbuscular mycorrhizal fungi improves seedlings growth of two sahelian date palm cultivars (Phoenix dactylifera L., cv. Nakhlahamra and cv. Tijib) under salinity stresses. Adv. Biosci. Biotechnol. 5:64-72.
Crossref

 
 

Diouf D, Duponnois R, Ba AT, Neyra M, Lesueur D (2005). Symbiosis of Acacia auriculiformis A.Cunn. and A. mangium Willd. with mycorrhizal fungi and Bradyrhizobium sp. Improves salt tolerance in greenhouse conditions. Funct. Plant Biol. 32:1143-1152.
Crossref

 
 

Dodd IC, Ruíz-Lozano JM (2012). Microbial enhancement of crop resource use efficiency. Curr. Opin. Biotechnol. 23: 236-242.
Crossref

 
 

Duponnois R, Founoune H, Lesueur D (2002). Influence of the dual ectomycorrhizal and rhizobial symbiosis on the growth of Acacia mangium Willd. provenances, the indigenous symbiotic microflora and the structure of plant parasitic nematode communities. Geoderma 109:85-102.
Crossref

 
 

Ezawa T, Smith SE, Smith FA (2002). 'P metabolism and transport in AM fungi'. Plant Soil 244:221-230.
Crossref

 
 

Graham JH, Abbott LK (2000). Wheat responses to aggressive and non-aggressive arbuscular mycorrhizal fungi. Plant Soil 220:207-218.
Crossref

 
 

Guissou T, Bâ AM, Guinko S, Duponnois R., Plenchette C (1998). Influence des phosphates naturels et des mycorhizes à vésicules et à arbuscules sur la croissance et la nutrition minérale de Zizyphus mauritiana Larn, dans un sol à pH alcalin. Ann. Sei. For. 55: 925-931.
Crossref

 
 

Hetrick BDA, Wilson GWT, Cox TS (1992). Mycorrhizal dependency of modern wheat varieties, landraces and ancestors. Can. J. Bot. 70:2032-2040.
Crossref

 
 

Jan B, Sharif M, Khan F, Bakht J (2014). Effect of arbuscular mycorrhiza fungal inoculation with Compost on yield and P uptake of Wheat in alkaline calcareous soil. Am. J. Plant Sci. 5: 1995-2004.
Crossref

 
 

Johnson NC 1998. Responses of Salsola kali L. and Panicum virgatum L. to mycorrhizal fungi, phosphorus and soil organic matter: implications for reclamation. J. Appl. Ecol. 35:86–94.
Crossref

 
 

Khakpour O, Khara J (2012). Spore density and root colonization by arbuscular mycorrhizal fungi in some species in the northwest of Iran. Int. Res. J. Appl. Basic Sci. 3(5):977-982.

 
 

Klironomos JN (2003). Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology. 84:2292-2301.
Crossref

 
 

Korkama T, Fritze H, Kiikkila O, Pennanen T (2007). Do same-aged but different height Norway spruce (Picea abies (L) H. Karsts) clones affect soil microbial community? Soil Biol. Biochem. 39:2420-2423.
Crossref

 
 

Liu A, Hamel C, Hamilton RI, Smith DL (2001). Mycorrhizae formation and nutrient uptake of new corn (Zea mays L.) hybrids with extreme canopy and leaf architecture as influenced by soil N and P levels. Plant Soil 221:157-166.
Crossref

 
 

Lojewski NR, Fischer DG, Bailey JK, Schweitzer JA, Whitham TG, Hart SC (2009). Genetic basis of above ground productivity in two native Populus species and their hybrids. Tree Physiol. 29:1133-1142.
Crossref

 
 

Madritch MD, Hunter MD (2002). Phenotypic diversity influences ecosystem functioning in anoak sandhillls community. Ecology 83:2084-2090.
Crossref

 
 

Maherali H (2014). Is there an association between root architecture and mycorrhizal growth response? New Phytol. 204: 192-200.
Crossref

 
 

Mari M, Bertolini P, Pratella GC (2003). Nonconventional methods for the control of pots harvest pear diseases. J. Appl. Microbiol. 94:761-766.
Crossref

 
 

Marschner H, Dell B (1994). Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89-102.

 
 

Mbadi SH, Alipour ZT, Asghari H, Kashefi B (2015). Effect of the salinity stress and arbuscular mycorhizal fungi (AMF) on the growth and nutrition of Marigold (Calendula officinalis L). J. Biodivers. Environ Sci. 6: 215-219.

 
 

Nogueira MA, Cardoso EJBN (2007). Phosphorus availability changes the internal and external endomycorrhizal colonization and affects symbiotice ffectiveness. Sci. Agric. 64: 295-300.
Crossref

 
 

Othira JO, Omolo JO, Wachira FN, Onek LA (2012). Effectiveness of arbuscular mycorrhizal fungi in protection of maize (Zea mays L) against witchweek (Striga hermonthica Del Benth) infestation. J. Agric. Biotechnol. Sustain. Dev. 4(3): 37-44.
Crossref

 
 

Phillips JM, Hayman DS (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55:158–161.
Crossref

 
 

Plenchette C, Fortin JA, Furlan V (1983). Growth responses of several plant species to mycorrhizae in a soil of moderate P fertility. I. Mycorrhizal dependency under field conditions. Plant Soil 70:199-209.
Crossref

 
 

Ramakrishnan K, Bhuvaneswari G (2014). Effect of inoculation of AM fungi and beneficial microorganisms on growth and nutrient uptake of Eleusine coracana (L) Gaertn. (Finger millet). Int. Lett. Nat. Sci. 13:59-69.
Crossref

 
 

Redecker D, Schüßler A, Stockinger H, Stürmer S, Morton J, Walker C (2013). An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23(7):515-531.
Crossref

 
 

Rengel Z (2002). Breeding for better symbiosis. Plant Soil 245: 147-162
Crossref

 
 

Rohyadi A, Smith FA, Murray RS, Smith SE (2004). Effects of pH on mycorrhizal colonisation and nutrient uptake in cowpea under conditions that minimise confounding effects of elevated available aluminium. Dordrecht, Netherlands: Kluwer Academic Publishers. Plant Soil 260(1/2):283-290.
Crossref

 
 

Ruiz-Lozano JM, Azcón R (2000). Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 10:137-143.
Crossref

 
 

Ruíz-Lozano JM, Perálvarez MC, Aroca R, Azcón R (2011). The application of a treated sugar beet waste residue to soil modifies the responses of mycorrhizal and non mycorrhizal lettuce plants to drought stress: Plant Soil 346:153-166.
Crossref

 
 

Sieverding E, da Silva GA, Berndt R, Oehl F (2014). Rhizoglomus, a new genus of the Glomeraceae. Mycotaxon 129(2):373-386.
Crossref

 
 

Smith SE, Jakobsen I, Gronlund M, Smith FA(2011). Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol. 156:1050-1057.
Crossref

 
 

Smith SE, Read DJ (1997). Mycorrhizal Symbiosis, Academic Press, London.

 
 

Smith MR, Charvat I, Jacobson RL (1998). Arbuscular mycorrhizae promote establishment of prairie species in a tallgrass prairie restoration. Can. J. Bot. 76:1947-1954.
Crossref

 
 

Smith SE, Read DJ (2008). Mycorrhizal Symbiosis, 3rd edn. Academic Press, London.

 
 

Soumare A, Manga A, Thiao M, Ndoye I, Diop TA (2008). Effet de l'inoculation des champignons mycorhiziens arbusculaires sur le développement de Acacia nilotica subsp astringens soumis à différentes concentrations de sel. J. Sci. Technol. 7(1):74-83.

 
 

Tagu D, Bastien C, Faivre-Rampant P, Garbaye J, Vion P, Villar M, Martin F (2005).Genetic analysis of phenotypic variation for ectomycorrhiza formation in an interspecific F1 poplar full-sib family. Mycorrhiza 15:87-91.
Crossref

 
 

Tian CY, Feng G, Li XL, Zhang FS (2004). Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants. Appl. Soil. Ecol. 26: 143-148.
Crossref

 
 

Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986). Mesure du taux de mycorhization VA d'un systeme radiculaire. Recherche de methods d'estimation ayant une signification fonctionnelle. In: Gianinazi-Pearson V, Gianinazzi S (eds) Physiology and genetics aspects of mycorrhizae. INRA, Paris, pp. 217-221.

 
 

White J, Tallaksen J, Charvat I (2008). The effects of arbuscular mycorrhizal fungal inoculation at a roadside prairie restoration site. Mycologia 100:6-11.
Crossref

 
 

Wilson GWT, Hartnett DC (1998). Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. Am. J. Bot. 85:1732-1738.
Crossref

 
 

Zangaro W, Nishidate FR, Vandresen J, Andrade G, Nogueira MA (2007). Root mycorrhizal colonization and plant responsiveness are related to root plasticity, soil fertility and successional status of native woody species in Southern Brazil. J. Trop. Ecol. 23:53-62.
Crossref