Full Length Research Paper
References
Aiello C, Ferrer A, Ledesma A (1996). Effect of alkaline treatments at various temperatures on cellulase and biomass production using submerged sugarcane bagasse fermentation with Trichoderma reesei QM 9414. Bioresour. Technol. 57:13-18. Crossref |
||||
Alam MZ, Mamun AA, Qudsieh IY, Muyibi SA, Salleh HM, Omar NM (2009). Solid state bioconversion of oil palm empty fruit bunches for cellulase enzyme production using a rotary drum bioreactor. Biochem. Eng. J. 46:61-64. Crossref |
||||
Anikó V, Matti SA, Liisa V (2010). Restriction of the enzymatic hydrolysis of steam-pretreated spruce by lignin and hemicelluloses. Enzyme Microb. Technol. 46:185-193 Crossref |
||||
Ariffin H, Hassan MA, Shah UKM, Abdullah N, Ghazali FM, Shirai Y (2008). Production of Bacterial Endoglucanase from Pretreated Oil Palm Empty Fruit Bunch by Bacillus pumilus EB3. J. Biosci. Bioeng. 106:231-236. Crossref |
||||
Arpan D, Tanmay P, Suman KH, Arijit J, Chiranjit M, Pradeep KDM, Bikas RP, Keshab CM (2013). Production of cellulolytic enzymes by Aspergillus fumigatus ABK9 in wheat bran-rice straw mixed substrate and use of cocktail enzymes for deinking of waste office paper pulp. Bioresour. Technol. 128:290-6. Crossref |
||||
Atif H, Amber Y, Rajoka MI (2004). Induction, production, repression, and de-repression of exoglucanase synthesis in Aspergillus niger. Bioresour.Techol. 94:311-319 Crossref |
||||
Bahrin EK, Ibrahim MF, AbdRazak MN, Abd-Aziz S, Shah UK, Alitheen N, Salleh MM. (2012). Improved cellulase production by Botryosphaeria rhodina from OPEFB at low level moisture condition through statistical optimization. Prep. Biochem. Biotechnol. 42:155-170. Crossref |
||||
Bahrin, EK., Seng PY, Abd-Aziz S (2011). Effect of oil palm empty fruit bunch particle size on cellulase production by botryosphaeria sp. under solid state fermentation. Aus. J. Basic App. Sci. 5:276-280. | ||||
Brijwani K, Vadlani PV (2011). Celluloytic enzymes production via solid-state fermentation: effect of pretreatment methods on physicochemical characteristics of substrate. Enzyme Res. Vol. 2011, Article ID 860134, 10 pp. | ||||
Castro AM, Carvalho MLA, Leite SGF, Pereira N (2010). Cellulases from Penicillium funiculosum: production, properties and application to cellulose hydrolysis. J. Ind. Microbiol. Biotechnol. 37:151-158. Crossref |
||||
Chahal DS (1985). Solid-state fermentation with trichoderma reesei for cellulase production. Appl. Environ. Microbiol 49:205-210. PubMed |
||||
Deswal D, Khasa YP, Kuhad RC (2011). Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour. Technol. 102:6065-6072. Crossref |
||||
Devendra PM, Dhananjay S, Durgesh P, Jitendra PM (2012). Optimization of solid state fermentation conditions for the production of cellulase by Trichoderma reesei. J. Environ. Biol. 33:5-8. | ||||
Dillon AJP, Bettio M, Pozzan FG, Andrighetti T, Camassola M (2011). A new Penicillium echinulatum strain with faster cellulase secretion obtained using hydrogen peroxide mutagenesis and screening with 2-deoxyglucose. J. Appl. Microbiol. 111:48-53 Crossref |
||||
Dutta T, Sahoo R, Sengupta R, Ray SS, Bhattacharjee A, Ghosh S (2008). Novel cellulases from an extremophilic filamentous fungi Penicillium citrinum: production and characterization. J. Ind. Microbiol. Biotechnol. 35:275-282. Crossref |
||||
Gao J, Weng H, Zhu D, Yuan M, Guan F, Xi Y (2008). Production and characterization of celluloytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresour. Technol. 99:7623-7629. Crossref |
||||
Herculano PN, Porto TS, Moreira KA, Pinto GA, Souza-Motta CM, Porto AL (2011). Cellulase Production by Aspergillusjaponicas URM5620 Using Waste from Caster Bean (Ricinuscommunis L.) under Solid-State Fermentation. Appl. Biochem. Biotechnol. 165:1057-67. Crossref |
||||
Jeya M, Joo A, Lee KM, Sim WI, Oh DK, Kim YS, Kim IW, Lee JK (2010). Charaterization of endo - β-1,4-glucanase from 1 novel strain of Penicilliumpinophilum KMJ601. Appl. Microbiol. Biotechnol. 85: 1005-1014. Crossref |
||||
Kalogeris E, Iniotaki F, Topakas E, Christakopoulos P, Kekos D, Macris BJ (2003). Performance of an intermittent agitation rotating drum type bioreactor for solid-state fermentation of wheat straw. Bioresour. Technol. 86:207-312. Crossref |
||||
Karlsson J, Momcilovic D, Wittgren B, Schulein M, Tjerneld F, Brinkmalm G (2002). Enzymatic degradation of carboxymethyl cellulose hydrolyzed by the endoglucanases Cel5A, Cel7B, and Cel45A from Humicolainsolens and Cel7B, Cel12A and Cel45Acore from Trichodermareesei. Biopolymers 63:32-40. Crossref |
||||
Kotaka A, H Bando, Kaya M, Kato-Murai M, Kuroda K, Sahara H, Hata Y, Kondo A, Ueda M (2008). Direct Ethanol Production from Barley β-Glucan by Sake yeast Displaying Aspergillus oryzae β-Glucosidase and Endoglucanase. J. Biosci. Bioeng. 105:622-627. Crossref |
||||
Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B (2009). Metabolic engineering strategies for the improvement of cellulase production by Hypocreajecorina.Biotechnol. Biofuels 2:19-33. Crossref |
||||
Kwon KS, Kang HG, Han YC (1992). Purification and characterization of two extracellular b-glucosidases from Aspergillusnidulans. FEMS Microbiol.Lett. 97:149-154. Crossref |
||||
Liu, YT, Luo ZY, Long CN, Wang HD, Long MN, Hu Z (2011). Cellulase production in a new mutant strain of Penicilliumdecumbens ML-017 by solid state fermentation with rice bran. New Biotechnol. 28:733-737. Crossref |
||||
Ong LG, Abd-Aziz S, Noraini S, Karim MI, Hassan MA (2004). Enzyme production and profile by Aspergillusniger during solid state fermentation using palm kernel cake as substrate. Appl. Biochem. Biotechnol. 118:73-79. Crossref |
||||
Singh R, Varma AJ, Laxman RS, Rao M (2009). Hydrolysis of cellulose derived from steam exploded bagasse by Penicilliumcellulases; Comparison with commercial cellulase. Bioresour. Technol. 100:6679-6681. Crossref |
||||
Singhania RR, Sukumaran RK, Pillai A, Szakacs G, Pandey A (2006). Solid-state fermentation of lignocellulosic substrates for cellulase production by Trichoderma reesei NRRL 11460. Ind. J. Biotechnol. 5: 332-336. | ||||
Singhvi MS, Adsul MG, Gokhale DV (2011). Comparative production of cellulase by mutant of Penicillium janthinellum NCIM 1171 and its application in hydrolysis of Avicel and cellulose. Bioresour. Technol. 102:6569-6572. Crossref |
||||
Sprey B, Lambert C (1983) Titration curves of cellulases from Trichoderma reesei: demonstration of a cellulose-xylanase-β-glucosidase-containing complex. FEMS Microbiol. Lett.18:217-414. Crossref |
||||
Sukumaran RK, Singhania RR, Pandey A (2005). Microbial cellulases-Production, applications and challenges. J. Sci. Ind. Res. 64:832-844. | ||||
Takashima S, Nakamura A, Hidaka M, Masaki H, Uozumi T (1996). Cloning, sequencing, and expression of the cellulase genes of Humicolagrisea var. thermoidea. J. Biotechnol. 50:137-147. Crossref |
||||
Umikalson MS, Ariff AB, Zulkifli HS, Tong CC, Hassan MA, Karim MIA (1997). The treatment of oil palm empty fruit bunch fiber for subsequent use as substrate for cellulase production by Chaetomiumglobosumkunze. Bioresour. Technol. 62:1-9. Crossref |
||||
Xiong H, Weymarn NV, Leisola M, Turunen, O (2004) Influence of pH on the production of xylanases by Trichoderma reesei RutC-30.Process Biochem. 39:729-733. Crossref |
Copyright © 2025 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0