African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12513

Full Length Research Paper

Phenotypic and genotypic characteristics of cowpea rhizobia from soils of Ethiopia

Girmaye Kenasa
  • Girmaye Kenasa
  • Center for Energy and Environment, Wollega University, Nekemte, P. O. X -395, Ethiopia.
  • Google Scholar
Fassil Assefa
  • Fassil Assefa
  • Department of Microbial Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, P. O. X-1176, Ethiopia.
  • Google Scholar
Mussie Y. Habteselassie
  • Mussie Y. Habteselassie
  • Crop and Soil Sciences, University of Georgia, Griffin Campus, 1109 Experiment Street, Griffin, GA 30223, USA.
  • Google Scholar


  •  Received: 30 December 2016
  •  Accepted: 13 March 2017
  •  Published: 17 October 2018

References

Abdelnaby M, Elnesairy NB, Mohamed SH, Alkhayali YA (2015). Symbiotic and phenotypic characteristics of rhizobia nodulaing cowpea (Vigna Unguiculata L. Walp) grown in arid region of Libya (Fezzan). Journal of Environmental Science and Engineering 4:227-239.
Crossref

 

Ahmad M, Khan MS (2012). Ecological assessment of biotoxicity of pesticides towards plant growth promoting activities of Pea (Pisum sativum) specific rhizobium sp. Strain MRP1. Emirates Journal of Food and Agriculture 24(4):334-343.

 
 

Allen ON, Allen EK (1981). The Leguminosae: A source book of characteristics, uses and nodulation. The University of Wisconsin Press, USA. P 812.
Crossref

 
 

Amarger N, Macheret V, Laguerre G (1997). Rhizobium gallicum spp. Nov. and Rhizobium giardinii spp. Nov. from Paseolus vulgaris nodules. International Journal of Systematic Bacteriology 47(4):996-1006.
Crossref

 
 

Ayanaba A, Asanuma S, Munns DN (1983). An agar plate method for rapid screening of Rhizobium for tolerance to acid-aluminum stress. Soil Science Society of America Journal 47(2):256-258.
Crossref

 
 

Balasubramani M, Kumar JL, Rao NK, Sood N, Gokhale T, Rajeswari S, Fraj MB. Mishra S (2014). Stress-Tolerance of Sinorhizobium spp. Nodulating Sesbania and Cowpea in Desert Soils. Journal of Pure and Applied Microbiology 8(1):323-331.

 
 

Broughton WJ, Dilworth MJ (1971). Control of leghemoglobin synthesis in snakebean. Biochemical Journal 125(4):1075-1080.
Crossref

 
 

Chagas JA, de Oliveira LA, de Castro HG, de Cornélio GL, dos Santos GR, Chagas LF, da Costa JL (2013). Isolation and phenotypic characterization of rhizobia that nodulate cowpea in the Cerrado in Tocantins State, Brazil. Journal of Biotechnology and Biodiversity 4(3):249-259.

 
 

Dakora FD, Keya SO (2000). Contribution of legume nitrogen fixation to sustainable agriculture in Sub-Saharan Africa. Soil Biology and Biochemistry 29(5-6):809-817.
Crossref

 
 

Eaglesham ARJ, Ayanaba A, Ranga Rao V, Eskew DL (1987). Mineral N effects on cowpea and soybean crops in a Nigerian soil. Plant and Soil 68(2):183-192.
Crossref

 
 

El-akhal MR, Rincon A, El-mourabit N, Pueyo J, Barrijal S (2009). Phenotypic and genotypic Characterization of rhizobia isolated from root nodules of Peanut (Arachis hypogaea L.) grown in Moroccan soils. Journal of Basic Microbiology 49(5):415-425.
Crossref

 
 

Etana A, Estefanos T, Ashenafi M, Abubeker H (2013). Advanced evaluation of cowpea (Vigna unguiculata) accessions for fodder production in the central rift valley of Ethiopia. Journal of Agricultural Extension and Rural Development 5(3):55-61.

 
 

FAO (1996). International technical conference on plant genetic resources. Ethiopia: country report to the FAO, Leipzig, Germany.

 
 

Felske A, Engelen B, Bel U, Backhaus H (1996). Direct ribosome isolation from soil to extract bacterial rRNA for community analysis. Applied and Environmental Microbiology 62(11):4162-4167.

 
 

Florentino LA, de Sousa PM, Silva JS, Silva KB, Maria F, Moreira S (2010). Diversity and efficiency of Bradyrhizobium strains isolated from soil samples collected from around Sesbania virgata roots using cowpea as trap species. Revista Brasileira De Ciencia Do Solo 34(4):1113-1123.
Crossref

 
 

Guimarães AA, Jaramillo PM, Nóbrega RS, Florentino LA, Silva KB, Moreira FM (2012). Genetic and symbiotic diversity of nitrogen-fixing bacteria isolated from agricultural soils in the Western Amazon by using cowpea as the trap Plant. Applied and Environmental Microbiology 78(18):6726-6733.
Crossref

 
 

Hadad MA, Loynachan TE (1985). Abundance and characterization of Cowpea miscellany Rhizobium from sudanes soil. Soil Biology and Biochemistry 17(5):717-721.
Crossref

 
 

Hammer Ø, Harper DAT, Ryan PD (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4(1):1-9.

 
 

Hernandez B, Focht D (1984). Invalidity of the concept of slow growth and alkali production in cowpea rhizobia. Applied and Environmental Microbiology 48(1):206-210.

 
 

Jordan DC (1982). NOTES: Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a Genus of Slow-Growing, Root Nodule Bacteria from Leguminous Plants. International Journal of Systematic and Evolutionary Microbiology 32(1):136-139.

 
 

Kaur H, Sharma P, Kaur N, Gill BS (2012). Phenotypic and biochemical characterization of Bradyrhizobium and Ensifer spp. isolated from soybean rhizosphere. Bioscience Discovery 3(1):40-46.

 
 

Kennedy LD, Greenwood RM (1982). 6-Phosphogluconate and glucose-6-phosphate dehydrogenase activities, growth rate, and acid production as taxonomic criteria for Rhizobium. New Zealand Journal of Science 25:361-366.

 
 

Keyser HH, Munns DN (1979). Effects of Calcium, Manganese, and Aluminum on growth of rhizobia in acid media. Soil Science Society of America Journal 43(3):500-503.
Crossref

 
 

Keyser HH, Munns DN, Hohenberg JS (1979). Acid tolerance of rhizobia in culture and in symbiosis with cowpea Soil Science Society of America Journal. 43(4):719-723
Crossref

 
 

Kimura M (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16(2):111-120.
Crossref

 
 

Krasova-Wade T, Ndoye I, Braconnier S, Sarr B, de Lajudie P, Neyra M (2003). Diversity of indigenous bradyrhizobia associated with three cowpea [Vigna unguiculata (L.) Walp.] cultivars grown under limited and favorable water conditions in Senegal (West Africa). African Journal of Biotechnology. 2(1):13-22.
Crossref

 
 

Leite J, Seido SL, Passos SR, Xavier GR, Rumjanek NG, Martins LM (2009). Biodiversity of rhizobia associated with cowpea cultivars in soils of the lower half of the São Francisco River Valley. Revista Brasileira de Ciência do Solo 33(5):1215-1226.
Crossref

 
 

Marra LM, Soares CRFS, de Oliveira SM, Ferreira PAA, Soares BL, Carvalho RF, de Lima JM, Moreira FMS. (2012). Biological nitrogen fixation and phosphate solubilization by bacteria isolated from tropical soils. Plant and Soil 357(1-2):289-307.
Crossref

 
 

Martinez-de DG, Arias A (1977). 6-Phospho-D-gluconate: NAD+ 2-oxidoreductase (decarboxylating) from slow-growing rhizobia. Journal of Bacteriology 130(3):1139-1143.

 
 

Martins LVM, Neves MCP, Rumjanek NG (1997). Growth characteristics and symbiotic efficiency of rhizobia isolated from cowpea nodules of the northeast region of Brazil. Soil Biology and Biochemistry 29(5-6):1005-1010.
Crossref

 
 

Menna P, Barcellos FG, Hungria M (2009). Phylogeny and taxonomy of a diverse collection of Bradyrhizobium strains based on multilocus sequence analysis of the 16S rRNA gene, ITS region and glnII, recA, atpD and dnaK genes International Journal of Systematic and Evolutionary Microbiology 59(12):2934-2950.
Crossref

 
 

Mensah JK, Esumeh M, Iyamu M, Omoifo C (2006). Effect of different salt concentration and pH on growth of Rhizobium sp. and a Cowpea-Rhizobium association. American-Eurasian Journal of Agricultural & Environmental Science 1:198-202.

 
 

Mpepereki S, Wollum AG, Makonese F (1996). Diversity in symbiotic specificity of cowpea indigenous to Zimbabwean soils. Plant and Soil 62(1):167-171
Crossref

 
 

Mubeen F, Shiekh MA, Iqbal T, Khan QM, Malik KA, Hafeez FY (2006). In vitro investigations to explore the toxicity of fungicides for plant growth promoting rhizobacteria. Pakistan Journal of Botany 38(4):1261-1269.

 
 

Murugesan S, Manoharan C, Vijayakumar R, Panneerselvam A (2010). Isolation and characterization of Agrobacterium rhizogenes from the root nodules of some leguminous plants. International Journal of Microbiological Research 1(3):92-96.

 
 

Mwenda GM, Karanja NK, Boga H, Kahindi JHP, Muigai A, Odee D (2011). Abundance and diversity of legume nodulating rhizobia in soils of Embu district, Kenya. Tropical and Subtropical Agroecosystems 13(1):1-10.

 
 

Norris DO (1959). Legume bacteriology in the tropics. The Journal of the Australian Institute of Agricultural Science 25:202-207.

 
 

Paudyal SP, Aryal RR, Chauhan SV, Maheshwari DK (2007). Effect of heavy metals on growth of Rhizobium strains and symbiotic efficiency of two species of tropical legumes. Scientific World 5(5):27-32.

 
 

Rademarker JL, Louws RJ, Versalovic J, Bruijn FJ (2004). Characterization of the diversity of ecologically important microbes by rep-PCR genomic fingerprinting. In. Molecular Microbial Ecology Manual, Luwer Academic Publishers, Boston, MA. Pp. 611-643.

 
 

Sarr PS, Yamakawa T, Asatsuma S, Fujimoto S, Sakai M (2010). Investigation of endophytic and symbiotic features of Ralstonia sp. TSC1 isolated from cowpea nodules. African Journal of Microbiology Research 4(19):1959-1963.

 
 

Sawicka A, Selwet M (1998). Effect of active ingredients on Rhizobium and Bradyrhizobium legume dinitrogen fixation.  Polish Journal of Environmental Studies 7(5):317-320.

 
 

Schaad NW (1980). Laboratory guide for the identification of plant pathogenic bacteria. The American Phytopathological Society, St. Paul, MN. P. 72.

 
 

Silva FV, Simões-Araújo JL, Silva-Júnior JP, Xavier GR, Rumjanek NG (2012). Genetic diversity of Rhizobia isolates from Amazon soils using cowpea (Vigna unguiculata) as trap plant. Brazilian Journal of Microbiology 43(2):682-691.
Crossref

 
 

Sinclair MJ, Eaglesham AR (1984). Intrinsic antibiotic resistance in relation to colony morphology in three populations of West African cowpea rhizobia. Soil Biology and Biochemistry 16(3):247-251.
Crossref

 
 

Somasegaran P, Hoben HZ (1994). Handbook for rhizobia. Springer laboratory. Springer-Verlag, P. 380.
Crossref

 
 

Steenkamp ET, Stepkowski T, Przymusiak A, Botha WJ, Law IJ (2008). Cowpea and peanut in southern Africa are nodulated by diverse Bradyrhizobium strains harboring nodulation genes that belong to the large pantropical clade common in Africa. Molecular Phylogenetics and Evolution 48(3):1131-1144.
Crossref

 
 

Stowers MD, Elkan GH (1984). Growth and nutritional characteristics of cowpea rhizobia. Plant and Soil 80(2):191-200.
Crossref

 
 

Tamura K, Dudley J, Nei M, Kumar S (2007). MEGA6: Molecular EvolutionaryGenetics Analysis (MEGA) software version 6.0. Molecular Biology and Evolution 30(12):2725-9.
Crossref

 
 

Thies JE, Woomer PL, Singleton PW (1995). Enrichment of Bradyrhizobium spp. populations in soil due to cropping of the homologous host legume. Soil Biology and Biochemistry 27(4-5):633-636.
Crossref

 
 

Vincent JM (1970). A Manual for the Practical Study of Root-Nodule Bacteria. IBP Handbook 15. Blackwell Scientific Publications, Oxford, P.164.

 
 

White D (1995). The physiology and biochemistry of prokaryotes. Oxford University Press, Oxford, P. 378.

 
 

Woomer P, Asano W (1990). Environmental factors related to rhizobial abundance in kikuyugrass (Pennisetum clandestinum) pastures. Tropical Agriculture 67(3):217-220

 
 

Xavier GR, Martins LMV, Neves MCP, Rumjanek NG (1998). Edaphic factors as determinants for the distribution of intrinsic antibiotic resistance in a cowpea rhizobia population. Biology and Fertility of Soils 27(4):386-392.
Crossref

 
 

Zablotowicz RM, Focht DD (1981). Physiological characteristics of Cowpea rhizobia: Evaluation of symbiotic efficiency in Vigna unguiculata. Applied and Environmental Microbiology 41(3):679-685.

 
 

Zhang WT, Yang JE, Yuan TY, Zhou JC (2007). Genetic diversity and phylogeny of indigenous rhizobia from cowpea [Vigna unguiculata (L.) Walp Biology and Fertility of Soils 44(1):201-210.
Crossref

 
 

Zhang YF, Wang ET, Tian CF, Wang FQ, Han LL, Chen WF, Chen WX (2008). Bradyrhizobium elkanii, Bradyrhizobium yuanmingense and Bradyrhizobium japonicum are the main rhizobia associated with Vigna unguiculata and Vigna radiata in the subtropical region of China. FEMS Microbiology Letters 285(2):146-154.
Crossref

 
 

Zilli JÉ, Valisheski RR, Filho FRF, Neves MCP, Rumjanek NG (2004). Assessment of cowpea rhizobium diversity in Cerrado areas of Northeast Brazil. Brazilian Journal of Microbiology 35:281-287.
Crossref