African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12254

Full Length Research Paper

Phenotypic and molecular characterization of extended spectrum β-lactamase producing Pseudomonas aeruginosa in Nigeria

Martina C. Agbo
  • Martina C. Agbo
  • Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka, Enugu State, Nigeria.
  • Google Scholar
Ifeoma M. Ezeonu
  • Ifeoma M. Ezeonu
  • Department of Microbiology, University of Nigeria, Nsukka, Enugu State, Nigeria.
  • Google Scholar
Maurice N. Odo
  • Maurice N. Odo
  • Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka, Enugu State, Nigeria.
  • Google Scholar
Chukwuebuka M. Ononugbo
  • Chukwuebuka M. Ononugbo
  • Department of Microbiology, University of Nigeria, Nsukka, Enugu State, Nigeria.
  • Google Scholar
Beatrice O. Onodagu
  • Beatrice O. Onodagu
  • Microbiology Laboratory Unit, University of Nigeria Teaching Hospital, Enugu, Nigeria.
  • Google Scholar
Chinelo C. Eze
  • Chinelo C. Eze
  • Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka, Enugu State, Nigeria.
  • Google Scholar
Ezinwanne N. Ezeibe
  • Ezinwanne N. Ezeibe
  • Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka, Enugu State, Nigeria.
  • Google Scholar
Chizoba A. Ozioko
  • Chizoba A. Ozioko
  • Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka, Enugu State, Nigeria.
  • Google Scholar


  •  Received: 26 September 2019
  •  Accepted: 22 November 2019
  •  Published: 31 December 2019

References

Ahmed OB, Asghar AH (2017). Antibiotic susceptibility pattern of P. aeruginosa expressing bla GES and bla PER genes in two different hospitals. African Journal of Biotechnology 16(21):1197-1202.
Crossref

 

Aktas Z, Poirel L, Salcioglu M, Ozcan PE, Midilli K, Bal C, Ang O, Nordmann P (2005). PER-1 and OXA-10-like β-lactamases in Ceftazidime-resistant P.aeruginosa isolates from intensive Care unit patients in Istandul, Turkey. Clinical Microbiology and Infection 11(3):193-198.
Crossref

 
 

Begum S, Salam MDA, Alam KHF, Begum N, Hassan P,Haq JA (2013). Detection of extended spectrum β-Lactamase in Pseudomonas spp.isolated from two tertiary care hospitals in Bangladesh. Biomedical Research Notes 6:7.
Crossref

 
 

Bush K, Jacoby GA (2010). Updated functional classification of Beta-lactamase. Antimicrobial Agents and Chemotherapy 54:969-976. 
Crossref

 
 

Clinical and Laboratory Standards Institute, CLSI (2014). Performance Standards for Antimicrobial Susceptibility Testing: Twenty-fourth Informational Supplement.M100-S24 (34):1

 
 

Cráciunas C, Butiuc-Keul A, Flonta M, Brad A, Sigarteu M (2010). Application of molecular techniques to the study of P. aeruginosa clinical isolates in cluj-napoca, Romania. Analele Universitatii din Oradea-fascicula Biologie 2(17):243-247.

 
 

Drieux L, Brossier F, Sougakoff W, Jarlier V (2008). Phenotypic detection of extended-spectrum β-lactamase production in Enterobacteriaceae: review and bench guide. Clinical Microbiology and Infection 14(1):90-103.
Crossref

 
 

Du ST, Kuo HC, Cheng CH, Fel ACY, Wei HW, Chang SK (2010). Molecular Mechanisms of Ceftazidime resistance in P.aeruginosa isolates from canine and human infections. Veterinarni Medicina 55(4):172-182.
Crossref

 
 

Jarlier V, Nicolas MH, Fournier G, Philippon A (1998). Extended spectrum β-lactamase conferring transferable resistance to newer β-lactam agents in Enterobacteriacceae: Hospital prevalence and susceptibility patterns. Review and Infection Diseases 10:867-878.
Crossref

 
 

Jayanthi S, Jeya M (2014). Plasmid profile analysis and blaVIM Gene Detection of metallo β-lactamase (MBL) producing Pseudomonas aeruginosa isolates from clinical samples. Journal of Clinical and Diagnostic Research 8(6):DC16-DC19.

 
 

Katvoravutthichai C, Boonbumrung K, Tiyawisutsri R (2016). Prevalence of β-lactamase classes A, C, and D among clinical isolates of P. aeruginosa from a tertiary - level hospital in Bangkok, Thailand. Genetics and Molecular Research 15(3):
Crossref

 
 

Laudy AE, Rôg P, Smolińska-król K, ćmiel M, Sloczyńska A, Patzer J, Dzierźanowska D, Wolinowska R, Starościak B, Tyski S (2017). Prevalence of ESBL - producing P. aeruginosa isolates in Warsaw, Poland, detected by various phenotypic and genotypic methods. PLOS One 12(6):e0180121.
Crossref

 
 

Lee S, Park Y, Kim M, Lee HK, Han K, Kang CS, Kang MW (2005). Prevalence of Ambler Class A and D beta-lactamase among clinical isolates of P. aeruginosa in Korea. Journal of Antimicrobial Chemotherapy 56(1):122-127.
Crossref

 
 

Lim KT, Yasin RM, Yeo CC, Puthucheary SD, Balan G, Maning N, Wahab ZA, Ismail N, Tan EA, Mustaffa A, Thong KL (2009). Genetic finger printing and antimicrobial susceptibility profiles of P. aeruginosa hospital isolates in Malaysia. Journal of Microbiology, Immunology and Infection 42:197-209.

 
 

Livermore DM (2002). Multiple mechanisms of antimicrobial resistance in P. aeruginosa: Our worst nightmare? Clinical infectious Diseases 34:634-640. 
Crossref

 
 

Mandiratta DK, Deotale V, Narang P (2005). Metallo beta lactamase producing P. aeruginosa in a hospital from rural area. Indian Journal of Medical Research 121:701-703.

 
 

Mohammadi AA, Emami A, Bazargani A, Zardosht M, Jafari SMS (2015).Detection of bla PER-1 and bla OXA-10 among Imipenem resistant isolatesof P. aeruginosa isolated from burn patients hospitalized in Shiraz Burn Hospital. Iranian Journal of Microbiology 7(1):7-11.

 
 

Moreaus-Marquis S, Stanton BA, O,Toole GA (2008). P.aeruginosa biofilm formation in the fibrosis airways. Pulmonary Pharmacology and Therapeutics (21):595-599.
Crossref

 
 

Parajuli NP, Maharjan P, Joshi G, Khanal PR (2016). Emerging Perils of Extended Spectrum β- Lactamase producing Enterobacteriaceae Clinical Isolates in a Teaching Hospital of Nepal. Biomedical Research International. 
Crossref

 
 

Peterson DL, Bonomo RA (2005). Extended Spectrum β-lactamases: A clinical update. Clinical Microbiology Review 18(4):657-686.
Crossref

 
 

Poirel L, Nass T, Nordmann P (2010). Diversity, epidemiology, and genetics of class D. Beta Lactamases. Antimicrobial Agents and Chemotherapy 54:24-38. 
Crossref

 
 

Poirel L, Weldhagen GF, Naas T, Champs C, Dove MG, Nordmann P (2001). GES-2, a class A β-Lactamase from P.aeruginosa with increased hydrolysis of Imipenem. Antimicrobial Agents and Chemotherapy 45(1):2598-2603.
Crossref

 
 

Porjafari M, Ghane M, Moghadam RG, Azimi Z, Ghaffary H, Kouchaki M (2013). Prevalence of the resistance genes to extended Spectrum β-Lactam antibiotics in P. aeruginosa Strains collected from different parts of Tonekabon Shahid Rajai hospital in North of Iran, Using PCR Technique. Annals of Biological Research 4(12):163-168.

 
 

Raafat MM, Ali-Tammam M, Ali AE (2016). Phenotypic and genotypic characterization of Pseudomonas aeruginosa isolates from Egyptian hospital. African Journal of Microbiology Research 10(39):1645-1653.
Crossref

 
 

Senthamarai S, Suneel K, Peddey A, Sivasankari S, Anitha C, Somasunder V, Kumudharathi MS, Amsharathani SK, Venugopal V (2014). Resistance pattern of Pseudomonas aeruginosa in a Tertiary care Hospital of Kanchipuram, Tamilnadu, India. Journal Clinical and Diagnostic Research 8(5):DC30-DC32.
Crossref

 
 

Sharma M, Pathak S, Srivastava P (2013). Prevalence and antibiogram of Extended spectrum β-lactamase (ESBL) producing Gram negative bacilli and further molecular characterization of ESBL, producing Escherichia coli and Klebsiella ssp. Journal of Clinical and Diagnostic Research 7(10):2173-2177.
Crossref

 
 

Shen JL, Fang VP (2015). Detection of drug resistance mechanism of P. aeruginosa developing from a sensitive strain to a persister during carbapenem treatment. Genetic and Molecular Research 14:6723-6732.
Crossref

 
 

Tam VH, Chang KT, Abdeiraouf K, Brioso CG, Ameka M, McCaskey KA, Weston JS, Caeiro JB, Garey KW (2010). Prevalence, resistance mechanisms, and susceptibility of multidrug-Resistant blood stream isolates of P. aeruginosa. Antimicrobial Agents and Chemotherapy 54:1160-1164.
Crossref

 
 

Tavajjohi Z, Moniri R, Khorshidi A (2011). Detection and characterization of multidrug resistance and extended-spectrum beta-lactamase-producing (ESBLS) P. aeruginosa isolates in teaching hospital. African Journal of Microbiology Research 5(20):3223-3228.
Crossref

 
 

Todar K (2008). Pseudomonas aeruginasa. In: Online Textbook for Bacteriology.

 
 

Todar K (2014). P. aeruginosa. Available at [http://textbook of bacteriology.net/pseudomonas.html]. accessed May 30, 2016.

 
 

Tripathi P, Banerjee G, Saxena S, Gupta MK, Ramteke PW (2011). Antibiotic resistance pattern of Pseudomonas aeruginosa isolated from patients of lower respiratory tract infection. African Journal of Microbiology Research 5(19):2955-2959.
Crossref

 
 

Ullah F, Malik SA, Ahmed J (2009). Antimicrobial susceptibility and ESBL prevalence in P. aeruginosa isolated from burn patients in the North West of Pakistan. Burns 35(7):1020-1025.
Crossref

 
 

Wirth FW, Picoli SU, Cantarelli VV, Goncalves AL, Brust FR, Santos LM, Barreto MF (2009). Metallo- β-lactamase-producing P. aeruginosa in two hospitals from Southern Brazil. Brazilian Journal of Infectious Diseases 13:170-172.
Crossref

 
 

Woodford N, Zhang J, Kaufmann ME, Yarde , Tomas Mdel M, Faris C, Vardhan MS, Dawson S, Cotterill SL, Livermore DM (2008). Detection of P. aeruginosa isolates producing VEB-type extended spectrum β -lactamase in the United Kingdom. Journal of Antimicrobial Agents and Chemotherapy 62:1265-1268.
Crossref