Review
References
Alongi DM (1992). Vertical profiles of bacterial abundance, productivity and growth rates in coastal sediments of the central Great Barrier Reef lagoon. Mar. Biol. 112:657-663. Crossref |
||||
Banerjee MR, Yesmin L (2002). Sulphur oxidizing rhizobacteria: an innovative environment friendly soil biotechnological tool for better canola production. Proceedings of AGROENVIRON, Cairo, Egypt. pp. 1-7. | ||||
Bardischewsky F, Friedrich CG (2001). The shxVWlocus is essential for oxidation of inorganic sulphur and molecular hydrogen by Paracoccus pantotrophus GB17: a novel function for lithotrophy. FEMS Microbiol. Lett. 202: 215-220. Crossref |
||||
Bradischewsky F, Quentmeier A, Hellwig P, Kostka S, Fredrich CG (2005). Sulphur dehydrogenase of Paracoccus Pantotrophus: The heme-2 domain of the molybdoprotein cytochrome C complex is dispensable for catalytic activity. Biochemistry 34: 324-327. | ||||
Brock TD, Madigan MT, Martinko JM (2006). Biology of Microorganisms. Upper Saddle River, N.J. [u.a.]: Prentice-Hall. | ||||
Bruser T, Lens PNL, Toper HG (2000). The biological sulphur cycle in environmental technologies to treat sulphur pollution. IWA publishing, London. pp. 47-85. | ||||
Campbell BJ, Engel AS, Porter ML, Takai K (2006). The versatile epsilon- proteobacteria: key players in sulphidic habitats. Nat. Rev. Microbiol. 4:458-468 Crossref |
||||
Cardoso RB, SierraAlvarez R, Rowlette P, Flores ER, Gomez J, Field JA (2006). Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnol. Bioeng. 95:1148-1157. Crossref |
||||
Cho KS, Hirai M, Shoda M (1992). Degradation of hydrogen sulphide by Xanthomonas sp. Strain DY44 isolated from peat. Appl. Environ. Microbiol. 58:1183-1189. Pubmed |
||||
Cho KS, Ryu HW, Lee NY (2000). Biological deodorization of hydrogen sulphide using porous lava as a carrier of Thiobacillus thiooxidans. J. Biosci. Bioeng. 90: 25-31. Pubmed |
||||
Chung YC, Huang C, Tseng CP (1996a). Biodegradation of hydrogen sulphide by a laboratory-scale immobilized Pseudomonas putida CH11 biofilter. Biotechnol. Prog. 12:773-778. Crossref |
||||
Chung YC, Huang C, Tseng CP (1996b). Operation optimization of Thiobacillus thioparus CH11 biofilter for hydrogen sulphide removal. J. Biotechnol. 52:31-38. Crossref |
||||
Cork DJ, Jerger DE, Maka A (1986). Biocatalytic production of sulphur from process waste streams. Biotechnol. Bioeng. Symp. Ser. 16:149-162. | ||||
Das S, De M, De TK, Ray R, Jana TK, Ghosh PK, Maiti TK (2012). Distribution of Aerobic and Anaerobic Bacteria along the Intertidal Zones of Sunderban Mangrove Ecosystems, NE Coast of Bay of Bengal, India. Ind. J. Geo-Mar. Sci. 41:405-411. | ||||
Deluca TH, Skogley EO, Engle RE (1989). Band – applied in alkaline calcareous soil. Biol. Fertil. Soil. 7:346-350. Crossref |
||||
Dhevendaran K (1991). Photosynthetic in the marine environment at Porto-Novo, Cochin. Fish. Technol. Soc. 21:126-130. | ||||
Dias ACF, Andreote FD, Rigonato J, Fiore MF, Melo IS, Araujo WL (2010). The bacterial diversity in Brazilian non disturbed mangrove sediment. Ant. Van Leeuwen. 98:541-555. Crossref |
||||
Dilling W, Liesack W, Pfennig N (1995). Rhabdochromatium marinum gen. nom. rev., sp. nov., a purple sulphur bacterium from a salt marsh microbial mat. Arch. Microbiol. 164:125-131. Crossref |
||||
Friedrich CG, Mitrenga G (1981). Oxidation of thiosulphate by Paracoccus denitrificans and other hydrogen bacteria. FEMS Microbiol. Lett. 10:209-212. Crossref |
||||
Friedrich CG, Rother D, Bardischewsky F, Quent meier A, Fischer J (2001). Oxidation of reduced inorganic sulphur compounds by bacteria: emergence of a common mechanism? Appl. Environ. Microbiol. 67:2873-2882. Crossref |
||||
Friedrich CG, Bardischewsky F, Rother D, Quent meier A, Fischer J (2005). Prokaryotic sulphur oxidation. Curr. Opin. Microbiol. 8:253-259. Crossref |
||||
Ghosh A, Dey N, Bera A, Tiwari A, Sathyaniranjan KB, Chakrabarti K, Chattopadhyay D (2010). Culture independent molecular analysis of bacterial communities in the mangrove sediment of Sundarban, India. Sal. Syst. (6):1-11. | ||||
Ghosh W, Mallick S, DasGupta SK (2009) Origin of the Sox multienzyme complex system in ancient thermophilic bacteria and coevolution of its constituent proteins. Res. Microbiol. 160:409-420. Crossref |
||||
Gomes N, Cleary DFR, Pinto FN, Egas C, Almeida A, Cunha A, Mendonc a-Hagler LCS, Smalla K (2010). Taking Root: Enduring Effect of Rhizosphere Bacterial Colonization in Mangroves. Plos One 5 (11): e 14065. | ||||
Gros O, Wulf- Durand, Pascale De, Frenkiel L, Moueza M (1998). Putative environmental transmission of sulphur-oxidising bacterial symbionts in tropical luncids bivalves inhabiting various environment. FEMS Microbiol. Lett. 160:257-262. Crossref |
||||
Hart MGR (1958). Annual Report of the West African rice research station. Crown Agents, London. | ||||
Hart MGR (1959). Sulphur oxidation in tidal mangrove soils of Sierra Leone. Plant and soil XI 3:215-236. | ||||
Hart MGR (1962). Observations on the source of acid in empoldered mangrove soils. I. Formation of elemental sulphur. Plant Soil 17:87-98. Crossref |
||||
Holguin G, Vazquez P, Bashan Y (2001). The role of sediment microorganisms in the productivity, conservation, and rehabitation of mangrove ecosystems: an overview. Biol. Fertil. Soil. 33:265-278. Crossref |
||||
Holmer M, Storkholm P (2001). Sulphate reduction and sulphur cycling in lake sediments: a review. Freshw. Biol. 46:431-451. Crossref |
||||
Imhoff JF (2006). The Chromatiaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, eds. The Prokaryotes. Berlin: Springer. pp. 846-873. Crossref |
||||
Janssen AJH, Letting G, de Keizer A (1999). Removal of hydrogen sulphide from wastewater and waste gases by biological conversion to elemental sulphur: colloidal and interfacial aspects of biologically produced sulphur particles. Colloid. Surf. 151:389-397. Crossref |
||||
Jensen AB, Webb C (1995). Treatment of H2S-containing gases: a review of microbiological alternatives. Enzyme Microb. Technol. 17: 2-10. Crossref |
||||
Kaambo E (2006). Investigation of South African Estuarine Microbial species and Genome diversity. M. Sc. Thesis submitted to Western Cape University, South Africa. |
Katarina B (2003). Sulphur-Utilizing Microorganisms in Biotechnological Applications - Rubber Recycling and Vanadium Reduction. Dissertations. Submitted to Department of Biotechnology, Lund University. Sweden. |
||||
Kersters K, Vos PD, Gillis M, Swings J, Vandamme P, Stackebrandt E (2006). Introduction to the Proteobacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, eds. The Prokaryotes. Berlin: Springer. pp. 3-37. Crossref |
||||
King GM (1988). Patterns of sulphate reduction and the sulphur cycle in the south Carolina salt marsh. Limnol. Oceanogr. 33: 376-390. Crossref |
||||
Krishnamurthy K, Perumal P, Palaniappan R (1986). Photosynthetic bacteria from the costal broad ecosystem. Curr. Sci. 55: 617-620. | ||||
Kuenen JG (1975). Colourless Sulphur Bacteria and Their Role in the Sulphur Cycle. Plant Soil 43:49-76. Crossref |
||||
Kumar PA, Jyothsna TS, Srinivas TN, Sasikala CH, Ramana CHV, Imhoff JF (2007). Marichromatium bheemlicum sp. nov., a non-diazotrophic, photosynthetic gammaproteobacterium from a marine aquaculture pond. Int. J. Syst. Evol. Microbiol. 57: 1261-1265. Crossref |
||||
Larkin JM, Strohl WR (1983). Beggiatoa, Thiothrix, and Thioploca. Annu. Rev. Microbiol. 37:341-367. Crossref |
||||
Liang JB, Chen YQ, Lan CY, Tam FY, Zan QJ, Huang LN (2006). Recovery of novel bacterial diversity from mangrove sediment. Mar. Biol. 150:739-747. Crossref |
||||
Linderman WC, Aburto JH, Haffiner WM, Bono AA (1991). Effect of sulphur sources on sulphur oxidation. Soil Sci. Soc. Am. J. 55: 85-90. Crossref |
||||
Lyimo TJ, Pol A, Op den Camp HJM (2002). Methane Emission, Sulphide Concentration and Redox Potential Profiles in Mtoni Mangrove Sediment, Tanzania. West. Ind. Ocean J. Mar. Sci. 1: 71-80. | ||||
Madigan MT, Martinko JM (2006). Brock Biology of Microorganisms, 11th edition, Prentice Hall, Upper Saddle River, NJ. | ||||
Madigan MT, Martinko JM, Parker J (2000). Brock Biology of Microorganism. 9th ed. Upper Saddle River, N. J.: Prentice-Hall | ||||
Matin A (1978). Organic nutrition of chemolithotrophic bacteria. Annu. Rev. Microbiol. 32:433-469. Crossref |
||||
Mohapatra BR, Gould WD, Dinardo O, Papavinasam S, Revie RW (2006). Optimization of Culture Conditions and Properties of Immobilized Sulphide Oxidase from Arthrobacter Species. J. Biotechnol. 124:523-531. Crossref |
||||
Murooka Y, Yim MH, Harada T (1980). Formation and Purification of Serratia Marcescens Arylsulfatase. Appl. Environ. Microbiol. 39(4): 812-817. Pubmed |
||||
Nakada Y, Ohta Y (1999). Purification and Properties of Hydrogen Sulphide Oxidase from Bacillus sp. BN53-1. J. Biosci. Bioeng. 87(4): 452-455. Crossref |
||||
Nedwell DB, Blackburn TH, Wiebe WJ (1994). Dynamic nature of the turnover of organic carbon, nitrogen and sulphur in the sediments of a Jamaican mangrove forest. Mar. Ecol. Prog. Ser. 110:223-23. Crossref |
||||
Nelson DC, Jannasch HW (1983). Chemoautotrophic growth of a marine Beggiatoa in sulfidegradient cultures. Arch. Microbiol. 136: 262-269. Crossref |
||||
Neumann W, Ru¨ckauf H, Volk N, Michael A, Forkmann R, Ho¨lzemann Metallverarbeitung GmbH, Technische Hochschule Merseburg 'Carl Schlorlemmer' (Ger) (1990). Method for removal of hydrogen sulphide from a combustible waste gas. European Patent EP 402, 704. | ||||
Pagella C, De Faveri DM (2000). H2S gas treatment by iron bioprocess. Chem. Eng. Sci. 55:2185-2194. Crossref |
||||
Peck HDJR (1961). Comparative Metabolism of Inorganic Sulphur Compounds in Microorganisms. Symposium on Metabolism of Inorganic Compounds. April 26. Chicago, Illinois. pp. 67-94. | ||||
Pfenning N (1977). Phototrophic green and purple bacteria. A comparative, systematic survey. Annu. Rev. Microbiol. 31: 275-290. Crossref |
||||
Quatrini R, Veloso F, Jedlicki E, Holmes DS (2003). A model for iron uptake in Acidithiobacillus ferrooxidans, based upon genome analysis. 15th International Biohydrometallurgy Symposium (IBS 2003) September 14-19, Athens, Hellas. | ||||
Quentmeier A, Friedrich CG (2001). The cysteine residue of the SoxY protein as the active site of protein-bound sulphur oxidation of Paracoccus pantotrophus GB17. FEBS. Lett. 503:168-172. Crossref |
||||
Quentmeier A, Hellwig P, Bardischewsky F, Grelle G, Kraft R, Friedrich CG (2003). Sulphur oxidation in Paracoccus pantotrophus: Interaction of the sulphur-binding protein SoxYZ with the dimanganese SoxB protein. Biochem. Biophys. Res. Commun. 312:1011-1018. Crossref |
||||
Quentmeier A, Kraft R, Kostka S, Klockenkamper R, Friedrich CG (2000). Characterization of a new type of sulfite dehydrogenase from Paracoccus pantotrophus GB17. Arch. Microbiol. 173: 117-125. Crossref |
||||
Robertson LA, Kuenen JG (2006). The colorless sulphur bacteria, in: M. Dworkin, S. Falkow, E. Rosenberg, K.H. Schleifer, E. Stackebrandt (Eds.), The Prokaryotes, bvol. 2, 3rd ed., Springer, New York. pp. 985-1011. Crossref |
||||
Rother D, Orawski G, Bardischewsky F, Friedrich CG (2005). SoxRS-mediated regulation of chemotrophic sulphur oxidation in Paracoccus pantotrophus. Microbiology 151:1707-1716. Crossref |
||||
Roy AB, Trudinger PA (1970). in "The Biochemistry of Inorganic Corn- pounds of Sulphur", Cambridge Univ. Press, London | ||||
Sahoo K, Dhal NK (2009). Potential microbial diversity in mangrove ecosystem: A review. Ind. J. Mar. Sci. 38(2):249-256 | ||||
Schippers A, Sand W (1999). Bacterial leaching of metal sulphides proceeds by two indirect mechanism via thiosulphate or via polysulphides or sulphur. App. Environ. Microbiol. 65:319-321. Pubmed |
||||
Shoreit AAM, EI-Kady IA, Sayed WF (1994). Isolation and identification of purple nonsulphur bacteria of mangal and non mangal vegetation of red sea coast, Egypt. Limnologica 24:177-183. | ||||
Sievert SM, Heidorn T, Kuever J (2000). Halothiobacillus kellyi sp. nov., a mesophilic, obligately chemolithoautotrophic, sulphur-oxidizing bacterium isolated from a shallow-water hydrothermal vent in the Aegean sea, and Emended Description of the Genus Thiobacillus. Int. J. Syst. Bacteriol. 50:1229-1237. Crossref |
||||
Subba Rao NS (1999). Soil Microbiology, 4th Edn of soil microorganisms and plant growth, Oxford and IBH publishing company pvt. Ltd. 113-B Shahpur Jat, Asian village side, New Delhi, India | ||||
Sublette KL, Sylvester ND (1987). Oxidation of hydrogen sulphide by Thiobacillus denitrificans: desulphurization of natural gas. Biotechnol. Bioeng. 29:249-257. Crossref |
||||
Thatoi HN, Behera BC, Dangar TK, Mishra RR (2012). Microbial biodiversity in mangrove soil of Bhitarakanika, Odisha, India. Int. J. Environ. Biol. 2(2):50-58. | ||||
Thornton I, Giglioli MEC (1965). The mangrove swamps of Keneba, lower Gambia river basin II. Sulphur and pH in the profiles of swamp soils. J. App. Ecol. 2:257-269. Crossref |
||||
Vethanayagam RR (1991). Purple photosynthetic bacteria from a tropical mangrove environment. Mar. Biol.110: 161-163. Crossref |
||||
Vethanayagam RR, Krishnamurthy K (1995). Studies on anoxygenic photosynthetic bacteria Rhodopseudomonas sp.from the tropical mangrove environ ment. Ind. J. Mar. Sci. 24:19-23. | ||||
Wainwright M (1984). Sulphur oxidation in soils. Adv. Agron. 37:350-392. Crossref |
||||
Yesmin L, Oresnik I, Banerjee MR (2004). Optimizing legume production using sulphur oxidizing bacteria and Rhizobium consortia. 4th International Crop Science Congress, Brisbane, Australia. |
Copyright © 2021 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0