African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12269

Full Length Research Paper

Nanoparticle (MPG)-mediated delivery of small RNAs into human mesenchymal stem cells

Nnaemeka Darlington Ndodo*
  • Nnaemeka Darlington Ndodo*
  • Institute for Genomics and Bioinformatics, Graz University of Technology, Graz, Austria; Human Anatomy Department, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria.
  • Google Scholar


  •  Received: 13 January 2015
  •  Accepted: 14 September 2015
  •  Published: 16 September 2015

References

Aigner A (2006). Delivery Systems for the Direct Application of siRNAs to Induce RNA Interference (RNAi) In Vivo. J. Biomed. Biotechnol. 2006: 71659.
Crossref

 

Chen L, Nakano K, Kimura S, Matoba T, Iwata E, Miyagawa M et al. (2011). Nanoparticle-mediated delivery of pitavastatin into lungs ameliorates the development and induces regression of monocrotaline-induced pulmonary artery hypertension. Hypertension 57:343-350.
Crossref

 
 

Crombez L, Charnet A, Morris MC, Aldrian-Herrada G, Heitz F, Divita G (2007). A non-covalent peptide-based strategy for siRNA delivery. Biochem. Soc. Trans. 35:44-46.
Crossref

 
 

Deshayes S, Gerbal-Chaloin S, Morris MC, Aldrian-Herrada G, Charnet P, Divita G et al. (2004). On the mechanism of non-endosomial peptide-mediated cellular delivery of nucleic acids. Biochim. Biophys. Acta 1667:141-147.
Crossref

 
 

Deshayes S, Morris MC, Divita G, Heitz F (2005). Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cell Mol. Life Sci. 62:1839-1849.
Crossref

 
 

Dykxhoorn DM, Palliser D, Lieberman J (2006). The silent treatment: siRNAs as small molecule drugs. Gene Ther. 13:541-552.
Crossref

 
 

El Andaloussi S, Holm T, Langel U (2005). Cell-penetrating peptides: mechanisms and applications. Curr. Pharm. Des. 11:3597-3611.
Crossref

 
 

Gary DJ, Puri N, Won YY (2007). Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J. Control Release 121:64-73.
Crossref

 
 

Kim YD, Park TE, Singh B, Maharjan S, Choi YJ, Choung PH et al. (2015). Nanoparticle-mediated delivery of siRNA for effective lung cancer therapy. Nanomedicine (London), 10:1165-1188.
Crossref

 
 

Kimura S, Egashira K, Chen L, Nakano K, Iwata E, Miyagawa M et al. (2009). Nanoparticle-mediated delivery of nuclear factor kappaB decoy into lungs ameliorates monocrotaline-induced pulmonary arterial hypertension. Hypertension 53:877-883.
Crossref

 
 

Kolli S, Wong SP, Harbottle R, Johnston B, Thanou M, Miller AD (2013). pH-triggered nanoparticle mediated delivery of siRNA to liver cells in vitro and in vivo. Bioconjug. Chem. 24:314-332.
Crossref

 
 

Lindgren M, Hallbrink M, Prochiantz A, Langel U (2000). Cell-penetrating peptides. Trends Pharmacol. Sci. 21, 99-103.
Crossref

 
 

Massiera F, Saint-Marc P, Seydoux J, Murata T, Kobayashi T, Narumiya S (2003). Arachidonic acid and prostacyclin signaling promote adipose tissue development: a human health concern? J. Lipid Res. 44:271-279.
Crossref

 
 

Rahim AA, Wong AM, Howe SJ, Buckley SM, Acosta-Saltos AD, Elston, KE (2009). Efficient gene delivery to the adult and fetal CNS using pseudotyped non-integrating lentiviral vectors. Gene Ther. 16:509-520.
Crossref

 
 

Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ (2003). Cell-penetrating peptides A reevaluation of the mechanism of cellular uptake. J. Biol. Chem. 278:585-590.
Crossref

 
 

Rodriguez AM, Elabd C, Delteil F, Astier J, Vernochet C, Saint-Marc P (2004). Adipocyte differentiation of multipotent cells established from human adipose tissue. Biochem. Biophys. Res. Commun. 315: 255-263.
Crossref

 
 

Simeoni F, Morris MC, Heitz F, Divita G (2003). Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res. 31:2717-2724.
Crossref

 
 

Simeoni F, Morris MC, Heitz F, Divita G (2005). Peptide-based strategy for siRNA delivery into mammalian cells. Methods Mol. Biol. 309: 251-260.
Crossref

 
 

Veldhoen S, Laufer SD, Trampe A, Restle T (2006). Cellular delivery of small interfering RNA by a non-covalently attached cell-penetrating peptide: quantitative analysis of uptake and biological effect. Nucleic Acids Res. 34(22):6561-6573
Crossref

 
 

Water JJ, Smart S, Franzyk H, Foged C, Nielsen HM (2015). Nanoparticle-mediated delivery of the antimicrobial peptide plectasin against Staphylococcus aureus in infected epithelial cells. Eur. J. Pharm. Biopharm. 92:65-73.
Crossref

 
 

Wong Y, Cooper HM, Zhang K, Chen M, Bartlett P, Xu ZP (2012). Efficiency of layered double hydroxide nanoparticle-mediated delivery of siRNA is determined by nucleotide sequence. J. Colloid Interface Sci. 369:453-459.
Crossref

 
 

Yamanaka YJ, Leong KW (2008). Engineering strategies to enhance nanoparticle-mediated oral delivery. J. Biomater. Sci. Polym. Ed 19:1549-1570.
Crossref

 
 

Zaragosi LE, Ailhaud G, Dani C (2006). Autocrine FGF2 signaling is critical for self-renewal of Human Multipotent Adipose-Derived Stem Cells. Stem Cells, [Epub ahead of print].
Crossref

 
 

Zaragosi LE, Billon N, Ailhaud G, Dani C (2007). Nucleofection is a valuable transfection method for transient and stable transgene expression in adipose tissue-derived stem cells. Stem Cells 25:790-797.
Crossref

 
 

Zhou Y, Zhang L, Zhao W, Wu Y, Zhu C, Yang Y (2013). Nanoparticle-mediated delivery of TGF-beta1 miRNA plasmid for preventing flexor tendon adhesion formation. Biomaterials 34:8269-8278.
Crossref