African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12267

Full Length Research Paper

Biosynthesis of silver nanoparticles by plants crude extracts and their characterization using UV, XRD, TEM and EDX

Vishwajeet Singh*
  • Vishwajeet Singh*
  • Department of Botany, Raja Balwant Singh, College, Dr B.R. Ambedkar University, Agra-282002, U.P., India.
  • Google Scholar
Ankita Shrivastava
  • Ankita Shrivastava
  • New Era Research Foundation, Agra-282007, India, U.P., India.
  • Google Scholar
Nitin Wahi
  • Nitin Wahi
  • Department of Biotechnology, GLA University, Mathura-281406, U.P., India.
  • Google Scholar


  •  Received: 04 May 2015
  •  Accepted: 13 July 2015
  •  Published: 19 August 2015

References

Catauro M, Raucci MG, De Gaetano FD, Marotta A (2004). Antibacterial and bioactive silver-containing Na2O CaO 2SiO2 glass prepared by sol-gel method. J. Mater. Sci. Mater. Med. 15(7):831-837.
Crossref

 

Chanda S (2014). Silver nanoparticles (medicinal plants mediated): a new generation of antimicrobials to combat microbial pathogens – a review. In: Mendez-Vilas, A. (Ed.), Microbial Pathogens and Strategies for Combating Them: Science Technology and Education. FORMATEX Research Center, Badajoz, Spain. pp. 1314-1323.

 
 

Chen JC, Lin ZH, Ma XX (2003). Evidence of the production of silver nanoparticles via pretreatment of Phoma sp. 3Æ2883 with silver nitrate. Lett . Appl. Microbiol. 37:105-108.
Crossref

 
 

Crabtree JH, Burchette RJ, Siddiqi RA, Huen IT, Handott LL, Fishman A (2003). The efficacy of silver-ion implanted catheters in reducing peritoneal dialysis-related infections. Perit. Dial. Int. 23(4):368-374.
Pubmed

 
 

Dibrov P, Dzioba J, Gosink KK, Hase CC (2002). Chemiosmotic mechanism of antimicrobial activity of Ag (+) in Vibrio cholera. Antimicrob. Agents Chemother. 46: 2668-2670.
Crossref

 
 

Duran N, Alves OL, De Souza GIH, Esposito E, Marcato PD (2007). Antibacterial effect of silver nanoparticles by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotechnol. 3:203-208.
Crossref

 
 

Gade AK, Bonde PP, Ingle AP, Marcato PD, Duran N, Rai MK (2008). Exploitation of Aspergillus niger for fabrication of silver nanoparticles. J. Biobased Mater. Bioenergy 2:243-247.
Crossref

 
 

Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M(2009). Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed. NBM 5:382-386.
Crossref

 
 

Gonzalez AL, Noguezm C (2007). Influence of Morphology on the Optical Properties of Metal Nanoparticles. J. Comput. Theor. Nano- sci. 4 (2): 231-238.

 
 

Gross M, Winnacker MA, Wellmann PJ (2007). Electrical, Optical and Morphological Properties of Nanoparticle Indium-Tin-Oxide Layers. Thin Solid Films 515 (24): 8567-8572.
Crossref

 
 

Hamouda T, Baker JR (2000). Antimicrobial mechanism of action of surfactant lipid preparations in enteric Gram-negative bacilli. J. Appl. Microbiol. 89:397-403.
Crossref

 
 

Hemali P, Pooja M, Sumitra C (2014). Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arabian J. Chem. (In Press).

 
 

Huang J, Chen C, He N, Hong J, Lu Y, Qingbiao L, Shao W, Sun D et al. (2007). Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105-106.
Crossref

 
 

Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008). Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr. Nanosci. 4:141–144.
Crossref

 
 

Jones SA, Bowler PG, Walker M, Parsons D (2004). Controlling wound bioburden with a novel silver-containing Hydrofiber dressing. Wound Repair Regen. 12 (3):288-294.
Crossref

 
 

Kim JY, Kim M, Kim HM, Joo J, Choi JH (2003). Electrical and Optical Studies of Organic Light Emitting Devices Using SWCNTs-Polymer Nanocomposites. Opt. Mater. 21 (1-3):147-151.
Crossref

 
 

Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, Lee DG (2009). Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 9(22):235-242.
Crossref

 
 

Mihail CR (2003). Nanotechnology: convergence with modern biology and medicine. Curr. Opin. Biotechnol. 14:337-346.
Crossref

 
 

Niraimathi KL, Sudha V, Lavanya R, Brindha P (2013). Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids Surf. B Biointerfaces 102:288-291.
Crossref

 
 

Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams SC, Boudreau R, Le Gros MA, Larabell CA, Alivisatos AP (2003). Biological Applications of Colloidal Nanocrystals. Nanotechnology 14(7):15-27.
Crossref

 
 

Rafiuddin ZZ (2013). Bio-conjugated silver nanoparticles from Ocimum sanctum and role of cetyltrimethyl ammonium bromide. Colloids Surf. B Biointerfaces 108:90-94.
Crossref

 
 

Sadowski Z, Maliszewska IH, Grochowalska B, Polowczyk I, Kozlecki T (2008). Synthesis of silver nanoparticles using microorganisms. Mater. Sci. Pol. 26:419-425.

 
 

Sastry M, Ahmad A, Khan MI, Kumar R (2003). Biosynthesis of metal nanoparticles using fungi and actinomycetes. Curr. Sci. 85: 162–170.

 
 

Schultz DA (2003). Plasmon Resonant Particles for Biological Detection. Curr. Opin. Biotechnol. 14(1):13-22.
Crossref

 
 

Silver S, Phung LT (1996). Bacterial heavy metal resistance: new surprises. Annu. Rev. Microbiol. 50:753- 89.
Crossref

 
 

Smith AM, Duan H, Rhyner MN, Ruan G, Nie S (2006). A Systematic Examination of Surface Coatings on the Optical and Chemical Properties of Semiconductor Quantum Dots. Phys. Chem. Chem. Phys. 8(33):3895-3903.
Crossref

 
 

Stevanovic MM, Skapin SD, Bracko I, Milenkovic M, Petkovic J, Filipic M (2012). Poly (lactide-co-glycolide)/silver nanoparticles: synthesis, characterization, antimicrobial activity, cytotoxicity assessment and ROS-inducing potential. Polymer 53:2818-2828.
Crossref

 
 

Thakur M, Pandey S, Mewada A, Shah R, Oza G, Sharon M (2013). Understanding the stability of silver nanoparticles biofabricated using Acacia arabica (Babool gum) and its hostile effect on microorganisms. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 109: 344–347.
Crossref

 
 

Thirunavokkarasu M, Balaji U, Behera S, Panda PK, Mishra BK (2013). Biosynthesis of silver nanoparticles from extract of Desmodium gangeticum (L.) DC. and its biomedical potential. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 116:424-427.
Crossref

 
 

Vivek R, Thangam R, Muthuchelian K, Gunasekaran P, Kaveri K, Kannan S (2012). Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells. Process Biochem. 47:2405-2410.
Crossref

 
 

Wang HY, Li YF, Hua CZ (2007). Detection of ferulic acid based on the plasmon resonance light scattering of silver nanoparticles. Special Issue on China Japan-Korea Environmental Analysis, Talanta 72(5):1698-1703.
Crossref

 
 

Wei GH, Zhou Z, Liu Z. (2005). A Simple Method for the Preparation of Ultrahigh Sensitivity Surface Enhanced Raman Scattering (SERS) Active Substrate. Appl. Surf. Sci. 240(1-4): 260-267.
Crossref

 
 

Yamanaka M, Hara K, Kudo J (2005). Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl. Environ. Microbiol. 71:7589-7593.
Crossref

 
 

Zhao G, Stevens Jr SE (1998). Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals 11:27-32.
Crossref