African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12267

Full Length Research Paper

Phylogenetic analysis of 23S rRNA gene sequences of some Rhizobium leguminosarum isolates and their tolerance to drought

Khalid S. Abdel-Lateif
  • Khalid S. Abdel-Lateif
  • High Altitude Center, Taif University, Saudi Arabia.
  • Google Scholar
Omar A. Hewedy
  • Omar A. Hewedy
  • Department of Genetics, Faculty of Agriculture, Menoufia University, Egypt.
  • Google Scholar
Abdel Fattah M. El-Zanaty
  • Abdel Fattah M. El-Zanaty
  • Department of Genetics, Faculty of Agriculture, Menoufia University, Egypt.
  • Google Scholar


  •  Received: 04 May 2016
  •  Accepted: 03 August 2016
  •  Published: 31 August 2016

References

Abd El-Halim MM, Abdel-Salam MS, Ibrahim SA, Abd-El-Aal SK, Attallah AG (2001). Genetic improvement of Bradyrhizobium japonicum to tolerate abiotic stresses via protoplast fusion. J. Agric. Sci. Mansoura Univ. 26(9):5427-5436.

 

Abdel-Salam MS, Abd El-Halim MM, Ibrahim SA, Bahy-Edin A, Abo-Aba SE (2002). Improvement of Rhizobium leguminosarum biov. trifolii competency via rhizobiotoxin - gene transfer. In. Proceeding of the Second International Conference on Plants & Environmental Pollution, 4-9 February, Luknow, India, pp. 153-160.

 
 

Abdel-Salam MS, Ibrahim SA, Abd El-Halim MM MM, Badawy FM, Abo-aba SEM (2010). Phenotypic characterization of indigenous Egyptian Rhizobial strains for abiotic stresses performance. J. Am. Sci. 9:498-503.

 
 

Athar M, Johnson DA (1996). Nodulation biomass production and nitrogen fixation in alfalfa under drought. J. Plant. Nutr. 19:185-199.
Crossref

 
 

Aydi SS, Aydi S, Gonzalez E, Abdelly C (2008). Osmotic stress affects water relations, growth, and nitrogen fixation in Phaseolus vulgaris plants. Acta Physiol. Plant 30:441-449.
Crossref

 
 

Ben Romdhane S, Tajini F, Trabelsi M, Aouani ME, Mhamdi R (2007). Competition for nodule formation between introduced strains of Mesorhizobium ciceri and native populations of rhizobia nodulating chickpea (Cicer arietinum) in Tunisia. World J. Microbiol. Biotechnol. 23:1195-1201.
Crossref

 
 

Cytryn EJ, Sangurdekar DP, Streeter JG, Franck WL, Chang WS, Stacey G, Emerich DW, Joshi T, Xu D, Sadowsky MJ (2007). Transcriptional and physiological responses of Bradyrhizobium japonicum to desiccation-induced stress. J. Bacteriol. 89(19):6751-6762.
Crossref

 
 

Diouf D, Samba-Mbaye R, Lesueur D, Ba AT, Dreyfus B, de Lajudie P, Neyra M (2007). Genetic diversity of Acacia seyal Del. rhizobial populations indigenous to Senegalese soils in relation to salinity and pH of the sampling sites. Microb. Ecol. 3:553-566.
Crossref

 
 

Duzan HM, Zhou X, Souleimanov A, Smith DL (2004). Perception of Bradyrhizobium japonicum Nod factor by soybean [Glycine max (L.) Merr.] Root hairs under abiotic stress conditions. J. Exp. Bot. 408:2641-2646.
Crossref

 
 

Ehsanpour AA, Amini F (2003). Effect of salt and drought stress on acid phosphatase activities in alfalfa (Medicago sativa L.) explants under in vitro culture. Afr. J. Biotechnol. 5:133-135.

 
 

El-Zanaty AF, Abdel-lateif K, Elsobky M (2014). Molecular identification of Rhizobium isolates nodulating Faba in Egyptian soils. J. Bioprocess. Biotech. 5:194.

 
 

Fall DM, Ourarhi M, Missbah EN, Zoubeirou BAM, Abelmoumem H (2011). The efficiency and competitiveness of three Mesorhizobium sp. strain nodulating Acacia Senegal (L.) Willd under water deficiency conditions in greenhouse. Symbiosis 54:87-94.
Crossref

 
 

Gálvez MD (2005). Nodule metabolism in Pisum sativum L. in response to water stress: carbon/nitrogen interactions and the possible molecules involved in the modulation of the response, Ph.D. thesis, Public University of Navarre.

 
 

Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L System (2015). Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 5(4):355-377.

 
 

Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2010). Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J. Microbiol. Biotechnol. 27:1231-1240
Crossref

 
 

Hewedy OA, Eissa RA, Elzanaty AM, Nagaty HH, Abd Elbary MI (2014). Phenotypic and Genotypic Diversity of Rhizobia Nodulating Faba Bean from Various Egyptian Locations. J. Bioprocess. Biotech. 4:170-178.
Crossref

 
 

Hunt DE, Klepac-Ceraj V, Acinas SG, Gautier C, Bertilsson S, Polz MF (2006). Evaluation of 23S rRNA PCR Primers for Use in Phylogenetic Studies of Bacterial Diversity. Appl. Environ. Microbiol. 72(3):2221-2225.
Crossref

 
 

Ismail M, El-Zanatay AM, Eissa RA, Hewedy OA (2013). Genetic Diversity of Rhizobium leguminosarum as Revealed by 16S rRNA Gene Sequence. Am. Eurasian J. Agric. Environ. Sci. 13:797-801.

 
 

Kolbert CP, Persing DH (1999). Ribosomal DNA sequencing as a tool for identification of bacterial pathogens. Curr. Opin. Microbiol. 2:299-305.
Crossref

 
 

Meuelenberg F, Dakora FD (2007). Assessing the biological potential of N2-fixing leguminosae in Botswana for increased crop yields and commercial exploitation. Afr. J. Biotechnol. 4:325-334.

 
 

Mhadhbi H, Jebara M, Zitoun A, Limam F, ME Aouani (2008). Symbiotic effectiveness and response to mannitol-mediated osmotic stress of various chickpea-rhizobia associations. World J. Microbiol. Biotechnol. 7:1027-1035.
Crossref

 
 

Niste M, Vidican R, POP R, Rotar I (2013). Stress Factors Affecting Symbiosis Activity and Nitrogen Fixation by Rhizobium Cultured in vitro. ProEnvironment/ProMediu 6:42-45.

 
 

Pei A, Nossa CW, Chokshi P, Blaser MJ, Yang L, et al. (2009). Diversity of 23S rRNA Genes within Individual Prokaryotic Genomes. PLoS. One 4(5):e5437.
Crossref

 
 

Pulawska J, Maes M, Willems A, Sobiczewski P (2000). Phylogenetic Analysis of 23S rRNA Gene Sequences of Agrobacterium, Rhizobium and Sinorhizobium Strain. Syst. Appl. Microbiol. 23:238-244.
Crossref

 
 

Rasanen LA, Saijets S, Jokinen K, Lindstrom K (2004). Evaluation of the roles of two compatible solutes, glycine beatine and trahalose, for the Acacia senegal-Sinorhizobium symbiosis exposed to drought stress. Plant Soil 260(1-2):237-251.
Crossref

 
 

Rehman A, Nautiyal CS (2002). Effect of Drought on the Growth and Survival of the Stress-Tolerant Bacterium Rhizobium sp. NBRI2505 sesbania and its Drought-Sensitive Transposon Tn 5 Mutant. Curr. Microbiol. 5:368-377.
Crossref

 
 

SAS (2004). User's guide: Statistics, version 9. 4th Ed. SAS Ins., Inc., Cary., NC, USA.

 
 

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30:2725-2729.
Crossref

 
 

Van Berkum P, Eardly BD (1998). Molecular evolutionary systematics of the Rhizobiaceae. In. The Rhizobiaceae molecular biology of model plant-associated bacteria. (H.P. Spaink, A. Kondorosi, P.J.]. Hooykaas, eds.) Kluwer Academic Publishers. pp. 1-24.
Crossref

 
 

Vriezen JAC, de Bruijn FJ, Nusslein K (2007). Responses of rhizobia to desiccation in relation to osmotic stress, oxygen, and temperature. Appl. Environ. Microbiol. 73:3451-3459.
Crossref

 
 

Wolde-meskel E, Terefework Z, Frostega A, Lindstro K (2005). Genetic diversity and phylogeny of rhizobia isolated from agroforestry legume species in southern Ethiopia. Int. J. Syst. Evol. Microbiol. 55:1439-1452.
Crossref

 
 

Yang J, Kloepper JW, Ryu CM (2009). Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14(1):1-4.
Crossref

 
 

Zahran HH (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 12:968-998