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This study proposed a methodology to measure the Hurst exponent with the adjustment of short-range 
dependence in the financial markets. The possible short-range dependence is adjusted by 
heteroscedastic models.  Two emerging financial markets have been selected to conduct the adjusted 
Hurst exponent evaluations for the periods before, during and after the Asian financial crisis.  After the 
short-range dependence adjustment, the empirical results indicated weak and no evidence of long-
range dependence in most of the selected markets.  As a result, the proposed method is able to handle 
the possible spurious long range dependence volatility in the financial markets.   
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INTRODUCTION 
 
The presence of long-range dependence (LRD) financial 
markets has important impact in the literature of financial 
time series analysis.  With the inclusion of this statistical 
property in the model specification, better estimation and 
forecast can be obtained to help econometricians and 
researchers in understanding the underlying data gene-
rating process of financial time series.  The LRD financial 
time series often referred to market’s volatility1.  Ding and 
Granger (1996) and Granger and Ding (1996) claimed 
that the volatility proxy using absolute return of S&P500 
stock market is more persistence than square return. 
Similarly, the worldwide stock exchanges are document-
ted with this statistical behaviour by Baillie et al.(1996), 
Bollerslev and Mikkelsen (1996), Cheong (2010), Hwang 
(2001), Engle and Lee (1999) and Tse (1998) using the 
Autoregressive Conditional   Heteroscedasticity   (ARCH)  
 
 
 
*Corresponding author. E-mail: wcchin@mmu.edu.my, Tel: 603-
83125249. Fax: 603-83125264. 

                                                 
1Since there are studies (Cheung and Lai, 1995 Lo, 1991; Sadiwque and 
Silvapule, 2001) reported no evidence of LRD in the return series,  

dasticity (ARCH) model and its extensions. The 
application   of   these studies often related to the risk 
management analysis especially in quantifying the risk in 
term of value-at-risk (Jorion, 1997).  The related value-at-
risk studies can be found in Cheong et al. (2009), Giot 
and Laurent (2003), Tang and Shieh (2006) and Wu and 
Shieh (2007).   

Besides the contributions to econometric and financial 
application, the existence of LRD has also provided 
significant implication to the literature of fractal market 
hypothesis (Peters, 1994; Dacorogna, 2001).  Fractal 
market hypothesis is evolved from classical efficient mar-
ket hypothesis (Fama, 1970) by heterogeneous market 
participants with different endowment, risk profile, degree 
of information, etc.  The presence of LRD have been 
reported by Cajueiro and Tabak (2004, 2005) who used 
the Hurst exponent (1951) to rank the global financial 
markets and found that the developed markets are more 
efficient than emerging markets.  Cheong et al. (2007) on 
the other hand focused on the regime study of Malaysian 
stock exchange during the Asian financial crisis.  They 
reported the highest inefficiency during the crisis period, 
followed by pre-crisis, post-crisis and USD pegged 
period.     

Due to the importance of LRD in  the  financial  studies, 



 
 

 
 
 
 
Table 1. Regime selection based on volatility. 
 

Index 
Square return 

F-statistics Break point 
KLSE 105.2767* 28-aug-1998 
JSE 26.65230* 27-dec-1996 
S&P500 42.73830* 27-mar-1997 

 

* indicated the 5% significance level. 
 
 
 
this study aimed to investigate the LRD financial markets 
with the adjustment of Short-Range Dependence (SRD) 
using the  Ding  et  al.  (1993)  asymmetric  power  ARCH 
model.  The Ding et al. (1993) specification provided a 
more flexible power form of volatility representation as 
compared to Taylor (1986) and Bollerslev (1986) with 
conditional standard deviation and variance respectively.  
Thus, the suitability representations for volatility are not 
restricted to the power of one and two only. Later, the 
Hurst exponents are verified by two time domain heuristic 
methods and then estimated by frequency domain 
interval estimations. 
 
 
Data source 
 
The samples consisted of KLSE (Malaysia) and JSE 
(Indonesia) from two Asian emerging markets and the 
S&P500 from the mature market of the United State of 
America.  In order to make the analysis more interesting 
and meaningful, we divided the data into three regimes 
namely the Pre-crisis, Crisis and Post-crisis for all the 
indexes.  The impact of Asian Financial crisis to the Hurst 
exponent can be investigated in the different period of 
times especially for KLSE and JSE whereas the S&P500 
is for the purpose of comparisons.  The selections of re-
gimes are determined by Andrews (1993) structural break 
identification based on the first order autoregressive 
model in the form of volatility proxy, squared return. Table 
1 indicated that the likelihood ratio F-statistics for all the 
indexes are rejected the null hypothesis of no structural 
break at 5% significance level under the Hansen’s (1995) 
statistical table and the break point are located around 
year 1996.  

Specifically, the implementation of currency control 
(pegged USD to RM) in September 1998 by Malaysian 
government had somehow prevented the RM from further 
depreciated to approximated 40% according to June 
1996 currency exchange. Besides this, the volatility in 
JSE and S&P500 are also influenced by the crisis.  For 
comparison purposes, the selection periods for pre-crisis, 
crisis and post-crisis are from January 1990 to August 
1996, September 1996 to December 1998 and January 
1999 to December 2007 respectively. The selected 
regimes are three months before the earliest break point 
in JSE and after the latest in KLSE.  This is to ensure  the 
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preceding and following impacts encountered by the 
structural break are taken into account in the respective 
periods.  The total observations for each indexes are 
4213, 4269 and 4536 for KLSE, JSE and S&P500 res-
pectively.  The numbers of exact trading days during this 
period are different according to their public holidays and 
the percentage continuously compounded daily return is 
defined as ( )1100 −−×= ttt PlnPlnr . 
 
 
METHODOLOGY 
 
Figure 1 presented the flow of the computation and analysis of this 
study.  The details of each level are explained as follows:  
 
 
Short range dependence (SRD) adjustment 
 
The main goal of the adjustment is to eliminate the possible SRD 
conditional volatility that might existed in the form of moving 
Average Autoregressive (ARMA).  Figure 1 illustrated that the SRD 
adjustment consisted of procedures started from preliminary 
analysis, model identification, estimation and finally diagnostic that 
followed a standard Box-Jenkins (1994) framework before 
stationary standardized residual series are produced: 
 
Step 1  
 
Preliminary analysis focused on graphical illustration, descriptive 
statistics and normality tests; 
 
Step 2   
 
Let rt be a general univariate asset return which is serially 
uncorrelated but dependent in the ARCH specification.  For a given 
information set It-1 available at time t−1, the conditional mean of rt is 
defined as    
 

( ) ( ) ttttt rEIrE µ== −− 11|      (1)  
 

with the innovation process ttt ra µ−=  with the conditional 

variance ( ) ( ) 22
11| ttttt aVarIrVar σ== −− .   In financial time series, 

the conditional mean often captured by a stationary ARMA(m,n) 
model2 under the non-vector form: 
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The corresponding unconditional variance can be expressed as 

( ) ( ) )()()( 22 θσθθ ttt aEaVar == where ( ) 0=taE and ( ) 0=hkaaE  

for all k≠h.  Further, the conditional variance begun with the 

relationship ttt za σ=  where for standardized process of zt, 

( ) 0| 1 =−tt IzE and ( ) 1| 1 =−tt IzVar  for all t under the normality 

assumption.  Now, considered an asymmetric power Ding, Granger 

                                                 
2 An ARCH model frequently represented by a regression model in the 
form of rt= xt’� + at. where xt’ is a column vector.  
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Figure 1. Flowchart for computation procedures. 

 
 
 
and Engle3 (1993) GARCH(1,1) model with the following 
specifications: 
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where, 111)( −−− −= ttt aaak γγ  and � is the flexible volatility 

transformation parameter. Specifically, when the conditional 
volatility representation restricted to � =2 (conditional variance), the 
model changed Glosten, Jagannathan and Runkle4 (1993) model 
with leverage effect (dummy variable) as follows: 
 

GJR: 2
1t1

2
1t1t

2
1t10

2
t ��a�da��� −−−− +++=

               
(4) 

  

where 
�
�
�

>
<

=
−

−
− 0aif0

0aif1
d

1t

1t
1t

.   

 
The GJR model is also considered for the purpose of comparison.  
It is worth noting that the GJR asymmetric coefficient initiated with 
positive sign whereas DGE started with negative sign.  This is to 
make sure that the interpretation of news impact is consistent 
across the models.  For example, �>0 indicated the presence of 
leverage effect with additional impact (�) as compared to good 

                                                 
3 DGE henceforth. 
4 GJR henceforth. 

news.  From the economic point of view, the leverage effect can be 
explained based on the debt-equity ratio.  Market equity values 
often determined by the stock price where a drop in stock price 
would increased the ratio and consequently increased the risk from 
the investor perspectives.  Thus negative news has a deeper 
impact to future volatility than positive news. 
 
Step 3 
 
Under the assumption of zt~N(0,1), the density func-
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where ),,,,( 110 δφβααη =  represented the vector of unknown 

parameter for conditional dispersion equation all set at time t.  
 
For large sample size, the unknown marginal density )(log 1afa

can 

be ignored under the following derivation: 
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Differentiating with respected to the vector parameter yielded 
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However, the DGE ARCH is computed under the representation of 

δσ t , therefore the additional separated analytical derivatives for 

conditional dispersion are  
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where θ= (�0, �1, �1, φ).  The vector gradients with respected to the 
conditional dispersion parameter can be obtained in the following 
equations: 
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A more comprehensive analytic derivatives of DGE ARCH(p,q) can 
be found in Laurent (2004) and He and Terasvirta (1997). Due to 
the nonlinearity condition, the iterative optimization algorithm is 
used instead of analytical derivative approach with the log-
likelihood function LN as follows: 
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where )0(ψ denoted the trial values of the estimates and 
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represented the Hessian matrix.  Rearranging the 

terms in the form Newton-Raphson algorithm, the (k+1)th vector set 
of parameters values is defined as 
 

ψψψ
ψψ

∂
∂

��
�

�
��
	




∂∂
∂−=

−
+

)(1

)0()0(

2
)()1(

'

k
NNkk LL

.   (11)  

 
For heavy-tailed εt, we used the standardized student-t distribution 
(Bollerslev, 1987) with the degree freedoms exceeded 3 with the 
following representation: 
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where Γ[•] is the gamma function. By replacing the log-likelihood 
function of normal distribution in equation 6, the student-t log-
likelihood is defined as 
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Step 4  
 
All the models are diagnosed using the Ljung-Box statistics for both 
standardized and squared residuals.  The acceptance of the test 
statistics indicated no significant autocorrelation in the conditional 
mean and variance equations.  For heteroskedastic effect, the 
Engle LM ARCH test (Engle,1982) is used upon the squared 
standardized residuals.  
 
 
Hurst exponent LRD estimation 
 
When the stationary power standardized residuals (  and 2) are 

free from SRD, the presence of LRD is verified using two heuristic 
methods (Variance-time plot and rescaled range method) and then 
under the assumption of self-similar process, the Whittle maximum 
likelihood estimation is employed to produce interval estimations. 
Other domain and frequency domain estimators can be found in 
Beran (1994) and Mandelbrot (1997).  The Hurst exponent is inter-
preted as Brownian motion (random process) if the value is exactly 
0.50 whereas if the value range from 0.50 to 1.00, the time series is 
LRD.  Thus, the LRD become more intense when the Hurst expo-
nent is closer to 1.00.  For interval estimation, we have selected the 
Whittle’s estimation which based on the determination of periodo-

gram, �
=

=
T

k

ik
k ey

T
)(I

12
1 λ

π
λ .  The advantage of this 

method is that it provided interval estimations compared to the 
previous two point estimators.  Suppose a log-likelihood function is 
divided by the sample size (T) is given by 
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In order to simplify the integration computation, a simple Riemann 
sums is used in the following way 
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where λk=2πk/T are the Fourier frequencies.  For further simplicity, 
we assumed that the spectral density function is normalized with 
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the sum of these ratios with respected to H, the value of H can be 
estimated. Under the asymptotically normal assumption, the sample 
variance is computed as:    
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Table 2. Descriptive statistics. 
 

                       Index 
Statistic                                      

KLSE  JSE  S&P500 
Pre-crisis Crisis Post-crisis  Pre-crisis Crisis Post-crisis  Pre-crisis Crisis Post-crisis 

 Mean 0.048574 -0.111233 0.040719  0.019364 -0.069350 0.088836  0.035453 0.107659 0.007858 
 Std. Dev. 1.761661 2.945416 1.047450  1.046618 2.800983 1.508177  0.726508 1.150083 1.117465 
 Skewness 12.82542 0.605720 -0.237202  1.541135 0.409928 -0.146884  -0.175244 -0.669868 0.050716 
 Kurtosis 340.8189 21.41869 8.591160  21.26730 7.452576 8.073822  5.349084 9.135545 5.229339 
 Jarque-Bera 6771996* 8248.162* 2907.219*  23380.14* 392.8706* 2339.765*  396.0479* 967.9187* 469.3878* 
 Observations 1416 581 2216  1635 460 2174  1685 589 2262 
 

* indicated the 5% significance level. 
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interval.    
 
 
RESULTS 
 
Table 2 reported the descriptive statistics for the 
unconditional return.  For Asian countries, both 
the means are negatives during the crisis period 
whereas the S&P500 remained positive for all the 
regimes.  Relatively, the standard deviation 
across the crisis periods indicated highest values 
than other periods.  This implied that the 
unconditional volatilities are greater than other 
periods. Next, the non-zero skewness and 
kurtosis exceeded three indicated the presence of 
non-normal distribution for all the series.  After the 
Jacque-Bera normality tests, all the indexes 
rejected the null hypothesis of normal distribution.   
 
 
SRD adjustment results 
 
The   representations  of  conditional  volatility  are  

considered in the form of �2 and |�|δ using GJR 
and DGE models.  Each of the indexes is adjusted 
according these models before stationary 
standardized residuals are generated.  For the 
sake of space scarcity, Table 3 only illustrated the 
maximum likelihood estimation for KLSE under 
the GJR and DGE specifications. For the con-
ditional mean equation, an autoregressive AR(1) 
model is sufficient to adjust the serial correlation 
for the stock markets.  According to Miller (1994), 
similar correction can be adjusted by using a 
moving average model.  Across the periods, the 
shocks are all t-distributed at 5% significance 
level.  In addition, there is a fading tendency in the 
degree of freedom from pre-crisis to post-crisis 
period.  In other words, the tail distributions 
become heavier with small degree of freedom.   

In conditional variance estimation, the GARCH 
coefficient �1 is less persistent when the power 
transformation decreased from �δ to �2.  For 
example in the pre-crisis period, the persistence 
of shocks reduced from 0.807912 to 0.749577 
when the volatility switched from �δ to �2.  Similar 
results are also found in other stock markets.  
These findings are  similar  to  Ding  et  al.  (1993) 

where they claimed that the absolute return 
exhibited longer memory than the squared 
returns.  In short, higher persistence implied 
higher correlation between the current and 
historical volatility. Another interesting stylized fact 
is captured by the news impact coefficient γ where 
all the indexes are positive and statistically 
different from zero at 5% significant level.  These 
findings implied that downward movements 
(shock) in the global stock markets are followed 
by greater volatilities than upward movements of 
the same magnitude.  Under the ordinary market 
condition, this can be easily explained by using 
the leverage ratio5 of a particular listed company 
in the stock exchange where a crash in stock 
price can lead to an increase in equity risk and 
thus triggered a more intense volatility. Next, the 
power coefficient δ is determined as an 
endogenous variable where the optimal power 
transformation is in the range 1.184910 to 
1.352293.  From the statistical tests, all the δ s are 
failed to reject the null hypothesis that δ is 
equivalent to one.   

                                                 
5 Similar to debt-equity ratio (Black,1976). 
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Table 3. Maximum likelihood estimation for KLSE. 
  
Estimation GJR  DGE 
Mean Pre-crisis Crisis Post-crisis  Pre-crisis Crisis Post-crisis 
Constant:         φ0 -0.023569 -0.031118 0.031190  -0.016969 -0.023520 0.026045 
MA(1):            φ1 0.207559* 0.162321* 0.155474*  0.200968* 0.161435* 0.149560* 
        
Variance        
Constant:         α0 0.124223* 0.021661* 0.013797*  0.085644* 0.021393* 0.018134* 
ARCH:            α1 0.064380* 0.025874* 0.092852*  0.163711* 0.125793* 0.135331* 
GARCH:         β1 0.749577* 0.877377* 0.869546*  0.807912* 0.893268* 0.877450* 
News impact:    γ 0.265717* 0.222290* 0.065992*  0.398249* 0.545203* 0.179681* 
Power:              δ     1.352293* 1.184910* 1.210909* 
H0: δ =1     1.31158 0.488432 0.862921 
H0: δ =2     -2.41140* -2.15302* -3.22851* 
Tail:                ν 4.122349* 5.174973* 5.653057*  4.120701* 5.055660* 5.675102* 
        
Selection        
AIC 2.927623 3.983183 2.494411  2.926794 3.977782 2.491995 
SIC 2.953619 4.035770 2.512427  2.956504 4.037882 2.512585 
        
Diagnostic        

Q(6) for 2
ta~  0.0107 (0.996) 

1.3415 
(0.931) 

5.5604 
(0.351) 

 0.0088 
(0.999) 

1.2849 
(0.936) 

9.0059 
(0.109) 

        

LM(6) for 
2

ta~  
0.00177 
(0.999) 

0.212401 
(0.9729) 

0.901760 
(0.4925) 

 0.001456 
(0.999) 

0.202094 
(0.9761) 

1.462696 
(0.1871) 

 

1. ta~ represents the standardized residual. Ljung Box Serial Correlation Test (Q-statistics) on ta~
 and 

2
ta~ : Null hypothesis – No 

serial correlation; LM ARCH test: Null hypothesis - No ARCH effect; 2. The values in parentheses represent the p-value. 3.* 
denotes significance at 5% level. 

 
 
 

Table 4. Summary estimation results for JSE and S&P500. 
 

Estimation 
JSE  S&P500 

Pre-crisis Crisis Post-crisis  Pre-crisis Crisis Post-crisis 

GARCH:         β1 0.538394* 0.954712* 0.727583*  0.953291* 0.896952* 0.941994* 
News impact:    γ 0.036626* 0.999669* 0.255962*  0.477139* 1.000000* 1.000000* 
Power:              δ 1.131871* 1.470831* 2.085031*  1.457916* 1.080403* 1.186539* 
H0: δ =1 0.593241 1.309563 2.514434*  1.146507 0.195519 0.960358 
H0: δ =2 -3.90541* -1.47182 0.19705  -1.35724 -2.23622* -4.18794* 

 

* denoted significance at 5% level. 
 
 
 

However contrary results are observed for null 
hypothesis for δ is equivalent to two.  These findings 
implied that the KLSE volatility is statistically preferable in 
the representation of conditional standard deviations.   

Table 4 summarized the DGE estimations where there 
is a mixture of conditional variance and standard 
deviation representation in the market volatility in JSE 
and S & P500. The most appropriate models are selected  

based on the Akaike information (AI) and Schwarz 
information (SI) criteria which evaluated from the adjust-
ted (penalty function) average log likelihood function.  
Both the information criteria reported smaller AIC for 
DGE, however the adjusted penalty function using SIC 
has caused additional values to this extra parameter. 
Overall the AIC and SIC are quite similar in all the 
models. For  diagnostic  analysis,  the  Ljung-Box statistic  
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Table 5. Preliminary LRD evaluations before and after the SRD adjustment. 
 

Method 

After GJR SRD adjustment  Before SRD adjustment 
VT plot  R/S plot  VT plot  R/S plot 

H R2  H R2  H R2  H R2 
KLSE        
Pre-crisis 0.497 0.999  0.511 0.998  0.495 0.999  0.620 0.997 
Crisis 0.409 0.989  0.511 0.994  0.716 0.982  0.671 0.997 
Post-crisis 0.593 0.968  0.533 0.997  0.820 0.956  0.714 0.995 

       
JSE        
Pre-crisis 0.527 0.999  0.568 0.999  0.637 0.994  0.637 0.998 
Crisis 0.463 0.999  0.525 0.997  0.739 0.946  0.628 0.999 
Post-crisis 0.663 0.962  0.555 0.999  0.727 0.985  0.633 0.999 

       
S&P500        
Pre-crisis 0.781 0.896  0.613 0.997  0.806 0.926  0.655 0.996 
Crisis 0.380 0.954  0.603 0.996  0.640 0.989  0.678 0.994 
Post-crisis 0.611 0.981  0.575 0.998  0.849 0.930  0.718 0.996 

 

R2 denoted the coefficient of determinant. 
 
 
 
(squared-standardized residuals) and the Engle LM 
(1982) statistics are implemented in all the models. 
Overall, all the models in the selected global markets are 
free from heteroskedastic effect at 5% significance level.  
Based on the diagnostic results, both the GJR and DGE 
standardized residuals ( are generated for the LRD 
evaluations.       
 
 
LRD Hurst exponent estimation 
 

This analysis begins with the examination of volatility 
proxies using raw unconditional return (without any 
adjustment) in the form of square values. Between the 
two heuristic methods, R/S method provided higher R2 

(coefficient of determinant) as compared to variance-time 
plot under the ordinary least squared estimation in a 
simple log-log regression. In other words, the R/S method 
indicated higher proportion of variability (99% and above) 
explained by the regression model.  These findings are 
inline with Mandelbrot and Taqqu (1979) who suggested 
R/S is more superior to more conventional methods 
(including variance-time method) of determining long-
range dependence.  However, the R/S method is sensi-
tive to SRD.  Although Lo (1991) introduced a modified 
version of R/S, Willinger et al (1999) and Teverovsky et 
al.(1999) claimed that this method has an issue in 
inference power and poor performance in detecting long-
range dependence.  

Table 5 showed that all the indexes indicated strong 
LRD with the Hurst exponent exceeded 0.600 in the R/S 
estimation for all three periods. It is also worth noting that 

the LRD after the crisis is more intense in all the three 
markets.  However, there is a possibility that the LRD is 
caused by the underlying SRD.  Due to this we 
conducted SRD adjustment to generate stationary 
standardized residuals ( ) in the power form of �2 and 

|�|δ using the GJR and DGE models.  Again, Table 5 
reported significant lower Hurst exponent in all the 
periods for three markets.  The R/S method indicated 
weakest LRD in KLSE (0.511-5.33), followed by JSE 
(0.525-0.568) and lastly S&P500 (0.575-0.613).  In order 
to obtain a better estimation, now we turned to Whittle 
interval estimation. 

Table 6 and 7 reported the variance of Hurst exponent 
for each market.  With the estimated Hurst exponent 
variance, the estimations are presented with the 
confidence interval for 95% and 99%.  Interesting results 
have been observed where almost all the estimators 
indicated Hurst exponent close to 0.500 which implied 
that the volatility series are stationary random processes 
with no LRD.  Moreover, the lower bounds for all the 
interval estimations are below 0.500 and suggested that 
there is no evidence of LRD.  In other words, this contrary 
results compared to the raw volatility proxies in the pre-
vious analysis provided spurious LRD in all the indexes 
with H>0.600. As a conclusion, there is no or mostly 
weak LRD in the volatility series after the adjustment of 
SRD.  
   From the finance point of view, the SRD time series or 
weakly LRD implied that the studied financial markets are 
supporting the random walk hypothesis and in accor-
dance with weak-form informational efficiency. The  Hurst 
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Table 6. Adjusted Hurst exponent using GJR model (�2). 
  

Estimation Variance (H) H  
95% C.I.  99% C.I. 

Lower bound Upper bound  Lower bound Upper bound 
KLSE     
Pre-crisis 0.019643 0.500  0.461 0.538  0.449 0.550 
Crisis 0.027807 0.500  0.445 0.554  0.428 0.571 
Post-crisis 0.014031 0.510  0.482 0.537  0.473 0.546 

    
JSE     
Pre-crisis 0.019643 0.500  0.461 0.538  0.449 0.550 
Crisis 0.039031 0.503  0.426 0.579  0.402 0.603 
Post-crisis 0.013776 0.510  0.483 0.537  0.475 0.545 
         
S&P500         
Pre-crisis 0.019643 0.524  0.485 0.562  0.473 0.574 
Crisis 0.028062 0.540  0.485 0.595  0.468 0.612 
Post-crisis 0.014031 0.500  0.472 0.527  0.463 0.536 

 
 
 

Table 7. Adjusted Hurst exponent using DGE model (|�|δ). 
 

Estimation Variance (H) H 
 95% C.I. 99% C.I. 
 Lower bound Upper bound Lower bound Upper bound 

KLSE     
Pre-crisis 0.019643 0.523  0.461 0.538 0.449 0.550 
Crisis 0.027807 0.551  0.445 0.554 0.428 0.571 
Post-crisis 0.014031 0.509  0.472 0.527 0.463 0.536 

    
JSE     
Pre-crisis 0.019643 0.500  0.484 0.561 0.472 0.573 
Crisis 0.039797 0.521  0.473 0.629 0.448 0.654 
Post-crisis 0.090308 0.526  0.482 0.536 0.426 0.544 
         
S&P500         
Pre-crisis 0.019643 0.500  0.461 0.538  0.449 0.550 
Crisis 0.027807 0.500  0.466 0.575  0.449 0.592 
Post-crisis 0.014031 0.500  0.498 0.553  0.489 0.562 

 
 
 
estimations with tendency toward SRD indicated the 
elimination of predictability in these studied financial 
markets and consequently provided little chances for 
investors, portfolio managers and practitioners to excel in 
these markets.               
 
 
Conclusion 
 
This study contributed to the literature of long-range 
dependence financial time series by showing the 
importance of eliminating the possible SRD using  ARCH- 

family models.  From the case studies of KLSE, JSE and 
S&P500, the SRD adjustment procedures shown that 
they are able to eliminate the spurious dependence beha-
viours which have been found using the proxy volatility 
directly from the raw data.  The presence of SRD or 
weakly LRD, implied that the studied financial markets 
predictability are somewhat weak and might only 
provided little information for forecasting.  Thus for other 
LRD analysis, the empirical findings of this study sugges-
ted that one should aware of the possible spurious long-
range dependence volatility in the financial time series. 
Because misspecification of modelling may  end  up  with 
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Figure 2. Variance-time plot and R/S plot for square return. 

 
 
 
spurious inferences and forecasts. For future study, other 
alternatives such as time and frequency domain Hurst 
parameter estimators can be considered in order to 
obtain a more accurate result.            
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