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This paper presents an integrated network design model for a supply chain in which supplier and 
distribution centers are unreliable. When there is an unreliable supplier, the amount of yield which is 
received at each distribution center may be different from the original orders. Similarly, because of 
imperfect performances of distribution centers, the quantity of products which is transformed from 
each DC to each customer may be less than what was originally planned. In such a system, customers 
have random demands and there is flexibility in determining which customers must be served. The 
proposed model of this study is formulated as a nonlinear integer programming to minimize the 
expected total cost which includes the costs of location, inventory, transportation and lost sales. The 
model simultaneously determines the optimal location of distribution centers, the subset of customers 
to serve, the assignment of customers to distribution centers and the cycle order quantities at 
distribution centers. In order to solve the resulted mathematical model, an efficient solution 
methodology based on Lagrangian relaxation approach and genetic algorithm is developed. Finally, 
computational results for several instances of the problem are presented to imply the effectiveness of 
the proposed approach. 
 
Key words: Lagrangian relaxation, integrated supply chain design model, uncertainty, location, inventory, 
genetic algorithm, birth-death process.

 
 
INTRODUCTION 
 
The efficient and effective design of supply chain is 
crucial in today's competitive environment. There is a 
growing realization that supply chain network design 
model is needed to determine the strategic decisions of 
location and the tactical decisions of inventory and 
transportation, simultaneously. Such integrated models in 
the literature typically assume that facilities and suppliers 
are always available and perform perfectly. However, in 
the real world cases, suppliers and facilities are 
vulnerable to randomly changing environmental 
conditions which may affect their performances.That is, 
there are varieties of sources like machine breakdown, 
raw material shortage, quality rejection, mistakes made 
during the assembly, workforce slow down, strike, 
requirements, parts shortage, loading or   transportation  
 
 
 
*Corresponding author. E-mail: arminj@iust.ac.ir. Tel: (+98 912) 
336 99 24. Fax: (+98 21) 2277 33 61. 
 
Abbreviation: DC, Distribution center. 

maintenance duration, poor communication of customer 
damage and natural disaster leading to unreliable and 
uncertain performances of suppliers and facilities (Erdem 
and Ozekici, 2002; Wu, 2008).When suppliers and 
facilities do not perform perfectly, a supply chain may lose 
its customers and it may be faced with huge amount of 
lost sales costs. In other words, the imperfect perfor- 
mances of suppliers and facilities can be costly and can 
bring a supply chain to a screeching halt. For instance, 
Boeing experienced supplier delivery failure of two 
components, with an estimated loss to the company of 
$2.6 billion (Radjou, 2002).Similarly, Hurricane Katrina 
and Rita resulted in shutdowns of numerous facilities and 
consequent significant economic losses (Barrionuevo and 
Deutsch, 2005).These examples highlight the need for 
supply chain design models that account for imperfect 
performances of suppliers and facilities. Such models are 
required to design the supply chain network in a way that 
the costs of imperfect performances of suppliers and 
facilities are reduced. The majority of the integrated 
supply chain design models in the literature are based on  



 

 
 
 
 
the unrealistic assumption that the demand for all 
customers must be provided. However, profit-maximizing 
companies in practice prefer to lose their potential 
customers when the costs of maintaining the customers 
are prohibitive (Shen, 2006).Likewise, in many cases 
supply chains are inevitably unable to satisfy all the 
demands due to unreliable performances of their 
suppliers and facilities. Therefore, it is of particular 
importance to develop supply chain design models which 
consider the possibility of not serving all the customers 
and losing some customers' demands. This paper 
presents an integrated design model for a supply chain 
which consists of a supplier, distribution centers (DCs) 
and customers. The supplier and DCs are assumed to be 
unreliable. The proposed model of this study considers 
the uncertainties arising from random demands of 
customers and unreliable performances of the supplier 
and DCs. Specifically, the supplier ships one type of 
product to customers in order to provide their uncertain 
demands. DCs function as the direct intermediary 
between the supplier and customers for the shipment of 
the product. Namely, DCs combine the orders from 
different customers and then order to the supplier. Due to 
unreliable performance of the supplier, the amount of 
yield which is received at each DC may be different from 
what was ordered. Similarly, because of imperfect 
performance of DCs, the quantity of products which is 
transformed from each DC to each customer may be less 
than what was originally planned. When the amount of 
yield at each customer is less than the due quantity, the 
system incurs penalty costs. Another key characteristic of 
the problem is the flexibility of supply chain in deciding 
which customers to serve. In fact, there is no restrictive 
assumption that all the customers' demands have to be 
met. Thus, when the cost of serving any customer is 
prohibitively high, the supply chain may choose to incur 
lost sales costs and not to serve that customer at all. The 
problem lies in simultaneously determining: 1) where DCs 
are located; 2) which customers are served; 3) which 
DCs are assigned to which customers; 4) how much and 
how often to order at each DC. We formulate the problem 
as a nonlinear integer programming model which 
minimizes expected total cost. The total cost includes 
fixed location costs, inventory costs at the DCs, shipment 
costs, penalty costs of unreliable performances of DCs 
and lost sales costs An efficient solution method 
incorporating Lagrangian relaxation approach and 
genetic algorithm is adopted to solve the proposed 
nonlinear integer programming model. This study reviews 
the related models in the literature briefly. In fact, the 
literature on integrated supply chain design models as 
well as the literature on facility location planning under 
the risk of disruptions is reviewed. Afterwards, the 
assumptions underlying the problem are explained and 
the necessary parameters for formulating the model are 
stated. Next, each cost component of the problem is 
formulated and the integrated model is presented,  after  
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which a solution method based on Lagrangian relaxation 
is developed to solve the proposed model. Here, the 
study shows how to obtain upper and lower bounds for 
the integrated model. The results of computational 
experiments with the proposed solution approach are 
then presented. Three sets of experiments are designed. 
The first experiment evaluates the performance of the 
proposed solution approach using popular data sets in 
the literature. The second experiment compares the 
performance of the presented solution approach with 
simulated annealing. The focus of the third experiment is 
on the benefits of considering the supply uncertainty 
during the supply chain design phase. Finally, the study is 
concluded along with directions for future research. 
 
 
LITERATURE REVIEW 
 
It begins with a brief literature review of the integrated 
supply chain design models which jointly determine 
location and inventory decisions. For reviews on the 
recent models addressing inventory decisions, readers 
can refer to Baten and Kamil (2009), chen et al. (2010), 
Wazed et al. (2010a, b) and Cheng and Ting (2010). A 
comprehensive literature survey has been performed by 
Shen (2007) and Melo et al. (2009) to study location 
decisions in the context of supply chain management. 
Being aware that ignoring interaction between long and 
short terms decisions can result in sub-optimality (Shen 
and Qi, 2007; Shu et al., 2005; Ozsen, 2004), 
researchers have concentrated on the integrated supply 
chain design models with nonlinear terms. Erlebacher 
and Meller (2000) present an integrated 
location-inventory model to design a two-level distribution 
system serving continuously represented customer 
locations. They use heuristic procedures to solve their 
integrated model. Shen (2000), Shen et al. (2003) and 
Daskin et al. (2002) develop a location model with risk 
pooling (LMRP) which includes inventory and location 
decisions in the same model. The objective of LMRP is to 
minimize the sum of facility location costs, linear 
shipment and nonlinear inventory costs. In order to solve 
LMRP, Shen (2000) and Shen et al. (2003) apply column 
generation, while Daskin et al. (2002) use Lagrangian 
relaxation. Another efficient approach to solve the LMRP 
is proposed by Shu et al. (2005). LMRP is extended by 
Shen and Daskin (2005), Ozsen et al. (2008), Shen and 
Qi (2007), and Snyder et al. (2007). Shen and Daskin 
(2005) investigate an integrated location-inventory model 
with customer service consideration and develop 
practical approaches for evaluation of cost/service 
trade-offs. Shen and Qi (2007) add routing decisions to 
the LMRP framework; that is, they examine an integrated 
model which determines location, inventory and routing 
decisions, simultaneously. The stochastic version of 
LMRP is introduced by Snyder et al. (2007). Their model 
handles uncertainty by defining discrete  scenarios  and  
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minimizes the expected system cost across all scenarios. 
Other related supply chain design models are studied by 
Shen (2006), Sourirajan et al. (2007, 2008) and Ozsen et 
al. (2009). Shen (2006) presents a profit-maximizing 
supply chain network design model where each DC can 
charge different prices to explore the willingness to buy in 
different regions. The author assumes that every 
customer has a reserve price and the company loses a 
customer if the total price is higher than the customer's 
reserve price. Sourirajan et al. (2007) investigate the 
two-stage supply chain with a production facility in which 
the replenishment lead time at a DC depends on the 
volume of flow through the DC. They model the relation- 
ship between the flows in the network, lead times,and 
safety stock levels and use a Lagrangian heuristic to 
obtain near-optimal solutions for the proposed model. 
Sourirajan et al. (2008) propose genetic algorithm to 
solve the model and imply that the genetic algorithm 
outperforms the Lagrangian heuristic developed in the 
earlier work. Ozsen et al. (2009) analyze the impact of 
multi-sourcing by introducing a location-inventory model 
that minimizes the sum of the fixed location costs, the 
transportation costs, and the inventory costs. All of the 
aforementioned integrated models assume that suppliers 
and DCs perform perfectly. Another relevant body of 
literature is the literature on facility location with 
disruptions. Snyder and Daskin (2005) address facility 
location problem when facilities fail with a given fixed 
probability. They present models for choosing facility 
locations to minimize the weighted sum of two objectives. 
The first objective indicates the cost of the system when 
no disruptions occur, whereas the second objective 
represents the expected transportation cost after 
accounting for disruptions. Their models rely on the 
assumption that the failure probabilities of the facilities 
are equal. This assumption is released by Berman et al. 
(2007). In fact, they develop a similar P-median model, in 
which the facilities can have different probabilities of 
failures. Since their nonlinear model is not tractable, they 
suggest using heuristic methods to solve the problem. 
Similarly, Church and Scaparra (2007) and Scaparra and 
Church (2008) study models for facility location with 
disruptions. They focus on facility location problems 
where existed facilities can be protected against dis- 
ruptions by limited fortification resources. They develop 
models determining what facilities are protected, in order 
to minimize the impact of interdiction on the remaining 
system operation. Snyder and Daskin (2007) examine 
facility location models under a variety of risk 
measurements and operating strategies. Snyder et al. 
(2006) provide a tutorial which reviews a broad range of 
models for facility location with disruptions. Among the 
aforementioned works in the context of facility location 
with disruptions, no model considers inventory costs. 
Other related models are provided by Qi and Shen (2007), 
Lim et al. (2009), Cui et al. (2010), Aryanezhad et al. 
(2010) and Qi et al. (2010). Qi and  Shen  (2007)  and  

 
 
 
 
Aryanezhad et al. (2010) study joint location-inventory 
models with unreliable facilities. However, they assume 
that the supplier is perfectly reliable and facilities will 
always receive the exact amount they order. Qi et al. 
(2010) propose an integrated location-inventory model in 
which the supplier and retailers are disrupted randomly. 
Their model assumes that the demands are deterministic 
and the lead time for order processing is zero. They use 
an effective approximation of the objective function, in 
order to analyze and to solve the model through common 
solution algorithm. The present paper is different from the 
earlier works in the literature of supply chain design 
network in some main directions. First, unlike the most of 
supply chain design models in the literature, this study 
considers the uncertainties of customers' demands, 
yields of the supplier and DCs' performances, simulta- 
neously. In other words, this article considers demand 
and supply uncertainty in the same model. Furthermore, 
the model proposed in this work dismisses the common 
unrealistic assumption in the literature that all the 
customers' demands have to be satisfied. In fact, the 
model considers lost sales costs along with location, 
inventory and transportation costs. Finally, this research 
develops an effective solution method by incorporating 
genetic algorithm and Lagrangian relaxation approach. 
 
 
METHODS 
 
Model formulation 
 
This formulates an integrated model for the problem stated in the 
introduction. The proposed model simultaneously determines which 
customers are served, where DCs are located, which DCs are 
assigned to which customers, and how much products each DC 
orders to the supplier. The objective is to minimize the expected 
total cost including: 1) the fixed costs of locating DCs, 2) the 
inventory costs at DCs, 3) transportation costs from DCs to 
customers, 4) the lost sales costs of not selecting some customers 
to serve at all, 5) the penalty costs for unreliable performances of 
DCs. In the following, first, the assumptions underlying the model 
are explained. In addition, the notations used for formulating the 
model are stated. Then, each cost component of the problem is 
formulated and the integrated model is proposed. 
 
 
Assumptions 
 
The model is based on the following assumptions: 
 
1) The customers' demands are independent and follow a Poisson 
process. This is a common assumption in the literature (Daskin et 
al., 2002; Shen et al., 2003; Ozsen, 2004; Ozsen et al., 2008). 
2) The supply chain is flexible in determining which customers to 
serve. For this case a customer is not served at all, lost sales cost 
is incurred. This assumption makes the model more applicable for 
companies in the competitive environments (Shen, 2006). 
3) In order to make the model more practical, it is assumed that the 
supplier is not always reliable. Being unreliable simply means that 
the supplier may be unable to provide the order of a DC perfectly. 
As a result, the amount of provided products for a DC may be less 
than what the DC originally orders. In other words, the supplier has 
two different modes for each DC: reliable  mode  and  unreliable  



 

 
 
 
 
mode. At the reliable mode the supplier is able to perfectly provide 
the order placed by a DC. However, at the unreliable mode the 
supplier can provide only a fraction of the order placed by the DC. 
4) In order to make the model more realistic, it is assumed that DCs 
are not always reliable. In other words, each DC has two states: 
reliable state and unreliable state. When a DC is at the reliable 
state it can satisfy all the demands of its customers. However, when 
the DC is at the unreliable state, it can satisfy only a fraction of the 
customers’ demands. In this case, penalty cost is incurred for the 
unsatisfied fraction of the customers’ demands. 
5) The durations of the reliable and unreliable modes of the supplier 
are uncertain and follow independent exponential distributions. 
Likewise, the durations of the reliable and unreliable states of the 
DCs are assumed to follow independent exponential distributions. It 
is believed that the exponential distribution is reasonable in this 
context, since exponential distributions are often applied to model 
the time between independent events that happen at a constant 
average rate, and otherwise are often suitable approximations to 
the actual distributions (Ross, 2007; Qi et al., 2009). 
 
 
Notations 
 
To develop the model the following parameters and decision 
variables are used. Additional notations will be given out when 
needed. 
 
 
Parameters 
 

I : Set of potential customers indexed by i,   

J : Set of candidate locations for distribution centers indexed by j, 

jf : Fixed cost of locating a DC at j, for each j J∈ ,  

jF : Fixed cost of placing an order at DC at j, for each j J∈ , 

jg : Fixed cost per shipment from the supplier to DC at j, for each 

j J∈ , 

jA : Per-unit shipment cost from the supplier to DC at j, for each 

j J∈ , 

jq : Fraction of the order placed by DC at j which can be provided 

by the supplier when the supplier is at the unreliable mode in regard 
to DC at j, for each j J∈ , 

ja : Duration rate of the supplier's unreliable mode in regard to DC 

at j, for each j J∈ , 

jb : Duration rate of the supplier's reliable mode in regard to DC at 

j, for each j J∈ , 

jr : Fraction of the assigned demands to DC at j which can be 

satisfied when it is at the unreliable state, for each j J∈ , 

h : Inventory holding cost per unit of product, 

iD : Mean of demand at customer i, for each i∈I, 

e : Penalty cost for losing a unit of demand of customers due to the 
unreliable performances of DCs, 

jw : Exponential rate which DC at j leaves the reliable state for 

each j J∈ , 

jv : Exponential rate which DC at j leaves the unreliable state for  

each j J∈ , 
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ijd : Per-unit cost to ship from DC at j to customer i, for each i∈I 

and for each j J∈ ,P: Number of DCs which must be located, is : 

Lost sales cost of deciding not to serve customer i at all, per unit of 
demand for each i∈I, β: Weight factor associated with the shipment 
cost,  θ : Weight factor associated with the inventory cost. 
 
 
Decision variables 
 

1jX = , if j is selected as a DC location, and 0, otherwise,  

for each j J∈ , 1ijY = , if customer i is assigned to a DC based 

at j, and 0 otherwise, for each i I∈ and j J∈ . 

 
 
Inventory cost 
 
This formulates the expected inventory cost at each located 
distribution center j, for each j J∈ . As stated in the assumptions, 
the supplier has two different modes for each DC: reliable mode 
and unreliable mode. At the reliable mode the supplier is able to 
provide all the order placed by a DC, whereas at the unreliable 
mode it can provide only a fraction of the order placed by the DC. 
Specifically, when the supplier is at the unreliable mode for DC at j, 

it can provide %jq  of the order placed by this DC. The durations 

of the unreliable and reliable modes of the supplier for DC at j follow 

the independent exponential distributions with rates ja and jb , 

respectively. Let jQ be the unknown reorder quantity of distribution 

center j and [ ]j jQ q represents integer value of 

%j jQ q× .Then, when the supplier is at the reliable mode the 

amount of yield at distribution center j will be jQ .However, when 

the supplier is at the unreliable mode the amount of yield at 

distribution center j will be [ ]j jQ q .Due to finite number of 

inventory at distribution center j and memory-less property of 
exponential distribution, we can define inventory quantities as 
states, and the inventory transition can be modeled as a birth-death 
process demonstrated in Figure 1 (Wu, 2008). Note 

that jµ indicates the unknown demand arrival rate to distribution 

center j in Poisson process(in the subsequent study, we show 

how jµ can be obtained based on the decision variables and 

parameter iD ). In order to gain the expected inventory cost, we 

need to gain the limiting probabilities of states of the birth-death 
process.The limiting probabilities of the states can be obtained by 
equating the rate at which the process leaves a state with the rate 
at which it enters that state as follows (Ross, 2007; Wu, 2008): 
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Figure 1. A birth-death process for inventory transition of distribution center at j. 

 
 
 
Where ( )kπ indicates the limiting probability of state k, for k = 1 to 

jQ (Figure 1). Also, 
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a
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 and 2 11p p= − . Therefore, 

the expected inventory cost at distribution center j can be obtained 
by: 
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The first term of Equation 3 represents the fixed cost of placing 
orders. The second term is the cost of shipping orders from the 
supplier to the DC at j, assuming that the shipment cost from the 

supplier to distribution center j has a fixed cost jg and volume 

dependent cost jA . The last term indicates the cost of holding 

average of 

1
( )

jQ

k
k kπ

=
∑  units of inventory. Substituting limiting 

probabilities in Equations 1 and 2 into Equation 3, the inventory 
cost at the distribution center j is obtained as follows: 
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In order to determine the optimal reorder quantity, we take 

derivative of Equation 4 in respect to jQ and set the derivative  to  

zero. By this way the optimal value will be gained by: 
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Plugging Equation 5 into Equation 4, inventory cost at the 
distribution center j will be obtained as follows: 
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Penalty cost for unreliable performance of a distribution center 
 
As stated earlier, each DC has two states as follows: reliable state 
and unreliable state. When the DC at j is at the reliable state it can 
satisfy all the demands of its customers. However, when the DC is 

at the unreliable mode, it can provide only %jr of the customers' 

demands and (1 )%jr− of the demands are unmet. It is assumed 

that distribution center j leaves the reliable state and unreliable 

state exponentially with the rates jw and jv , respectively, as 

shown in Figure 2. Considering the memory-less property of the 
exponential distribution, we equate the rate at which the process 
leaves a state with the rate at which it enters that state and obtain 
the limiting probabilities of the states: 
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Where ( )Rπ and ( )URπ denote the limiting probabilities  of  the  
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Figure 2. A state transition diagram for distribution center at j. 

 
 
 
reliable state and unreliable state, respectively. Let e  be the 
penalty cost for losing a unit of demand due to the unreliable 

performance of the DC at j. In addition jµ  denotes the total 

demand allocated to the DC at j. Then, the expected penalty cost 
for unreliable performance of the DC at j will be: 
 

( ) (1 )% ( ) 0%
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Integrated model 
 
In order to formulate the integrated model, two sets of decision 
variables are used: 
 

i) 1jX = , if j is selected as a DC location, and 0, otherwise, for 

each j J∈ , 

ii) 1ijY = , if customer i is assigned to a DC based at j, and 0 

otherwise, for each i I∈ and j J∈ . 
 
At this stage, the total demand assigned to the distribution center at 

j and jµ  can be written in terms of decision variables: 

 

µ
∈

=∑j i ij
i I

D Y  

 
To model the lost sale cost of deciding not to serve customers, it is 
expedient to define a dummy DC with index z. Assigning the 

customer i to this dummy, DC ( 1izY = ) indicates not serving 

customer i at all (Snyder and Daskin, 2005). 
 Regarding dummy distribution center z, we assume that it has 

the shipment cost iz id s= to customer i∈I and there is no other 

cost. Therefore, when customer i ∈ I is assigned to dummy 
distribution center z it means that the customer i is not served at all 
and the lost sale cost is incurred. From this point forward, the 
dummy distribution center z is added to setJ . In addition, it is 

forced that 1zX = . With this notation, the problem is formulated 

as follows: 

2
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Subject to: 
 

1ij
j J

Y
∈

=∑  i I∀ ∈               (11) 

 

ij jY X≤  ,  i I j J∀ ∈ ∀ ∈             (12) 

 
1zX =                 (13) 

 

1j
j J

X P
∈

= +∑              (14) 

 
{0,1}jX ∈  j J∀ ∈                  (15) 

 

{0,1}ijY ∈  ,  i I j J∀ ∈ ∀ ∈             (16) 

 
The objective function of Equation 10 is composed of four 
components. The first component indicates the fixed cost of locating 
DCs. The second part represents the expected shipment cost from 
the DCs to customers. Recall that set J includes dummy 
distribution center z, in order to take lost sales costs into account in 

the model. Furthermore, note that i ij
i I

DY
∈
∑ indicates the total 

demand allocated to the distribution center at j. Therefore, the third 
component represents the inventory cost of Equation 6 

where µ
∈

=∑j i ij
i I

D Y . Considering Equation 9, the forth part 

indicates the expected penalty costs for unreliable performances of 
the DCs. Constraints 11 require that each customer is assigned to a  
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DC. Recall that allocating a customer to dummy distribution center z 
is equivalent to choose not to serve the customer at all and to incur 
lost sales costs. Constraints 12 state that customers can only be 
allocated to candidate sites that are selected as DCs. Constraint 13 
stipulates that the dummy distribution center z is located. Constraint 
14 requires that the number of located at DCs is exactly P + 1 (this 
means that P distribution centers must be located in addition to 
dummy distribution center z). Constraints 15 and 16 are binary 
constraints. Objective function of Equation 10 can be reorganized 
as follows: 
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Solution method 
 
In order to solve the proposed model, a Lagrangian relaxation 
approach (Fisher, 1981, 1985) is used. Lagrangian relaxation 
approach is capable of providing both upper and lower bounds on 
the optimal value of the objective function. That is, this method 
allows the decision maker to know how far from the optimality the 
best found feasible solution is (Current et al., 2001). The detailed 
solution approach including finding lower bound and upper bound 
for the model is explained here. 
 
 
Finding a lower bound 
 

Relaxing constraints of Equation 11 with Lagrange multipliers, iλ , 

obtains the following Lagrangian dual problem: 
 

�

�

,
Max  Min   

             (1 )

    = ( )  

    

j j ij ij j i ijX Y
j J i I i I

i ij
i I j J

j j ij i ij j i ij
j J i I i I

i
i I

f X d Y k DY

Y

f X d Y k DY

λ

λ

λ

λ

∈ ∈ ∈

∈ ∈

∈ ∈ ∈

∈

 + + 
 

+ −

 + − + 
 

+

∑ ∑ ∑

∑ ∑

∑ ∑ ∑

∑

      (18) 

 
Subject to: 

 
 
 
 

ij jY X≤ ,  i I j J∀ ∈ ∀ ∈             (19) 

 

1zX =                 (20) 

 

1j
j J

X P
∈

= +∑              (21) 

 

{0,1}jX ∈  j J∀ ∈              (22) 

 

{0,1}ijY ∈ ,  i I j J∀ ∈ ∀ ∈             (23) 

 

For given values of the Lagrange multipliers, iλ , the objective is to 

minimize Equation 18 over the decision variables jX and ijY . This 

problem can be decomposed by j; thus, we need to solve the 
following sub-problem for each candidate location j J∈ : 

 

�SP : V = Min j j i i i i
i I i I

l Y u Y
∈ ∈

+∑ ∑          (24) 

 
Subject to: 
 

{0,1}iY ∈  i I∀ ∈                   (25) 

 

Where �
i ij il d λ= − and 

2
i j iu k D= . In Equations 24 to 25, the 

assignment variables ijY have been replaced by iY to simplify the 

notation, as SPj is specific to distribution center j. 

Sub-problem SPj  can be solved efficiently applying the exact 

algorithm introduced by Shen et al. (2003). Customized to our 
problem, their algorithm is as follows: 

1) Define { }0 : 0 and 0i iI i l u= < =  and 

{ }: 0 and 0 .i iI i l u− = < >  

2) Calculate the values of i

i

l
u for the elements of I − .  

3) Sort the elements of I − in increasing order of i

i

l
u and indicate 

the elements by1 ,2 ... n− − −
, respectively, where n I −= . 

4) Find the value of m that minimizes: 
 

0 0 1, 1, 

m m

i i i i i i i i
i I i I i i I i i I

l Y u Y l Y u Y
− −∈ ∈ = ∈ = ∈

+ + +∑ ∑ ∑ ∑ . 

 

5) The optimal solution to sub-problem SPj is gained by 

1iY = for 0i I∈ , 
1 2

... 1
m

Y Y Y− − −= = = =  for i I −∈ and 

0iY = for all other i I∈ .When SPj for each j J∈ is solved, 

jf is added to the optimal objective value of �Vj . Then, �Vj values 

are sorted from the smallest to the largest for all j J∈ ,  excluding  
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1 0 1 0 1 1 5 3 1  
 
Figure 3. Chromosome structure. 

 
 
 

dummy distribution center z. The firstP values of �Vj are identified 

and the corresponding jX variables are set to 1. Also, we 

set 1zX = . For each chosen distribution center j (those for 

which 1jX = ) the assignment variables ijY are the same as the 

optimal iY values in sub-problem SPj . But, for each unselected 

distribution center j (those for which 0jX = ) 

0,ijY i I= ∀ ∈ .Having solved the Lagrangian problem, the 

optimal Lagrange multipliers are obtained using a standard 
sub-gradient optimization procedure (Fisher, 1981, 1985). The 
optimal objective value of the Lagrangian dual problem Equation 18 
can provide a lower bound on the optimal objective value of 
Equation 17. 
 
 
Finding an upper bound 
 
It is extremely hard to solve the presented nonlinear and stochastic 
model in a reasonable time. For instance, even solving the 

presented model in the simplest condition (when 0,jf =  0jk =  

for each j J∈ ) is identical to solving the P-median problem which 

is NP-hard (Garey and Johnson, 1979). In this context, genetic 
algorithm (GA) can overcome computational complexity caused by 
the nonlinear and stochastic objective function to solve the model 
(Min et al., 2006; Sourirajan et al., 2008). GA has been successfully 
used in various facility location and supply chain network design 
problems and has proven to be a very effective heuristic procedure 
to solve these problems, particularly problems of large scale 
(Jaramillo et al., 2002; Alp et al., 2003; Drezner and Wesolowsky, 
2003; Shen and Daskin, 2005; Snyder and Daskin, 2006; 
Sourirajan et al., 2008). For these reasons, an effective heuristic 
based on GA is developed in order to obtain a suitable upper bound 
at each iteration of the Lagrangian procedure. GA is a stochastic 
solution search method based on the mechanism of natural 
genetics, which starts with an initial set of potential solutions to the 
problem, called a population. Each individual solution in the 
population is known as chromosome and each component of the 
chromosome is named gene. The chromosomes evolve through 
successive iterations, called generation. The population of the next 
generation includes some chromosomes of the current population 
and some new chromosomes. To determine which chromosomes of 
the current population are selected for the population of the next 
generation, each chromosome in the current population is 
evaluated using some measure of fitness. Fitter chromosomes have 
higher probabilities of being selected for the next generation. In 
order to create the new chromosomes (called offspring) for the 
population of the next generation, crossover and mutation operators 
are used. Crossover operation selects two chromosomes from the 
current population at random and combines them to form offspring. 
Though, mutation process creates an offspring by altering the 
genes of a single chromosome. After  several  generations,  the  

algorithm converges to the best chromosome, which can represent 
the optimum or near optimal solution to the problem (Gen and 
Cheng, 1996, 2000). For comprehensive review of GA and its 
application in location problem refer to Gen and Cheng 1996, 
Sourirajan et al. (2008), Goldberg (1989) and Jaramillo et al. (2002). 
The following study explains the developed GA for finding an upper 
bound. 
 
 
Encoding 
 
In the proposed GA, each chromosome is represented as a single 
dimensional array demonstrating decision variables. Let n be the 
number of candidate, DCs and m be the number of customers. 
Then, each chromosome C can be indicated by: 
 

1 2 1 1 2( ,  ) ( ,  ... ,  ,  ,  ... ).j i n n mC X Y X X X X Y Y Y+= =  

 

Where jX corresponds to the location genes and iY corresponds 

to the assignment genes. These genes represent where the DCs 
are located and how the customers are assigned to the located DCs, 

respectively. In other words, 1jX =  means that candidate site j 

is chosen as a DC location, whereas 0jX =  shows that 

candidate location j is not selected as a DC site.The 

gene 1nX + corresponds to dummy distribution center z; as a result, 

it always takes the value 1. Thus, the location genes demonstrate 

location decision variables. Also, iY j= indicates that customer i 

is assigned to distribution center j. If customer i is assigned to the 
dummy distribution center z, the corresponding assignment gene 

takes the value of n+1; that is, 1iY n= + . Therefore, the values 

of the assignment decision variables can be known by the 
assignment genes. For example, in Figure 3, distribution centers 
are located at 1 and 3. It follows that customers 1 and 4 are 
assigned to the DC at 1 and customer 3 is allocated to the DC at 3. 
Also, customer 2 is assigned to the DC at 5, which corresponds to 
the dummy distribution center z. 
 
 
Generating the first population 
 
The chromosomes of the first population are generated by two 
methods. In the first method, the chromosomes of the first 
population are generated from the feasible region randomly. The 
second method forms the chromosomes by modifying the lower 
bound solution in the Lagrangian procedure. That is, it identifies 
customers that are assigned to more than one DC in the lower 
bound solution of the Lagrangian procedure. Then, such customers 
are assigned to exactly one DC which is selected randomly. By this 
way, the obtained lower bound solution in the Lagrangian procedure 
can be modified to feasible solutions and the needed chromosomes 
for the first population are formed. The numbers of the 
chromosomes generated by the first and the second methods  are  
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Figure 4. Sample of crossover. 

 
 
 
the same.  
 
 
Fitness function 
 
The rank-based evaluation function is defined as the objective 
function of Equation 17 for the chromosomes. In fact, the value of 
the objective function of Equation 17 is calculated for each of the 
chromosomes. Obviously, the chromosomes which lead to less 
values of objective function of Equation 17 have the better rank. 
 
 
Crossover process 
 
Crossover operator generates offspring by combining two random 

chromosomes, called parents. Let kC denote the chromosomes of 

the population for k = 1, 2 … pop-size. In order to determine which 
of these chromosomes are selected for crossover operation, the 
following practice is repeated from k = 1 to pop-size. A random 

number r from the interval (0, 1) is generated. Chromosome kC  

will be chosen for crossover process provided that Cr P< , where 

the parameter CP  is the probability of crossover. Then selected 

parents 1C ′ , 2C ′ , 3C ′ , … are grouped randomly to the pairs ( 1C ′ , 

2C ′ ), ( 3C ′ , 4C ′ ),…. Without loss of generality let us outline the 

crossover operator on each pair by ( 1C ′ , 2C ′ ). Crossover operator 

allocates each customer i in offspring chromosome either to the DC 

which is assigned to customer i in chromosome 1C ′ , or to the DC 

which is assigned to customer i in chromosome 2C ′ . This occurs 

randomly and with probability of 0.5. The obtained offspring can be 
infeasible. If a customer is assigned to an unselected candidate DC 
location, this infeasibility is removed by locating DC in that 
candidate site. In case that the number of located DCs 
exceeds 1P + , the number of located DCs is reduced to  1P +   

by closing some DCs randomly. The customers which are assigned 
to the closed DCs are allocated randomly to one of the located DCs. 
By this way, the offspring can be modified to a feasible 
chromosome. A sample of crossover operator is shown in Figure 4. 
 
 
Mutation process 
 
Mutation operator modifies a chromosome to form offspring. In 

order to decide which of chromosomes kC undertake mutation, the 

following process is repeated for k = 1 to pop-size. A random 
number r from the interval (0, 1) is generated. Then, the 

chromosome kC will undergo mutation process provided 

that Mr P< , where the parameter MP is the probability of mutation. 

Chosen chromosomes are altered by one of the two following types 
of mutation for several times. In the first type of mutation, offspring 
is generated by modifying the assignment genes of the parent 
chromosome. In other words, the first type of mutation selects two 
located DCs randomly; let s and t denote them. Then, if any 
customer in parent chromosome is allocated to s, that customer will 
be allocated to t and if any customer is assigned to t, it will be 
assigned to s. The second type of mutation modifies location genes 
of the parent chromosome to create offspring. In fact, the second 
type of mutation randomly chooses a location in which no DC is 
located; let t denotes such location. Next, a DC is chosen randomly 
from the located DCs and is named s. This type of mutation closes 
distribution center s and instead of it locates a DC at candidate site 
t. Then, all the customers allocated to distribution center s are 
assigned to distribution center t. The samples of mutation type 1 
and mutation type 2 are illustrated in Figures 5 and 6, respectively. 
 
 
RESULTS AND DISCUSSION 
 
Here, the results of computational experiments with the 
outlined Lagrangian relaxation approach. The solution 
approach was coded in Visual Basic.Net and executed on  
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Offspring 
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Figure 5. Sample of mutation type 1 

 
 
 

1X  
2X  3X  4X  5X  1Y  2Y  3Y  4Y  

1 0  1 0 1 1 5 3 1 

Offspring 
 

1X  
2X  3X  4X  5X  1Y  2Y  3Y  4Y  

0 1 1 0 1 2 5 3 2 
 

 
Figure 6. Sample of mutation type 2. 

 
 
 
Pentium 5 computer with 1.00 GB RAM and 2.00 GHz 
CPU. 
 
 
Test problems and parameter setting 
 
Three sets of experiments were designed in order to test 
the performance of the proposed Lagrangian relaxation 
and to study the benefits of considering supply uncer- 
tainty in the model. The objective of the first experiment 
was to evaluate the performance of the proposed solution 
method in terms of the solution quality and time. The 
second experiment was designed to compare the 
performance of the presented solution approach with a 
popular solution heuristic in the literature, simulated 
annealing. The focus of the third experiment was on the 
benefits of considering the possibility of unreliable 
performances of DCs during the  supply  chain  design  

phase. The experiments were implemented on the well 
known benchmarks in the literature which are 49, 88 and 
150-node data sets described by Daskin (1995). These 
data sets have been very popular in the literature and 
have been used in a lot of research to validate the new 
solution approaches (Shen, 2000, 2006; Daskin et al., 
2002; Jaramillo et al., 2002; Ozsen, 2004; Shen et al., 
2003; Shen and Daskin, 2005; Shen and Qi, 2007; 
Snyder et al., 2007; Sourirajan et al., 2007, 2008; Ozsen 
et al., 2008; Aryanezhad et al., 2010; Qi et al., 2010). The 
49-node data set represents the capitals of the lower 48 
United States plus Washington, DC; the 88-node data set 
indicates the 50 largest cities in the 1990 U.S. census 
along with the 49-node data set, minus duplicates; and 
the 150-node data set contains the 150 largest cities in 
the 1990 U.S. census. In all the experiments, population 
data given in Daskin (1995) were divided by 1000 to be 
considered as the mean of demand. We set the  per-unit  
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Table 1. Parameters for the solution approach. 
 

Parameter Value 

Population size of GA 30 
Probability of crossover in GA 0.95 
Probability of mutation in GA 0.01 
The number of generations in GA 400 

 
 
 

Table 2. Computational results for 49-node problem when e = 10. 
 

 P s LB UB Time (s) Gap 
1 5 10 239764.5 239957.9 2 0.080662 
2 5 100 239775.2 240130 2 0.147972 
3 10 10 534469.9 534673.6 2 0.038113 
4 10 100 534477.9 534860.4 2 0.071565 
5 15 10 844573.6 844788 3 0.025386 
6 15 100 844581.6 844975.6 3 0.04665 
7 20 10 1174674 1174894 3 0.018729 
8 20 100 1174682 1175070 3 0.03303 
9 25 10 1517775 1518014 4 0.015747 

10 25 100 1517771 1518075 4 0.020029 
 
 
 
cost to transport products from distribution center j to 
customer i, ijd , to the great-circle distance between these 

sites. As in Daskin et al. (2002), the fixed ordering jF and 

the shipping costs jg were set to 10. Also, the variable 

shipping cost jA and inventory holding cost h were set to 

5 and 1 for all candidate DCs. The values of jq , jr , jv , 

jw , ja and jb , which cannot be found in the original 

data sets, were set randomly using the uniform 
distribution on (0, 1) interval.The parameters for the 
genetic algorithm were set based on the optimal values 
suggested by Grefenstette (1986). These parameters are 
given in Table 1. 
 
 
First set of experiments 
 
Here, the performance of the proposed solution method 
is tested on the 49-node, 88-node, and 150-node data 
sets. Fixed costs of locating DCs ( jf ) were set the same 

as the fixed costs in Daskin (1995). To vary the difficulty 
of problem instances, we used different values for the 
parameters e and is . In addition to varying the lost 
sales costs, we tested different values for the parameter 
P. Also, we used different weights for the instances of the 
problem. For the 49-node data set, the weights β andθ  
were set to 0.1. However, for the 88 and 150-node data 
sets, the parameters β andθ  were set to 1 and  0.0005,  

respectively. Tables 2 and 7 summarize the related 
results for the computational study on 49, 88 and 
150-node with different values for the parameters P , 

is and e . In these tables the columns markedP , s and 

e give the parameters P , is and e , respectively. The 
columns marked Time indicate the CPU time in seconds. 
The columns labeled LB represent the value of lower 
bound, and the columns marked UB gives the value of 
upper bound. The last column in each table indicates the 
percentage gap between the obtained upper and lower 

bounds and it is calculated by 100
UB LB

LB
− × . It follows 

from Tables 2 to 7 that the gap does not exceed 0.187% 
with different values for the parametersP , is , e, θ  and 
β. It demonstrates that the bounds provided by the 
Lagrangian relaxation process are very tight and close to 
optimal values. Thus, the developed solution approach is 
able to obtain solutions close to the optimal values for the 
nonlinear model in a logical time. 
 
 
Second set of experiments 
 
Here, the performance of the proposed solution approach 
is compared with simulated annealing (SA) algorithm 
which has been extensively used by researchers for 
solving large-sized problems in the literature of facility 
location and supply chain design models  (Chiyoshi and 
Galvao, 2000; Drezner et al., 2002; Wu et al., 2002; 
Jayaraman and Ross, 2003; Jr et al., 2006; Yigit  et  al.,
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Table 3. Computational results for 49-node problem when e = 100. 
 

 P s LB UB Time (s) Gap 
1 5 10 239767.7 240018.7 2 0.104685 
2 5 100 239856.5 240305.8 2 0.18732 
3 10 10 534468.3 534839.9 2 0.069527 
4 10 100 534502.7 535106.8 2 0.113021 
5 15 10 844569.1 845035.8 3 0.055259 
6 15 100 844577.1 845292.1 3 0.084658 
7 20 10 1174671 1175164 3 0.041969 
8 20 100 1174679 1175378 3 0.059506 
9 25 10 1517778 1518416 4 0.042035 
10 25 100 1517797 1518601 4 0.052972 

 
 
 

Table 4. Computational results for 88-node problem when e = 10. 
 

 P s LB UB Time (s) Gap 
1 5 10 192799.1 192845.5 5 0.024067 
2 5 100 192821.5 192906.7 5 0.044186 
3 10 10 437794.6 437904.8 5 0.025172 
4 10 100 437816.8 437964.9 5 0.033827 
5 15 10 700892.9 701044.8 6 0.021672 
6 15 100 700915.6 701104.8 6 0.026993 
7 20 10 978989.5 979205.3 6 0.022043 
8 20 100 979012.1 979260.5 6 0.025373 
9 25 10 1273386 1273660 7 0.021517 
10 25 100 1273409 1273711 7 0.023716 
11 30 10 1576380 1576702 8 0.020427 
12 30 100 1576403 1576751 8 0.022076 
13 35 10 1886577 1886926 9 0.018499 
14 35 100 1886599 1886975 9 0.01993 
15 40 10 2212670 2213048 10 0.017083 
16 40 100 2212692 2213095 10 0.018213 

 
 
 
2006; Al-khedhairi, 2008, Azad and Davoudpour, 2010; 
Pishvaee et al., 2010). SA is a popular search algorithm 
capable of escaping from local optima (Henderson et al., 
2003). The SA methodology draws its analogy from the 
annealing process of solids. In the annealing process, a 
solid is heated to a high temperature and gradually 
cooled to a low temperature to be crystallized. Since the 
heating process allows the atoms to move randomly, it 
gives the atoms enough time to align themselves in order 
to reach a minimum energy. This analogy can be used in 
combinatorial optimization in which the states of the solid 
correspond to the feasible solutions, the energy at each 
state corresponds to the improvement in the objective 
function and the minimum energy state will be the optimal 
solution (Henderson et al., 2003). Figure 7 shows the 
steps of the SA algorithm for the proposed model in this 
study, where the following parameters are used: 

:0TI  The initial temperature, 

:CS  The rate of the current temperature decreases 
(cooling schedule),  
ST : The freezing temperature (the temperature at which 
the desired energy level is reached), 

:L  Number of accepted solutions at each temperature, 

:SN  Counter for the number of accepted solutions at 
each temperature, 

0X : The initial solution, 

X : The current solution in iterations, 

nhX : A solution which can be selected in the 

neighborhood of X  in each iteration, 

bestX : The best solution obtained in iterations, 

phases and algorithm, 
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Table 5. Computational results for 88-node problem when e = 100. 
 

 P s LB UB Time (s) Gap 

1 5 10 192809.7 192927 5 0.060837 
2 5 100 192832.1 193015.4 5 0.095057 
3 10 10 437810.1 438392.6 5 0.133049 
4 10 100 437832.3 438485.1 5 0.149098 
5 15 10 700910.1 701741.5 6 0.118617 
6 15 100 700932.8 701823 6 0.127002 
7 20 10 979009.1 980300.1 6 0.131868 
8 20 100 979031.6 980377.9 6 0.137513 
9 25 10 1273415 1275120 7 0.133892 
10 25 100 1273432 1275192 7 0.138209 
11 30 10 1576409 1578417 8 0.127378 
12 30 100 1576431 1578486 8 0.130358 
13 35 10 1886609 1888747 9 0.113325 
14 35 100 1886632 1888814 9 0.115656 
15 40 10 2212710 2214977 10 0.102454 
16 40 100 2212732 2215043 10 0.104441 

 
 
 

Table 6. Computational results for 150-node problem when e = 10. 
 

 P s LB UB Time (s) Gap 

1 5 10 499989.3 500037.4 8 0.00962 
2 5 100 500038.5 500109.3 8 0.014159 
3 10 10 999968.6 1000047 8 0.00784 
4 10 100 1000017 1000122 8 0.0105 
5 15 10 1499963 1500061 9 0.006533 
6 15 100 1500013 1500134 9 0.008067 
7 20 10 1999964 2000072 9 0.0054 
8 20 100 2000013 2000153 9 0.007 
9 25 10 2499961 2500085 10 0.00496 
10 25 100 2500013 2500163 10 0.006 
11 30 10 2999959 3000099 11 0.004667 
12 30 100 3000013 3000176 11 0.005433 
13 35 10 3499959 3500115 12 0.004457 
14 35 100 3500013 3500182 12 0.004829 
15 40 10 3999958 4000128 13 0.00425 
16 40 100 4000020 4000241 13 0.005525 
17 45 10 4499958 4500147 15 0.0042 
18 45 100 4500014 4500207 15 0.004289 
19 50 10 4999958 5000162 17 0.00408 
20 50 100 5000014 5000230 17 0.00432 
21 55 10 5499958 5500174 19 0.003927 
22 55 100 5500014 5500238 19 0.004073 
23 60 10 5999958 6000194 24 0.003933 
24 60 100 6000014 6000259 24 0.004083 

 
 
 

)( XC : The objective function value for the solution X .  
 
In the developed SA algorithm, encoding structure in the 

GA is used to indicate a solution. The mutation operator 
defined in the previous study is applied as a neighbor 
generation mechanism.  The  approach  proposed  by 
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Table 7. Computational results for 150-node problem when e = 100. 
 

 P s LB UB Time (s) Gap 
1 5 10 500022.8 500038.8 8 0.0032 
2 5 100 500071.4 500177.6 8 0.021237 
3 10 10 1000023 1000053 8 0.003 
4 10 100 1000073 1000194 8 0.012099 
5 15 10 1500025 1500075 9 0.003333 
6 15 100 1500073 1500208 9 0.009 
7 20 10 2000025 2000098 9 0.00365 
8 20 100 2000073 2000240 9 0.00835 
9 25 10 2500020 2500125 10 0.0042 
10 25 100 2500074 2500280 10 0.00824 
11 30 10 3000020 3000155 11 0.0045 
12 30 100 3000074 3000309 11 0.007833 
13 35 10 3500020 3500193 12 0.004943 
14 35 100 3500074 3500323 12 0.007114 
15 40 10 4000013 4000195 13 0.00455 
16 40 100 4000074 4000374 13 0.0075 
17 45 10 4500020 4500278 15 0.005733 
18 45 100 4500074 4500454 15 0.008444 
19 50 10 5000020 5000354 17 0.00668 
20 50 100 5000074 5000484 17 0.0082 
21 55 10 5500020 5500429 19 0.007436 
22 55 100 5500074 5500546 19 0.008582 
23 60 10 6000020 6000536 24 0.0086 
24 60 100 6000074 6000636 24 0.009367 

 
 
 
Kirkpatrick et al. (1983) is used for parameter setting of 
the developed SA. In other words, the initial temperature 

0TI  is set to 120 in order that the probability of accepting 
worst solutions is at least of 80%. Typically, 
0.75≤CS≤0.95, thus C S is set to 0.8. Also, the freezing 
temperature is set to be

00 . 0 8S T T I= ×  

(Kirkpatrick et al., 1983). Table 8 compares the results of 
the proposed solution approach based on Lagrangian 
relaxation and genetic algorithm with SA on several 
benchmarks.  

The column labeled Problem demonstrates which 
benchmark is used and the column marked P gives the 
value of parameter P. The columns labeled Cost indicate 
the objective values obtained by SA and by the presented 
solution method, respectively. Also, the columns marked 
Time represent the total numbers of CPU seconds 
required for SA and the proposed solution approach, 
respectively. The last column indicates the percentage 
difference between the objective value obtained by SA 
and the objective value obtained by the proposed solution 
method.  

In other words, the last column represents the amount 
of improvement in the objective value when the proposed 
solution approach based on Lagrangian relaxation and 
GA is applied instead of SA. From Table 8, it can be seen  

that the presented method based on Lagrangian 
relaxation and GA outperforms SA in both the quality of 
solutions and run time. 
 
 
Third set of experiments 
 
Here analyzes the benefits of considering the possibility  
of unreliable performances of distribution centers in the 
supply chain design phase. That is, the experiment was 
designed to imply how the total costs can be reduced 
when we consider the penalty costs for the unreliable 
performances of DCs in the supply chain design model. 
In addition, this experiment shows that the presence of 
costs of unreliable performances of DCs in the model 
affects the number of customers which are selected to be 
served.  

To demonstrate the benefits of considering the 
possibility of unreliable performances of DCs in the model, 
we compared two different policies for designing the 
supply chain. The first policy makes the supply chain 
design decisions without taking the possibility of 
unreliable performances of DCs into consideration. In 
other words, the first policy determines the decision 
variables of the problem ( jX and ijY ) with the assumption 
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Select an initial solution, 0X
 

bestX  = 0X  , X  = 0X  

While ( STTI <0 ) Do 

0=SN  

While ( LSN < ) Do 

Generate solution nhX  in the neighborhood of X , 

=∆C )( nhXC - )(XC  

If C∆ ≤  0 then 

X  = nhX  

1+= SNSN  

If )( nhXC  < )( bestXC  then 

bestX  = nhX  

End If 
Else 
Generate )1,0(Uy →′ Randomly 

Set 0TI

C

ez
∆−

=′  

If zy ′<′  then 

X  = nhX  

1+= SNSN  
End If 
End If 
End While 

00 TICSTI ×=  

End While  
 
Figure 7. Steps of the simulated annealing algorithm. 

 
 
 
that DCs perform perfectly. The second policy, however, 
considers the possibility of unreliable performances of 
DCs when the decision variables ( jX and ijY ) are 

determined. In fact, the second policy takes the penalty 
costs for unreliable performances of DCs into account, as 
we do in this paper. We tested these policies on the 
examples with 49, 88 and 150-node data sets and 
compared the results.  

The fixed costs of locating DCs (
jf ) were obtained by 

dividing the fixed costs in Daskin (1995) by 100. The 
weights β andθ  were set to 1. We set 1000e = to model 
the competitive environments, where the penalty costs for 
losing demand of  customers  due  to  the  unreliable  

performances of DCs are high.  
The values of other parameters were set as the same 

as the first set of experiments. Tables 9 to 11 present the 
results for the 49, 88 and 150-node data sets with 
different values for the parameters P and 

is . In these 
tables, the columns marked P and s give the para- 
metersP and 

is , respectively. The columns marked TC1 
represent the expected total costs when the first policy is 
used for making the supply chain design decisions. To 
derive TC1 for each instance of problem, first we set 

0e = and obtain the decisions variables ( jX and ijY  for 

each i∈ I and for each j∈J) by solving the proposed 
integrated model. Then we set  1000e =  and  calculate 
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Table 8. Comparison of results: SA algorithm and proposed solution approach based on Lagrangian relaxation and genetic algorithm. 
 

 Problem P 
 Simulated annealing algorithm  Proposed solution approach based on Lagrangian relaxation and genetic algorithm 
 Cost Time (s)  Cost Time (s) Improvement percent in cost (%) 

1 49-node 5  245105.1 10  239957.9 2 2.1 
2 49-node 10  552348.8 11  534673.6 2 3.2 
3 49-node 15  867338.8 14  844788 3 2.6 
4 49-node 20  1220035 18  1174894 3 3.7 
5 88-node 15  729495.1 29  701044.8 6 3.9 
6 88-node 20  1021069 31  979205.3 6 4.1 
7 88-node 25  1353518 35  1273660 7 5.9 
8 88-node 30  1663188 39  1576702 8 5.2 
9 88-node 35  2003106 44  1886926 9 5.8 
10 88-node 40  2364368 52  2213048 10 6.4 
11 150-node 10  1077637 73  1000047 8 7.2 
12 150-node 20  2171631 84  2000072 9 7.9 
13 150-node 30  3275217 102  3000099 11 8.4 
14 150-node 40  4410284 127  4000128 13 9.3 
15 150-node 45  4994614 154  4500147 15 9.9 
16 150-node 50  5574317 189  5000162 17 10.3 
17 150-node 55  6243103 241  5500174 19 11.9 
18 150-node 60  6833934 356  6000194 24 12.2 

 
 
 

the objective function of Equation 17 with the 
obtained values for the decision variables. The 
resulted value of the objective function can 
represent the expected total cost when the first 
policy is used. The columns labeled N1 indicate 
the number of customers which are not served 
when the first policy is adopted to design the 
supply chain. 

To gain N1, first we set 0e = and obtain the 

decisions variables ( jX
and ijY

 for each i∈ I and 
for each j∈J) by solving the proposed integrated 
model. Then, the number  
of decision variables izY   (for each i∈ I)  which  
takes the value of 1 can represent the number  of  

customers which are not served. The columns 
marked TC2 represent the expected total costs 
when the second policy is used for determining 
supply chain design decisions.  

To obtain TC2, the integrated model is solved 
and the resulted objective value can represent the 
expected total cost. The columns labeled N2 
indicate the number of customers which are not 
served if the second policy is used for supply 
chain design. To obtain N2, the proposed 
integrated model is solved when 1 0 0 0e = . Then, 
the number of decision variables izY  which 
takes the value of 1 can represent the number of 
customers which are not served. The last column 
in each table implies the differences  between the  

expected total costs of the first policy and the 
second one and it is calculated by:   
 

1 2
1 0 0

1
T C T C

T C
− ×

.   

 
That is, the last columns indicate the percent of 
cost saving which could be provided when the 
second policy is used instead of the first policy for 
each instance of the problem. Some managerial 
insights can be driven from Tables 8 to 10.  

First, considering the possibility of unreliable 
performances of DCs in the supply chain design 
model can lead to significant cost savings. As it 
can be observed from these tables, the benefit of 
considering such possibility in the model can  be  



 

2694         Afr. J. Bus. Manage. 
 
 
 

Table 9. The benefits of considering the possibility of unreliable performances of DCs for 49-node problem. 
 

 P s TC1 N1 TC2 N2 Cost difference (%) 
1 5 20 236846.9 10 50610.59 31 78.63151925 
2 5 30 509913.3 2 55286.75 6 89.1576178 
3 10 20 411094 2 56044.02 26 86.36710479 
4 10 30 519441.7 1 59625.77 5 88.52118072 
5 15 20 550074.9 3 64700.61 20 88.23785386 
6 15 30 627699.2 0 68926.72 7 89.01914876 
7 20 20 492790.6 2 77701.61 18 84.23232853 
8 20 30 588981.1 0 80285.05 0 86.3688235 
9 25 20 617744.9 1 96212.22 12 84.42525062 
10 25 30 670688.9 0 97801.52 2 85.4177524 

 
 
 

Table 10. The benefits of considering the possibility of unreliable performances of DCs for 88-node problem. 
 

 P s TC1 N1 TC2 N2 Cost difference (%) 

1 5 20 829661.6 30 65875.09 32 92.06000518 
2 5 30 919286.1 6 68792.62 20 92.51673412 
3 10 20 680485.6 21 72046.57 23 89.41247746 
4 10 30 759262 3 73471.71 8 90.3232732 
5 15 20 738381.3 12 73467.64 31 90.05017636 
6 15 30 1095399 1 74861.83 13 93.16579547 
7 20 20 1130649 18 77548.3 21 93.14125691 
8 20 30 1231921 0 81308.14 13 93.39988986 
9 25 20 740021.4 20 85887.38 26 88.39393264 
10 25 30 957896 1 86140.96 8 91.00727389 
11 30 20 885314.5 19 97281.69 23 89.01162336 
12 30 30 969269.6 1 100851.5 4 89.59510325 
13 35 20 817931.6 9 113336 17 86.14358546 
14 35 30 1097820 0 114100.3 6 89.60665097 
15 40 20 950010.7 11 133433.3 15 85.95454822 
16 40 30 972183.3 3 133574.4 8 86.26036862 

 
 
 
be significant up to 94%.  

Also it can be seen from these tables that the amount 
of cost saving for a problem with 30s =  is more than for 
the same problem with 20s = .This can show that the 
amount of cost saving increases as the value of 
s increases. In addition, for each instance of the problem 
we have N1 < N2. In other words, when the possibility of 
unreliable performances of DCs is considered in the 
design phase, fewer customers are selected to be 
served.  

The reason can be due to the fact that when such 
possibility is considered, the model decreases the 
selected customers in order to reduce the risk of incurring 
penalty costs for unreliable performances of DCs. 
 
 
Conclusion 
 
This paper has investigated the design of  supply  chain  

with random demands where the supplier and distribution 
centers are unreliable. When the cost of serving the 
customers is prohibitive the supply chain may choose not 
to serve them at all.  

An integrated supply chain design model has been 
presented that simultaneously determines which 
customers need to be served, where distribution centers 
are located, which distribution centers are assigned to 
which customers and how much products are ordered to 
the supplier by each DC.  

The model has been formulated as a nonlinear integer 
programming that minimizes the expected total cost 
including costs of location, inventory, transportation and 
lost sales. A solution approach based on Lagrangian 
relaxation and genetic algorithm has been developed 
which is capable of solving the problem effectively. 
Besides, we have conducted numerical experiments to 
show that significant cost savings can be achieved if we 
consider the possibility of unreliable performances of DCs  
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Table 11. The benefits of considering the possibility of unreliable performances of DCs for 150-node problem. 
 

 P s TC1 N1 TC2 N2 Cost difference (%) 
1 5 20 1115864 61 82019.4 73 92.64969618 
2 5 30 1891929 13 91373.48 55 95.17035293 
3 10 20 1279921 56 89359.7 79 93.0183451 
4 10 30 1699675 7 100102.5 57 94.11049114 
5 15 20 1799409 28 96594.57 71 94.63187186 
6 15 30 1894272 2 100635.5 43 94.68737827 
7 20 20 1132547 43 102159.6 79 90.97965595 
8 20 30 1724173 4 113612.6 49 93.41060156 
9 25 20 1358116 34 111097.8 77 91.81971385 

10 25 30 1719241 2 116167.9 33 93.24306941 
11 30 20 1517994 19 119740.3 71 92.11194095 
12 30 30 1899941 1 127121.7 50 93.30917578 
13 35 20 1667698 14 131390.4 66 92.12144907 
14 35 30 1971664 1 145262.9 40 92.63247145 
15 40 20 1580987 15 143867.2 77 90.90016805 
16 40 30 1680123 1 147808.7 35 91.20250908 
17 45 20 1534083 9 157183.6 60 89.75390541 
18 45 30 1602666 0 161595.4 29 89.9170885 
19 50 20 1583160 4 172870.4 58 89.08067399 
20 50 30 1642688 0 177994.5 40 89.16443869 
21 55 20 1732884 1 187854.8 41 89.15941257 
22 55 30 1831674 0 190892.2 23 89.57826601 
23 60 20 1480603 5 169438.9 61 88.55608709 
24 60 30 1770346 1 175139.1 25 90.10706899 

 
 
 
in the supply chain design phase.  

This work can be extended in some directions. For 
instance, it would be an interesting area for future 
research to extend the proposed model for capacitated 
facilities and multiple products.  

Also, the model can be extended to include the routing 
decisions. In addition, the model will be more useful in 
the real world, when the customers can be served by 
multiple distribution centers. 
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