

Vol. 8(18), pp. 777-790, 28 September, 2014
DOI: 10.5897/AJBM2011.644
Article Number: 0350C7647676
ISSN 1993-8233
Copyright © 2014
Author(s) retain the copyright of this article
http://www.academicjournals.org/AJBM

African Journal of Business Management

Review

An efficient XML query pattern mining algorithm for
ebXML applications in e-commerce

Tsui-Ping Chang

Department of Information Technology, Ling Tung University, Taichung 408, Taiwan, R.O.C.

Received 15 March, 2011; Accepted 4 September, 2014

Providing efficient query to XML data for ebXML applications in e-commerce is crucial, as XML has
become the most important technique to exchange data over the Internet. ebXML is a set of
specification for companies to exchange their data in e-commerce. Following the ebXML specifications,
companies have a standard method to exchange business messages, communicate data, and business
rules in e-commerce. Due to its tree-structure paradigm, XML is superior for its capability of storing and
querying complex data for ebXML applications. Therefore, discovering frequent XML query patterns has
become an interesting topic for XML data management in ebXML applications. The study presents an
efficient mining algorithm, namely ebX2Miner, to discover the frequent XML query patterns for ebXML
applications. Unlike the existing algorithms, the study proposes a new idea by encoding the XML user
queries and then storing these codes to generate the frequent XML user query patterns. Furthermore,
the simulation results show that the ebX2Miner outperforms other algorithms in its execution time and
used memory space.

Key words: XML query pattern mining, XML query, encoding scheme, ebXML, e-commerce.

INTRODUCTION

XML (Cunningham, 2005) has become the de facto
standard for data representation and exchange in e-
commerce. The self-describing property empowers XML
to represent data without losing semantics, and the semi-
structure nature allows XML to model a wide variety of
data. As a result, in e-commerce, many applications
utilize XML and then follow the ebXML specifications
(Bio, 2003) to exchange their data over the Internet. In
consequence, the rapid growth of XML data in e-
commerce has provided the impetus to design and
develop the systems that can efficiently store and query
XML data for ebXML applications. ebXML (Bio, 2003) is a

set of specifications which are designed by OASIS
(Moberg, 2007) for companies to exchange data in e-
commerce. These specifications together enable a
modular electronic business framework and are designed
based on XML technology. Following the ebXML
specifications, companies have a standard method to
exchange business messages, communicate data, and
business rules in e-commerce. These business
messages, communicate data, and rules are described
by XML and with the same data frame between different
companies. Therefore, most of XML data in ebXML
applications has the same standard data structure and

E-mail: apple@teamail.ltu.edu.tw, apple@mail.ltu.edu.tw. Tel: 886-4-23892088. Fax: 886-4-23895293

Author agree that this article remain permanently open access under the terms of the Creative Commons
Attribution License 4.0 International License

778 Afr. J. Bus. Manage.

results in most of their queries may have the same
structure with query XML data.

Since XML data in ebXML applications can be treated
as trees with elements, attributes, and texts, the query
languages, that is, XPath (Clark, 1999) and XQuery
(Boag, 2010) are tree patterns with selection predicates
on multiple elements that specify the tree-structured
relationships. Thus, matching tree patterns against XML
data is a core operation in XML query evaluation. This
operation can be expensive since it involves navigation
through the tree structure of XML data. As a result, the
research efforts (Kwon et al., 2008; Lu et al., 2005; Raj et
al., 2007) have been focused on the efficient evaluation
of tree paths in XML queries.

Another approach (Bei et al., 2009; Chen et al., 2006;
Gu et al., 2007; Yang et al., 2008) of improving XML
query performance is to discover frequent XML query
patterns and to design an index mechanism or cache the
results of these patterns. Bei et al. (2009) and Yang et al.
(2008) design a transaction summary data structure (that
is, the global tree) to merge all of XML user query
patterns. At the global tree, the XML candidate query sub
trees are generated and their frequencies are thus
counted by executing the tree-join process or database
scans. As a result, the frequent XML query patterns are
efficiently discovered on the processed global tree. In
addition, in order to reduce the number of XML candidate
query sub trees, Bei et al. (2009) and Yang et al. (2008)
use the minimum support constraint to prune the
infrequent XML query patterns on the global tree.

The existing approaches (Bei et al., 2009; Chen et al.,
2006; Gu et al., 2007; Yang et al., 2008) may not be
suitable to discover the frequent XML query patterns in
ebXML applications and thus, degrade the system
performance. Bei et al. (2009) and Yang et al. (2008)
generate the XML candidate query sub trees from the
global tree and use costly containment testing to prune
the invalid candidate ones for the queries. However, in
ebXML applications, most of XML queries have the same
structure and results in most of the same query trees are
processed. Also, in order to correctly count the
frequencies of XML candidate query sub trees, the tree-
join process or database scans are executed in their
mining process. As a result, Bei et al. (2009) and Yang et
al. (2008) still follow the traditional idea of generate-and-
test paradigm, for XML query pattern mining and may not
be suitable for ebXML applications.

This paper presents a novel algorithm, ebX2Miner, to
mine the frequent XML query patterns for ebXML
applications in e-commerce. ebX2Miner has the following
advantages over the existing approaches. First,
ebX2Miner focuses on the characteristic (that is, most of
XML queries have the same structure) of ebXML
applications and thus discovers the frequent XML query
patterns with at most one database scan in the mining
process. Although the existing algorithms could efficiently

mine the frequent query patterns by constructing a tree
model, two database scans are nonetheless necessary in
order to correctly count the frequencies of candidate sub
trees, thus, downgrading the system performance.
Second, ebX2Miner encodes an XML query tree and
stores its nodes’ codes to enhance the mining perfor-
mance. The key concept in ebX2Miner is that the leaf
nodes’ codes of a user query tree can preserve the tree’s
structure information. This will greatly reduce the effort of
exploring the search space and computing time.

The rest of this paper is organized as follows. Section 2
discusses the previous works related to ebXML
applications and XML query pattern mining. Section 3
formalizes the XML frequent query pattern mining
problem in this paper. Section 4 describes the details of
ebX2Miner algorithm. Section 5 compares the ebX2Miner
algorithm with other existing XML query pattern mining
algorithms. Section 6 shows the results of the perfor-
mance study, and Section 7 illustrates the conclusion and
further work in this paper.

LITERATURE REVIEW

In this section, some related works are reviewed, inclu-
ding the papers of Bei et al. (2009), Bio (2003), Green et
al. (2005), Kim (2002) and Yang et al. (2008) on the
ebXML applications and frequent XML query pattern
mining.

ebXML provides a modular suite of specifications that
enables enterprises of any size and in any geographical
location to conduct business over the Internet (Green et
al., 2005; Kim, 2002). It purports to support the exchange
and query of structured business documents between the
applications of trading enterprises so as to support
business processes within the trading partner organi-
zations. Indeed, OASIS, one of the joint developers of
ebXML, claims that ebXML takes advantage of cost
effective Internet technology, is built on EDI experience
with input from the EDI community. Therefore, by using
ebXML over the Internet, an industry needs to define and
collect its business processes, scenarios, and company
business profiles, and makes them available through an
industry ebXML registry (typically defined using UDDI).
Then, structured business documents can be exchanged
and queried between trading parties using the automated
flow and sequence of interactions that ebXML prescribes.

Many new XML query pattern mining algorithms (Bei et
al., 2009; Yang et al., 2008) have been proposed to
discover the frequent XML query patterns. Yang et al.
(2008) collect all of XML user queries to construct a
global tree (T-GQPT) and then employ a rightmost
expansion enumeration on the T-GQPT tree to generate
XML candidate query sub trees. The main idea of right-
most expansion is that a query tree containing k nodes is
generated by appending a new node to the right most
path of a frequent sub tree containing (k-1) nodes. Thus,

many infrequent k-node trees are not enumerated if their
(k-1)-node sub trees are infrequent. In addition, to
compute the frequency of each candidate query sub tree,
Yang et al. (2008) scan the database only when the
candidate is a single branch tree. Among these
algorithms, Fast XMiner (Yang et al., 2003) is the most
efficient since the frequency of a non-single branch tree
can be computed by joining the ID list of its proper rooted
sub trees. On the other hand, 2PXMiner (Yang et al.,
2008) extends Fast XMiner to discover the frequent XML
query patterns that contain sibling repetitions. In order to
speed up the mining performance, 2PXMiner computes
the upper bound frequencies of XML candidate query sub
trees and uses the minimum support constraint to early
prune the infrequent query sub trees.

The VBU XMiner algorithm (Bei et al., 2008; Bei et al.,
2009) also maintain a tree-like data structure, the CGTG
tree, to merge all of XML queries to discover the frequent
XML query patterns. In Bei et al. (2008), all of XML
candidate query sub trees are enumerated based on the
CGTG tree, and in Bei et al. (2009), the candidates
whose frequencies are bigger than the minimum support
value are enumerated. Thus, in Bei et al. (2009), before
generating the candidate sub trees, the infrequent nodes
in the CGTG tree are pruned. Also, the nodes in the
CGTG tree are joined with their ancestor nodes which
have the same IDs. Therefore, VBU XMiner generate
candidate sub trees directly from the CGTG tree without
scanning the database. In sum, it discovers the frequent
XML query patterns on the processed CGTG tree.

Bei et al. (2008, 2009) and Yang et al. (2008) still follow
the traditional idea of generate-and-test paradigm to mine
the frequent XML query patterns and thus, have the
following drawbacks for ebXML applications in e-
commerce. First, they employ the rightmost expansion
technique to enumerate all of XML candidate query sub
trees on the global trees (that is, T-GQPT and CGTG
tree). This approach merges all path and sub tree
information of a user query tree in the global trees and
thus requires unacceptable costs of tree-join process or
database scan during the mining process. Second, a
great deal of system space is used to process XML query
trees in these algorithms and degrades their mining
performance. Unlike Yang et al. (2008), Bei et al. (2009)
accumulate the frequencies of XML candidate query sub
trees directly from the CGTG tree by executing the tree-
join process. Therefore, Bei et al. (2009) are more
efficient than Yang et al. (2008). However, Yang et al.
(2008) still cost a lot of system time to execute the tree-
join process for merging the path and sub tree
information to generate frequent XML query patterns on
the CGTG tree.

Problem statement

In this section, the problem statement is given to be

Chang 779

solved. It begins by defining the XML query trees, their
corresponding rooted sub trees, XML query tree
databases, and the frequent XML query trees. Definition
1 defines an XML query tree. Definition 2 illustrates a
rooted sub tree of an XML query tree. Definition 3
describes an XML query tree database, while Definition 4
defines the problem in this paper.

Definition 1: An XML query can be modeled as an
unordered tree Ti = <Ni, Ei>, where Ni is the node set,
and Ei is the edge set. Nodes n ∈ Ni represent the
elements, attributes, and string values in an XML query,
and edges e ∈ Ei represent the parent-child relationships
denoted by “/”.

Definition 2: Given an XML query tree Ti = <Ni, Ei> and
an XML query rooted sub tree tij = <Nij, Eij>. tij is
considered to be the rooted subtree of Ti iff there exists:

(1) Root(tij) = Root(Ti), where Root(tij) and Root(Ti) are
the functions which return the root nodes of tij and Ti
respectively.
(2) Nij  Ni, Eij  Ei.

Definition 3: Given an XML tree database D = {T1, T2,
…, Tn}, where T1, T2, …, Tn represent multiple XML query
trees in D.

Definition 4: Given an XML tree database D and a
minimum support value m ranging from (0, 1]. The
frequent XML query pattern mining problem is finding the
set S of rooted subtrees tij such that for each tij in S,
sup(tij) ≧ m holds, where sup(tij) is the equation: the
number of tij / the number of XML query trees in D.

Definition 1 defines an XML query as a tree. For
example, Figure 1 shows an XML query tree Ti of the
query to retrieve the author elements that have the string
value “john” and are descendants of book elements that
have a child title element whose value is “XML”.

Definition 2 defines an XML query rooted subtree. It
shows the rooted subtrees tij of the query tree Ti . These
rooted subtrees have the same root as the Ti and their
edges belong to those of Ti. Note that, in this paper, a
rooted subtree tij with k edge is called a k-edge tij. As a
result, subtrees (a) and (b) are 1-edge subtrees, (c), (d),
and (e) are 2-edge subtrees, and (f) is a 3-edge subtree.

Definition 3 illustrates an XML tree database D which
contains multiple XML query trees. Each query tree in
database D represents a transaction associated with its
transaction ID. For example, in Figure 2, the database D
= <T1, T2, T3, T4, T5>, where T1, T2, T3, T4, and T5 are the
query trees and with their transaction IDs 1, 2, 3, 4, and 5
respectively. In addition, Definition 4 defines the frequent
XML query pattern mining problem in this paper.

780 Afr. J. Bus. Manage.

Figure 1. The rooted subtrees of the XML query tree.

Figure 2.The XML query trees in the database D.

FREQUENT XML QUERY PATTERN MINING FOR
ebXML APPLICATIONS

In this section, the study proposes an encoding scheme
(namely XCode) to represent an XML tree with its
corresponding query trees, a data structure (namely
XList) to store the codes of XML nodes based on the
XCode scheme, and a mining algorithm (namely
ebX2Miner algorithm) based on XCode and XList to
discover the frequent XML query patterns for ebXML
applications in e-commerce.

An encoding scheme: XCode

XCode encodes the nodes of an XML tree in a xy
coordinate system where xy is the coordinate of the two-
dimensional space. The following symbols Ti, r, k, p, l, fc,
and nc are used to represent the nodes in an XML tree.

Symbol Ti represents an XML tree, r indicates the root
node in Ti, k represents a node in Ti, p indicates the
parent node of k, l represents the left sibling node of k, fc
denotes the first child node of k, and nc represents the
child node of k expect the first child fc. The encoding
rules are described for the nodes in an XML tree Ti and
listed as follows:

(1) For an XML tree Ti, the root node r is set on the origin
whose coordinates x and y are (0, 0).
(2) For any node k in the tree Ti, if k is the fc node of its
parent node p and p’s coordinates are (xp, yp), then k’s
coordinates are (xp+1, yp+1).
(3) For any node k in the tree Ti, if k is the nc node of its
parent node p and its left sibling node l has m
descendant nodes with the coordinates (xl, yl), then k’s
coordinates are (xl+m, yl).

Note that, for simplify, hereafter, the coordinates of a

book

title

book

allauthor

book

title

XML

book

author1

allauthor

book

title allauthor

book

john

author1

allauthor

(a) (b) (c) (d) (e) (f)

book

title

XML author1

john

allauthor

book

title

XML

book

title allauthor

book

chapter

book

chapter

head1 section1

head2 section2

T1 T2 T3 T4 T5

Chang 781

Figure 3. The xcodes of the nodes in the XML tree in Figure 2(a).

node in an XML tree based on the XCode scheme are
namely the xcode of a node.

Example 1. Consider the XML tree in Figure 1. Suppose
that all of nodes in the tree are encoded by the rules of
the proposed XCode scheme. The xcodes of these
nodes are shown in Figure 3. According to Rule (1), the
root node book in the XML tree in Figure 1 is set on the
origin and its xcode is (0, 0). According to Rule (2), the
nodes title, XML, author1, john, jane, 2000, head1, origins,
and head2 are the fc nodes of a node in the tree and their
xcodes are (1, 1), (2, 2), (3, 2), (5, 3), (4, 3), (5, 2), (6, 2),
(7, 3), and (8, 3) respectively. Also, by Rule (3), the
nodes allauthor, year, chapter, author2, section1, and
section2 are the nc nodes of a node in the tree and their
xcodes are (2, 1), (4, 1), (5, 1), (4, 2), (7, 2), and (9, 3)
respectively.

Derived from the XCode encoding rules, Lemmas 1, 2,
3 and 4 show the features of xcodes of an XML tree.
Lemma 1 describes that an xcode reveals the level of a
node in an XML tree, Lemmas 2 and 3 illustrate the
relationship between two xcodes of nodes in an XML tree,
and Lemma 4 illustrates that the values of xcode are
bigger than or equal to 0.

Lemma 1 for any two nodes f1 and f2 in an XML tree Ti
with the xcodes (x1, y1) and (x2, y2) respectively, if node f2
is a child node of f1, then y2 = y1 + 1.

 Proof: If f2 is the first child node of f1, according to Rule
(2), the xcode (x2, y2) of f2 is equal to (x1+1, y1+1);
otherwise, that is equal to (xs+m, ys), where (xs, ys) is the
xcode of f1’s first child node fs and fs has m descendant
nodes. Thus, if f2 is the first child node of f1, y2 = y1+1. In
addition, since y2 = ys and ys = y1 + 1 which result in y2 =
ys = y1 +1. As a result, y2 = y1 + 1.
Lemma 2: For any node f in an XML tree Ti, if f’s xcode is
(x, y), then the value of y is equal to the level l of the

node f in Ti.

Proof: We prove the lemma by showing that the value of
y is equal to that of l. There are three cases, depending
on whether node f is the root, fc, or nc node in Ti.

Case 1: Suppose that node f is the root node in Ti.
According to Rule (1), the xcode of f is (0, 0). Thus, the
value of y is equal to 0. Also, since f is the root node, f’s
level/ is equal to 0. As a result, the value of y is equal to
that of l.

Case 2: Suppose that f is the fc node in Ti. Since f is not
the root node and with the level l, it has the ancestor
nodes p0,p1,.., pl-1, where pl-1 is f’s parent node, pl-2 is pl-

1’s parent node,…, and p0 is the root node. According to
Rule (1), the xcode of p0 is (0, 0). Thus, yp0 is equal to 0.
Also, according to Lemma 2, p1’s xcode yp1 = yp0+1.
Thus, yp1 = yp0 + 1 = 0 + 1 = 1. In consequence, p2’s
xcode yp2 = yp1 + 1 = 1 + 1 = 2. Therefore, pl-1’s xcode ypl-

1 = l-1. Since f is the child node of yp-1, f’s xcode y = ypl-1 +
1 = l – 1 + 1 = l. As a result, the value of y is equal to that
of f’s level l.

Case 3: Suppose that f is the nc node and thus has a
sibling node fc in Ti. According to Case 2, the fc’s xcode
yfc = l. In consequence, according to Rule (3), f’s xcode y
is equal to yfc. As a result, y = yfc = l and the value of y is
equal to that of f’s level l.
Based on Case 1, Case2, and Case 3, we thus prove this
lemma.

Lemma 3: For any two nodes f1 and f2 in an XML tree Ti
with the xcodes (x1, y1) and (x2, y2) respectively, if node
f2 is a descendant node of f1, then both of the values of x2
and y2 are bigger than those of x1 and y1 respectively.

0 1 2 3 4 5 6 7 8

0

1

2

3

Book

title allauthor

XML author1 author2

jane john

2000

year chapter

head1 section1

origins head2

(0, 0)

(1, 1) (2, 1)

(2, 2) (3, 2)

(4, 3)

(4, 2)

(4, 1)

(5, 3)

(5, 2)

(5, 1)

(6, 2) (7, 2)

(7, 3) (8, 3)

x

y

9

Section2

(9, 3)

782 Afr. J. Bus. Manage.

Figure 4. The structures and contents of xNodes in XList.

Proof: the study proves the lemma by showing that x2 >
x1 and y2 > y1. There are two cases, depending on
whether node f2 is a child node or not of f1.

Case 1: Suppose that node f2 is a child node of f1. If f2 is
the first child node of f1, according to Rule (2), the xcode
(x2, y2) of f2 is equal to (x1+1, y1+1); otherwise, that is
equal to (xs+m, ys), where (xs, ys) is the xcode of f1’s first
child node fs and fs has m descendant nodes. Thus, if f2 is
the first child node of f1, x2 = x1 + 1 and y2 = y1+1 which
result in x2 > x1 and y2 > y1 respectively. In addition, since
x2 = xs + m, y2 = ys, xs = x1 + 1, and ys = y1 + 1 which
result in x2 >= xs > x1 and y2> ys > y1. As a result, x2 > x1
and y2 > y1.

Case 2: Suppose that node f2 is not a child node of f1 and
has a parent node fa which is a child node of f1. According
to Case 1, node fa’s xcode xfa > xf1 and yfa > yf1. Also,
since f2’s xcode xf2 > xfa and yf2 > yfa, they result xf2 > xf1
and yf2 > yf1.

Based on Case 1 and Case2, we thus prove this
lemma. �

Lemma 4: For any node f in an XML tree Ti, the values in
f’s xcode (x , y) are bigger than or equal to 0.

Proof: There are three cases, depending on whether
node f is the root, fc, or nc node in Ti.

Case 1: Suppose that node f is the root node in Ti.
According to Rule (1), f’s xcode (x, y) is (0, 0). As a
result, the values in f’s xcode (x, y) are equal to 0.

Case 2: Suppose that f is the fc node and f has ancestor
nodes p0,p1,.., pn in Ti, where pn is f’s parent node, pn-1 is
pn’s parent node,…, and p0 is the root node. According to
Case 1, the values of p0’s xcode are equal to 0. Also,
according to Rules (2) or (3), the values of p1’s xcode are
the sum of those of p0’s xcode with 1 or the number of

descendant nodes of its sibling node. Therefore, the
values of p1’s xcodes are bigger than 0. In consequence,
according to Rules (2) or (3), the values of the xcodes in
p2, p3, …, pn are thus bigger than 0. Since, according to
Rule (2), the values in f’s xcode are the sum of those of
pn’s xcode with 1. As a result, the values in f’s xcodes are
bigger than 0.

Case 3: Suppose that f is the nc node and thus has a
sibling node fc in Ti. According to Case 2, the values of
fc’s xcode are bigger than 0. In consequence, according
to Rule (3), the values in f’s xcode are the sum of those
of fc’s xcode with 1 or the number of fc’s descendant
nodes. As a result, the values in f’s xcode are bigger
than 0.

Based on Case 1, Case 2, and Case 3, the study
proves this lemma.

XList

In this subsection, the data structure XList that plays an
important role in the design of our mining algorithm is
described. XList is designed to record the xcodes of
nodes in XML query trees. In order to store an XML node,
in XList, a new node (namely xNode) with two variables
and two pointers is created. Figure 4 (a,b) presents an
XML node to be stored in an xNode of XList. Variable
code is used to store an XML node’s xcode, and variable
count is used to store the number of occurrences of the
XML node of a user query tree in a database. Also, two
pointers parent and sibling are used to link the XML
node’s parent and sibling nodes respectively.
Furthermore, the sibling pointer has a variable s-count to
record the number of occurrences of the relationships
between two XML nodes. For example, the title node is
shown in the query trees T1, T2, and T3 in the database D.
Through the XCode scheme, the xcode of the title node is
(1, 1) and it can be stored in an xNode of XList; the title

code count

parent

sibling s-count

(1, 1) 3(0, 0) 5

(2, 1) 3

titlebook

allauthor

2

(a) the structure of an xNode in

XList

(b) an example of the XML nodes stored in xNodes in

XList

node’s parent and sibling nodes are the book and
allauthor nodes and linked by its parent and sibling
pointers respectively. The xcodes of nodes book and
allauthor are (0, 0) and (2, 1) respectively, while the
numbers of occurrences of those nodes are 5 and 3
respectively. In addition, the s-count variable between the
title and allauthor nodes is 2.

In the mining scheme, XList is constructed to store the
nodes of XML query trees including their xcodes and the
number of their occurrences in an XML query tree
database. Construction of the XList consists of two steps.
In the first step, the path information of an XML query
tree is concerned (that is, the XL-Path algorithm), while in
the second step, the subtree information of an XML query
tree is considered (that is, the XL-Subtree algorithm). In
the XL-Path algorithm, the leaf nodes of XML query trees
are concerned to record the path information of an XML
query tree. If no xNode exists in XList, these leaf nodes
are stored in the new created xNodes of XList; otherwise,
their xcodes are compared with the variables code of the
existing xNodes. On the other hand, in the XL-Subtree
algorithm, the relationship of a pair of leaf nodes of XML
query trees is considered to deal with the subtree
information of an XML query tree. If the relationship is not
recorded in XList, the sibling pointers of xNodes are
used; otherwise, the number of their occurrences is
recorded in the existing variables s-count. The following
symbols Ti, li, (lx, ly), ti, ai, ni, and di are used in the XL-
Path and XL-Subtree algorithms to represent how to
record the information of XML query trees in XList.
Symbol Ti represents an XML query tree, li indicates a
leaf node of Ti, and (xl, yl) denotes the xcode of li. On the
other hand, for the data structure XList, symbol ni
represents a new created xNode, ti represents the
xNodes which are not lined by any parent pointer of an
xNode, ai indicates an ancestor node of ti , and di shows a
descendant node of an xNode.

Lines 2-5 store all of Ti’s leaf nodes into the new
created xNodes since there is no xNode in XList. Lines 7-
28 compare the xcode (lx, ly) with the variable code of ti in
XList. Line 10 adds the value 1 to the variables count of ti
and all of ti’s ancestor nodes ai since ti’s code is the same
as the xcode of li. Lines 13-15 store li into a new created
xNode ni and link ti’s parent pointer to ni since li is an
ancestor node of ti and ti has no ancestor node. Line 17
adds the value 1 to the variables of node ai and all of ai’s
ancestors since ai is the same as li. Lines 19-22 find an
xNode ai which is a descendant node of li, store li into a
new created xNode ni, and insert ni between ai and ai’s
parent node. Lines 24-25 store li into a new created
xNode ni and link ni’s parent pointer to ti since li is a
descendant node of ti. Finally, Line 27 stores li into a new
created xNode ni since li and ti have no ancestor-
descendant relationship (Figure 5).

For example, suppose that all of the query trees T1, T2,
…, and T5 are sequential read and processed by the XL-

Chang 783

Path algorithm as shown in Figure 6. Firstly, T1 is read
and Lines 2-5 are executed since there is no xNode in
XList. Thus, the leaf nodes XML and john of T1 are stored
in the new xNodes n1 and n2 of XList. Then, T2 is read
and Line 10 is executed since the leaf node XML of T2 is
the same as the xNode n1. Therefore, the value 1 is
added into the variable count of n1 and results. In
consequence, T3 is read and Lines 13-15 are executed
since T3’s leaf nodes title and allauthor are the ancestors
of xNodes n1 and n2 respectively. Thus, two new xNodes
n3 and n4 are created to store the two leaf nodes and
xNodes n1 and n2’s parent pointers are linked to n3 and n4
respectively. Also, the values of variables count of n3 and
n4 are set by the values 3 and 2 which are the sum of the
value 1 and those values in variables count of n1 and n2,
respectively. After reading T4, Lines 2-5 are executed and
the new xNode n5 is thus created for T4’s leaf node
chapter. Finally, T5 is read and Lines 24-25 are executed.
The new xNodes n6, n7, and n8 are created for T5’s leaf
node head1, head2, and section2. Also, the parent
pointers of n6 , n7, and n8 is linked to n5.

In Figure 7, Line 3 links the sibling pointers between
the two leaf nodes li and lj’s corresponding xNodes ni and
nj in XList. Lines 5-10 add the value 1 to the variables s-
count between xNodes ni and nj.

For example, suppose that all of query trees T1, T2, …,
and T5 are sequential read and processed by the XL-
Subtree algorithm as shown in Figure 7. Firstly, T1 is read
and Lines 3-8 are executed since the relationship
between the leaf nodes XML and john are not recorded in
their corresponding xNodes n1 and n2. Thus, the sibling
pointer of n1 is linked to n2 and the variable s-count is set
to the value 1. Then, T2 is read and is not processed
since it has no a pair of leaf nodes. In consequence, T3 is
read and Lines 7-8 are executed since T2’s leaf nodes
title and allauthor are the ancestors of xNodes n1 and n2
respectively. Thus, the sibling pointer between xNodes n3
and n4 are created. Also, the value of variable s-count is
set by the sum of value 1 and the value of di’s s-count. In
addition, T4 is read and not to be processed since it has
no a pair of leaf nodes. Finally, T5 is read and then Lines
3-5 are executed to show the result in Figure 8.

An XML frequent pattern mining algorithm for ebXML
applications: ebX2Miner

This subsection provides an overview of the ebX2Miner
algorithm to mine frequent XML query patterns from
anXML query tree database for ebXML applications. The
ebX2Miner is an efficient mining algorithm to discover
frequent XML query patterns based on the novel
encoding scheme XCode and data structure XList. Figure
9 shows the procedure of the ebX2Miner algorithm. The
following symbols ni, ti, pi, (cx, cy), zi, temp_n, ct, fp, and
fs are used to describe the ebX2Miner algorithm. In XList,

784 Afr. J. Bus. Manage.

Figure 5. Algorithm XL-path.

symbol ni illustrates an xNode, ti indicates the node
which has no descendant node, pi represents ti’s parent
node, (cx, cy) represents the code in ti, zi indicates the

sibling node of ti, and temp_n represents a temp xNode.
Symbol ctz indicates a cross subtree of nodes ti and zi. In
addition, symbol fp indicates a set frequent path, while fs

Algorithm XL-Path (Ti)

Input: An XML query tree Ti

Output: XList

1 if there is no xnode in XList then

2 create the new xnodes n1, n2,…, ni for all of Ti’s leaf nodes l1, l2,…, li respectively

3 store the xcodes of nodes l1, l2,…, li into the variables code of xnodes n1, n2,…, ni

4 respectively

5 set the variables count of xnodes n1, n2,…, ni with the value 1

6 else

7 for each leaf node li of Ti

8 compare the li’s xcode (lx, ly) with the variable code of each ti in XList

9 if xcode (lx, ly) is the same with ti’s code then

10 add value 1 to the count variables of ti and all of ti’s ancestor nodes ai

11 else

12 if li is the ancestor node of ti and ti has no ancestor node ai

13 store the node li into a new created xnode ni

14 link the parent pointer of ti to ni

15 set the value of variable count of ni is the sum of that of ti with 1

16 if li is an ancestor of ti and ti has an ancestor ai which is the same as li

17 add value 1 to the variable count of ai and all of ai’s ancestor nodes

18 if li is an ancestor of ti and all of ti’s ancestor ai are different from li

19 find the xnode ai which is a descendant node of li

20 store node li into a new created xnode ni

21 link the parent pointer of ni to ai’s parent pointer

22 link the parent pointer of ai to ni

23 if li is a descendant node of ti

24 store node li into a new created xnode ni

25 link ni’s parent pointer to ti

26 add value 1 to the count variables of ni and all of ni’s ancestor nodes

27 if li and ti have no ancestor-descendant relationship

28 store node li into a new created xnode ni in XList

29 end if

30 end for

31 end if

32 return XList

Chang 785

Figure 6. The XList for the XML query trees in Figure 4 after executing the XL-Path algorithm.

Figure 7. Algorithm XL-Subtree.

(2, 2) 1

n1(XML)

(5, 3) 1

n2(john)

(a)

(2, 2) 2

n1(XML)

(5, 3) 1

n2(john)

(b)

(2, 2) 2

n1(XML)

(5, 3) 1

n2(john)

(1, 1) 3

n3(title)

(2, 1) 2

n4(allauthor)

(c)

(2, 2) 2

n1(XML)

(5, 3) 1

n2(john)

(1, 1) 3

n3(title)

(2, 1) 2

n4(allauthor)

(5, 1) 2

n5(chapter)

(6, 2) 1

n6(head1)

(8, 3) 1

n7(head2)

(8, 4) 1

n8(section2)

(d)

Algorithm XL-Subtree(Ti)

Input: An XML query tree Ti

Output: XList

1 for each pair of leaf nods li and lj of Ti

2 if the relationship between li and lj is not recorded in xnodes ni and nj

3 link the sibling pointers between ni and nj

4 if there is no variable s-count of the descendant nodes di of ni and nj

5 set the variable s-count between ni and nj with the value 1

6 else

7 set the variable s-count between ni and nj with the value which is the sum of

8 the value of variable s-count of di and value 1

9 else

10 add 1 to the s-count variables between ni and nj

11 end if

12 end for

13 end while

14 return XList

786 Afr. J. Bus. Manage.

Figure 8. The XList for the XML query trees in Figure 4 after executing the XL-Subtree algorithm.

Figure 9. Algorithm ebX2Miner.

shows a set of frequent subtrees.
In Figure 9, firstly, all of XML user query trees in D are

read and encoded by the proposed scheme XCode to
construct XList. This step is done by the algorithms XL-
Path and XL-Subtree. Secondly, the study prunes the
infrequent query trees in XList by executing Lines 6-13.
Finally, the study enumerates the frequent XML query
pattern from XList by executing Lines 14-26.

For example, suppose that the database D has five
query trees T1, T2, …, and T5 and the value of m is 0.4.
Firstly, after executing Lines 2-5, the content of XList is
shown. Then, Figure 10 shows the results after executing
Lines 6-13. Finally, sets fp and fs after executing Lines
14-26 are shown.

COMPARISONS

In this section, there is the comparison of ebX2Miner with
other algorithms, including the VBUXMiner (Bei et al.,
2009), XQPMiner, XQPMinerTID, and 2PXMiner (Yang et
al., 2008) algorithms.

Comparing with VBUXMiner

ebX2Miner is more suitable for ebXML applications in e-
commerce than the VBUXMiner algorithm. First, most of
XML queries in ebXML applications have the same data
structure. However, the VBUXMiner algorithm does not
consider the characteristic of the XML queries in ebXML
applications and thus merges all of queries into the
CGTG tree. Therefore, to obtain the frequent XML query
trees, the incomplete information of an XML query tree on
the CGTG tree is collected by executing the tree-join
process. In contrast, ebX2Miner considers the charac-
teristic of ebXML applications and thus encodes the
nodes of XML user query trees. As a result, the path and

(2, 2) 2

n1(XML)

(5, 3) 1

n2(john)

(1, 1) 3

n3(title)

(2, 1) 2

n4(allauthor)
(5, 1) 2

n5(chapter)

(6, 2) 1

n6(head1)

(8, 3) 1

n7(head2)

(8, 4) 1

n8(section2)

12

1

1 1

Algorithm ebX2Miner(D, m)

Input: A set of query trees in D; specified minimum su

Output: A set of frequent query subtrees

1 /*scan the database D to construct XList;*/

2 for each Ti in the database D

3 XList = XL-Path(Ti);

4 XList = XL-Subtree(Ti);

5 end-for;

6 /* remove the infrequent nodes from XList; */

7 for each xnode ni in XList

8 if the value of count is small than m

9 delete the xnode ni

10 delete ni’s sibling pointer

11 delete all of n’s descendant nodes

12 end if

13 end for

14 /* generate the frequent subtrees from XList; */

15 for each xnode ti with xcode (cx, cy) in XList

16 while cx > 0

17 add a path (pi, ti) into set fp

18 if ti has the sibling node zi

19 add the cross subtree ctz into set fs

20 end if

21 set temp_n is pi

22 set pi is the parent of pi

23 end while

24 delete ti

25 delete ti’s sibling pointer

26 end for

Chang 787

Figure 10. The frequent query patterns for the XML query trees.

Figure 11. The CGTG tree of the query trees in database D.

subtree information of an XML query tree are preserved
in the leaf nodes’ codes and the tree-join process for
producing the frequent query trees can be ignored. For
example, the query trees are merged by the VBUXMiner
algorithm and result in the CGTG tree as shown in Figure
11. In Figure 11, the incomplete information of a frequent
XML query tree is shown and results in the VBUXMiner
algorithm to execute the tree-join process or database
scans. However, the complete information (that is, path
and subtree) of a frequent query tree is preserved by the
XCode and XList schemes in ebX2Miner. Therefore, the
tree joining process and database scans cannot be used
in ebX2Miner for generating frequent XML query trees.

Comparing with XQPMiner, XQPMinerTID, and
2PXMiner

One reason confirms that ebX2Miner may outperform
XQPMiner, XQPMinerTID, and 2PXMiner. XQPMiner,
XQPMinerTID, and 2PXMiner construct the T-GQPT tree

to summarize all of query trees in database D and then
generate all of single branch candidate subtrees from the
T-GQPT tree. Through tree joining process (that is,
constructing data structure ECTree), the single branch
candidate subtrees are merged to produce the frequent
query trees. Therefore, for ebXML applications, more
XML query trees are processed on the T-GQPT tree and
thus cost a lot of time to produce frequent XML query
trees. In contrast, ebX2Miner encodes the nodes of an
XML query tree and thus preserves the path and subtree
information of the query tree in the system to reduce time
and space costs.

PERFORMANCE STUDY

Two experiments are performed to illustrate the perfor-
mance under ebX2Miner and VBUXMiner algorithms.
Parameters and their settings in the simulation are listed
in Table 1. The parameter n denotes the number of XML
query trees in the database D, while the parameter s

(2, 2) 2

n1(XML)

(1, 1) 3

n3(title)

(2, 1) 2

n4(allauthor)

(5, 1) 2

n5(chapter)2

(a)

XML

title

book

XML

title

title

book

allauthor

book

chapter

book allauthor

book

title

fp: fs:

(b)

XML

allauthor

book

title

author1

john

[1, 2, 3]

[1, 2]

[1]

[1]

[1, 3] chapter [4, 5]

head1
[5]

section1 [5]

head2
section2

[5]
[5]

788 Afr. J. Bus. Manage.

Table 1. Simulation parameters and settings.

Parameters Descriptions Settings

n Number of XML query trees 10000 ~ 50000
S Minimum supports 3%~8%

Figure 12. The execution time with varying number of XML query trees.

represents the value of minimum support in the system.

The first experiment (Figures 12 and 13) observes the
execution time and memory space (Y-axis) of these
algorithms under different number of XML query trees (X-
axis). The memory space used in ebX2Miner and
VBUXMiner is measured by their created nodes in XList
and CGTG tree respectively. The specified minimum
support s is set to be 5%. ebX2Miner outperforms
VBUXMiner on the execution time. Both curves for
VBUXMiner and ebX2Miner increase as the number of
XML query trees increases. Obviously, ebX2Miner
changes slightly as the number of XML query trees
increases. In contrast, VBUXMiner changes heavy. One
reason could be the high efficiency and stability of the
ebX2Miner. VBUXMiner does not consider the path and
subtree of XML user query trees in its CGTG tree. Thus,
the tree-joining process and database scans are executed
to combine this information. As a result, more execution

time is used in VBUXMiner for generating the frequent
XML query patterns. This is consistent with the experi-
mental result. The used nodes generated from ebX2Miner
in XList are less than those from VBUXMinr in CGTG
tree. A possible reason is that the XCode scheme
encodes the path and subtree information in the nodes of
XList and results in a few XML nodes in query trees
stored in XList.

The second experiment (Figure 14) observes the exe-
cution time (Y-axis) of ebX2Miner and VBUXMiner under
different minimum supports (X-axis). The specified
number of XML query trees is set to 30000. ebX2Miner
outperforms VBUXMiner on the execution time. Both
curves for VBUXMiner and ebX2Miner change slightly as
the specified minimum support increases. A possible
reason is that when the specified minimum support
increases, most of the candidate subtrees of ebX2Miner
and VBUXMiner are produced from XList and CGTG tree

1.95 2.28 2.30 2.40 2.71
4.36

12.83

26.71

51.33

91.95

0

10

20

30

40

50

60

70

80

90

100

10000 20000 30000 40000 50000

E
xe
cu
ti
o
n
 t
im

e
(s
)

Number of XML user query trees

ebX2Miner VBUXMiner

Chang 789

Figure 13. The enumerated nodes with varying number of XML query trees.

Figure 14. The execution time with varying minimum supports.

respectively. The execution time of ebX2Miner is less
than that of VBUXMiner. The reason is that VBUXMiner
cost a lot of time to execute the tree-joining process to

produce the frequent XML query patterns.
The two experiments as mentioned above show that

ebX2Miner has higher mining performance than

0

2

4

6

8

10

12

14

16

10000 20000 30000 40000 50000

N
u
m
b
er
 o
f u

se
d
 n
o
d
es

Number of XML user query trees

ebX2Miner VBUXMiner

2.05 2.05 1.93 1.89 1.66 1.68

21.43

25.02

20.78

22.90

25.05 25.03

0

5

10

15

20

25

30

3% 4% 5% 6% 7% 8%

E
xe
cu
ti
o
n
 t
im

e
(s
)

Minimum support

ebX2Miner VBUXMiner

790 Afr. J. Bus. Manage.

VBUXMiner. This is because by XCode and XList
schemes, the path and subtree information are preserve
in the leaf nodes of query trees and result in less space
and time cost in the ebX2Miner.

Conclusion

This paper presents an efficient mining algorithm
ebX2Miner to discover frequent XML query patterns.
Unlike the existing algorithms, the study proposes a new
idea by encoding XML user query trees (that is, XCode)
and thus, stores these codes (that is, XList) to preserve
the path and subtree information of query trees. With this
idea, it becomes obvious that ebX2Miner is not capable of
maintaining all of the user queries and thus takes less
execution time and memory space to produce frequent
XML query patterns for ebXML applications. The future
work in this study includes expanding XML query patterns
with repeating-siblings, since ebX2Miner cannot mine the
frequent XML query patterns with sibling repetitions.

Conflict of Interests

The author has not declared any conflict of interests.

REFERENCES

Bei Y, Chen G, Dong J, Chen K (2008). Buttom-up Mining of XML

Query Patterns to Improve XML Querying. J. Zhejiang University.
9(6):744-757.

Bei Y, Chen G, Shou L, Li X, Dong J (2009). Buttom-up Discovery of
Frequent Rooted Unordered Subtrees. Information Sci. 179(1-2):70-
88.

Bio BM ebXML: An Electronic Business Scenario. (2003). Available
from: http://www.developer.com/xml/article.php/2234201.

Boag SXQ (2010). Available from: http://www.w3.org/XML/Query.
Chen L, Bhowmick SS, Chia LT (2006). FRACTURE-Mining: Mining

Frequently and Concurrently Mutating Structures from Historical XML
Documents. Data Knowl. Eng. 59(2):517-524.

Clark JXML Path Language (XPath) 2.0 (1999). Available from:
http://www.w3.org/TR/2007/REC-xpath20-20070123/

Cunningham LA (2005). Language, Deals and Standards: The Future of
XML Contracts. Washington University Law Review.

Green PF, Rosemann M, Indulska M (2005). Ontological Evaluation of
Enterprise Systems Interoperability Using ebXML. IEEE transactions
on knowledge and data engineering. 17(5):713-725.

Gu MS, Hwang JH, Ryu KH (2007). Frequent XML Query Pattern
Mining based on FP-TRee. Proceedings of the 18th International
Conference on Database and Expert Systems Applications. pp.555-
559.

Kim H (2002). Conceptual Modeling and Specification Generation for

B2B Business Processes based on ebXML. SIGMOD Record.
31(1):37-42.

Kwon J, Rao P, Moon BSL (2008). Value-based Predicate Filtering of
XML Documents. Data Knowl. Eng. 67(1):51-73.

Lu J, Ling TW, Chan CY, Chen T (2005). From Region Encoding to
Extended Dewey: on Efficient Processing of XML Twig Pattern
Matching. Proceedings of the 31st International Conference on Very
Large Databases pp.193-204

Moberg DO (2007). Available from: http://www.oasis-open.org.
Raj A, PS K (2007). Branch Sequencing Based XML Message Broker

Architecture. IEEE 23rd International Conference on Data Engineering
(ICDE) pp.656-665.

XML. Available from: http://www.w3.org/XML.
Yang LH, Lee ML, Hsu W, Acharya S (2003). Mining Frequent Query

Patterns from XML Queries. In Proceedings of the Eight International
Conference on Database Systems for Advanced Applications
(DASFAA) pp.75-87.

Yang LH, Lee ML, Hsu W, Huang D, Wong L (2008). Efficient Mining of
Frequent XML Query Patterns with Repeating-siblings. Inform.
Software Technol. 50(5):375-389.

