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Providing efficient query to XML data for ebXML applications in e-commerce is crucial, as XML has 
become the most important technique to exchange data over the Internet. ebXML is a set of 
specification for companies to exchange their data in e-commerce. Following the ebXML specifications, 
companies have a standard method to exchange business messages, communicate data, and business 
rules in e-commerce. Due to its tree-structure paradigm, XML is superior for its capability of storing and 
querying complex data for ebXML applications. Therefore, discovering frequent XML query patterns has 
become an interesting topic for XML data management in ebXML applications. The study presents an 
efficient mining algorithm, namely ebX2Miner, to discover the frequent XML query patterns for ebXML 
applications. Unlike the existing algorithms, the study proposes a new idea by encoding the XML user 
queries and then storing these codes to generate the frequent XML user query patterns. Furthermore, 
the simulation results show that the ebX2Miner outperforms other algorithms in its execution time and 
used memory space. 
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INTRODUCTION 
 
XML (Cunningham, 2005) has become the de facto 
standard for data representation and exchange in e-
commerce. The self-describing property empowers XML 
to represent data without losing semantics, and the semi-
structure nature allows XML to model a wide variety of 
data. As a result, in e-commerce, many applications 
utilize XML and then follow the ebXML specifications 
(Bio, 2003) to exchange their data over the Internet. In 
consequence, the rapid growth of XML data in e-
commerce has provided the impetus to design and 
develop the systems that can efficiently store and query 
XML data for ebXML applications. ebXML (Bio, 2003) is a 

set of specifications which are designed by OASIS 
(Moberg, 2007) for companies to exchange data in e-
commerce. These specifications together enable a 
modular electronic business framework and are designed 
based on XML technology. Following the ebXML 
specifications, companies have a standard method to 
exchange business messages, communicate data, and 
business rules in e-commerce. These business 
messages, communicate data, and rules are described 
by XML and with the same data frame between different 
companies. Therefore, most of XML data in ebXML 
applications  has the  same  standard  data  structure  and
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results in most of their queries may have the same 
structure with query XML data. 

Since XML data in ebXML applications can be treated 
as trees with elements, attributes, and texts, the query 
languages, that is, XPath (Clark, 1999) and XQuery 
(Boag, 2010) are tree patterns with selection predicates 
on multiple elements that specify the tree-structured 
relationships. Thus, matching tree patterns against XML 
data is a core operation in XML query evaluation. This 
operation can be expensive since it involves navigation 
through the tree structure of XML data. As a result, the 
research efforts (Kwon et al., 2008; Lu et al., 2005; Raj et 
al., 2007) have been focused on the efficient evaluation 
of tree paths in XML queries. 

Another approach (Bei et al., 2009; Chen et al., 2006; 
Gu et al., 2007; Yang et al., 2008) of improving XML 
query performance is to discover frequent XML query 
patterns and to design an index mechanism or cache the 
results of these patterns. Bei et al. (2009) and Yang et al. 
(2008) design a transaction summary data structure (that 
is, the global tree) to merge all of XML user query 
patterns. At the global tree, the XML candidate query sub 
trees are generated and their frequencies are thus 
counted by executing the tree-join process or database 
scans. As a result, the frequent XML query patterns are 
efficiently discovered on the processed global tree. In 
addition, in order to reduce the number of XML candidate 
query sub trees, Bei et al. (2009) and Yang et al. (2008) 
use the minimum support constraint to prune the 
infrequent XML query patterns on the global tree. 

The existing approaches (Bei et al., 2009; Chen et al., 
2006; Gu et al., 2007; Yang et al., 2008) may not be 
suitable to discover the frequent XML query patterns in 
ebXML applications and thus, degrade the system 
performance. Bei et al. (2009) and Yang et al. (2008) 
generate the XML candidate query sub trees from the 
global tree and use costly containment testing to prune 
the invalid candidate ones for the queries. However, in 
ebXML applications, most of XML queries have the same 
structure and results in most of the same query trees are 
processed. Also, in order to correctly count the 
frequencies of XML candidate query sub trees, the tree-
join process or database scans are executed in their 
mining process. As a result, Bei et al. (2009) and Yang et 
al. (2008) still follow the traditional idea of generate-and-
test paradigm, for XML query pattern mining and may not 
be suitable for ebXML applications. 

This paper presents a novel algorithm, ebX2Miner, to 
mine the frequent XML query patterns for ebXML 
applications in e-commerce. ebX2Miner has the following 
advantages over the existing approaches. First, 
ebX2Miner focuses on the characteristic (that is, most of 
XML queries have the same structure) of ebXML 
applications and thus discovers the frequent XML query 
patterns with at most one database scan in the mining 
process. Although the existing algorithms could efficiently  

 
 
 
 
mine the frequent query patterns by constructing a tree 
model, two database scans are nonetheless necessary in 
order to correctly count the frequencies of candidate sub 
trees, thus, downgrading the system performance. 
Second, ebX2Miner encodes an XML query tree and 
stores its nodes’ codes to enhance the mining perfor-
mance. The key concept in ebX2Miner is that the leaf 
nodes’ codes of a user query tree can preserve the tree’s 
structure information. This will greatly reduce the effort of 
exploring the search space and computing time. 

The rest of this paper is organized as follows. Section 2 
discusses the previous works related to ebXML 
applications and XML query pattern mining. Section 3 
formalizes the XML frequent query pattern mining 
problem in this paper. Section 4 describes the details of  
ebX2Miner algorithm. Section 5 compares the ebX2Miner 
algorithm with other existing XML query pattern mining 
algorithms. Section 6 shows the results of the perfor-
mance study, and Section 7 illustrates the conclusion and 
further work in this paper. 
 
 

LITERATURE REVIEW 
 

In this section, some related works are reviewed, inclu-
ding the papers of Bei et al. (2009), Bio (2003), Green et 
al. (2005), Kim (2002) and Yang et al. (2008) on the 
ebXML applications and frequent XML query pattern 
mining. 

ebXML provides a modular suite of specifications that 
enables enterprises of any size and in any geographical 
location to conduct business over the Internet (Green et 
al., 2005; Kim, 2002). It purports to support the exchange 
and query of structured business documents between the 
applications of trading enterprises so as to support 
business processes within the trading partner organi-
zations. Indeed, OASIS, one of the joint developers of 
ebXML, claims that ebXML takes advantage of cost 
effective Internet technology, is built on EDI experience 
with input from the EDI community. Therefore, by using 
ebXML over the Internet, an industry needs to define and 
collect its business processes, scenarios, and company 
business profiles, and makes them available through an 
industry ebXML registry (typically defined using UDDI). 
Then, structured business documents can be exchanged 
and queried between trading parties using the automated 
flow and sequence of interactions that ebXML prescribes. 

Many new XML query pattern mining algorithms (Bei et 
al., 2009; Yang et al., 2008) have been proposed to 
discover the frequent XML query patterns. Yang et al. 
(2008) collect all of XML user queries to construct a 
global tree (T-GQPT) and then employ a rightmost 
expansion enumeration on the T-GQPT tree to generate 
XML candidate query sub trees. The main idea of right-
most expansion is that a query tree containing k nodes is 
generated by appending a new node to the right  most 
path of a frequent sub  tree  containing (k-1) nodes. Thus, 



 
 
 
 
 
many infrequent k-node trees are not enumerated if their 
(k-1)-node sub trees are infrequent. In addition, to 
compute the frequency of each candidate query sub tree, 
Yang et al. (2008) scan the database only when the 
candidate is a single branch tree. Among these 
algorithms, Fast XMiner (Yang et al., 2003) is the most 
efficient since the frequency of a non-single branch tree 
can be computed by joining the ID list of its proper rooted 
sub trees. On the other hand, 2PXMiner (Yang et al., 
2008) extends Fast XMiner to discover the frequent XML 
query patterns that contain sibling repetitions. In order to 
speed up the mining performance, 2PXMiner computes 
the upper bound frequencies of XML candidate query sub 
trees and uses the minimum support constraint to early 
prune the infrequent query sub trees.  

The VBU XMiner algorithm (Bei et al., 2008; Bei et al., 
2009) also maintain a tree-like data structure, the CGTG 
tree, to merge all of XML queries to discover the frequent 
XML query patterns. In Bei et al. (2008), all of XML 
candidate query sub trees are enumerated based on the 
CGTG tree, and in Bei et al. (2009), the candidates 
whose frequencies are bigger than the minimum support 
value are enumerated. Thus, in Bei et al. (2009), before 
generating the candidate sub trees, the infrequent nodes 
in the CGTG tree are pruned. Also, the nodes in the 
CGTG tree are joined with their ancestor nodes which 
have the same IDs. Therefore, VBU XMiner generate 
candidate sub trees directly from the CGTG tree without 
scanning the database. In sum, it discovers the frequent 
XML query patterns on the processed CGTG tree. 

Bei et al. (2008, 2009) and Yang et al. (2008) still follow 
the traditional idea of generate-and-test paradigm to mine 
the frequent XML query patterns and thus, have the 
following drawbacks for ebXML applications in e-
commerce. First, they employ the rightmost expansion 
technique to enumerate all of XML candidate query sub 
trees on the global trees (that is, T-GQPT and CGTG 
tree). This approach merges all path and sub tree 
information of a user query tree in the global trees and 
thus requires unacceptable costs of tree-join process or 
database scan during the mining process. Second, a 
great deal of system space is used to process XML query 
trees in these algorithms and degrades their mining 
performance. Unlike Yang et al. (2008), Bei et al. (2009) 
accumulate the frequencies of XML candidate query sub 
trees directly from the CGTG tree by executing the tree-
join process. Therefore, Bei et al. (2009) are more 
efficient than Yang et al. (2008). However, Yang et al. 
(2008) still cost a lot of system time to execute the tree-
join process for merging the path and sub tree 
information to generate frequent XML query patterns on 
the CGTG tree. 
 
 

Problem statement  
 

In  this  section,  the  problem  statement  is  given  to  be  
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solved. It begins by defining the XML query trees, their 
corresponding rooted sub trees, XML query tree 
databases, and the frequent XML query trees. Definition 
1 defines an XML query tree. Definition 2 illustrates a 
rooted sub tree of an XML query tree. Definition 3 
describes an XML query tree database, while Definition 4 
defines the problem in this paper. 
 
Definition 1: An XML query can be modeled as an 
unordered tree Ti = <Ni, Ei>, where Ni is the node set, 
and Ei is the edge set. Nodes n ∈ Ni represent the 
elements, attributes, and string values in an XML query, 
and edges e ∈ Ei represent the parent-child relationships 
denoted by “/”. 
 
Definition 2: Given an XML query tree Ti = <Ni, Ei> and 
an XML query rooted sub tree tij = <Nij, Eij>. tij is 
considered to be the rooted subtree of Ti iff there exists: 
 
(1) Root(tij) = Root(Ti), where Root(tij) and Root(Ti) are 
the functions which return the root nodes of tij and Ti 
respectively.  
(2) Nij  Ni, Eij  Ei. 
 
Definition 3: Given an XML tree database D = {T1, T2, 
…, Tn}, where T1, T2, …, Tn represent multiple XML query 
trees in D. 
 
Definition 4: Given an XML tree database D and a 
minimum support value m ranging from (0, 1]. The 
frequent XML query pattern mining problem is finding the 
set S of rooted subtrees tij such that for each tij in S, 
sup(tij) ≧ m holds, where sup(tij) is the equation: the 
number of tij / the number of XML query trees in D.  
 
Definition 1 defines an XML query as a tree. For 
example, Figure 1 shows an XML query tree Ti of the 
query to retrieve the author elements that have the string 
value “john” and are descendants of book elements that 
have a child title element whose value is “XML”. 

Definition 2 defines an XML query rooted subtree. It 
shows the rooted subtrees tij of the query tree Ti . These 
rooted subtrees have the same root as the Ti and their 
edges belong to those of Ti. Note that, in this paper, a 
rooted subtree tij with k edge is called a k-edge tij. As a 
result, subtrees (a) and (b) are 1-edge subtrees, (c), (d), 
and (e) are 2-edge subtrees, and (f) is a 3-edge subtree.  

Definition 3 illustrates an XML tree database D which 
contains multiple XML query trees. Each query tree in 
database D represents a transaction associated with its 
transaction ID. For example, in Figure 2, the database D 
= <T1, T2, T3, T4, T5>, where T1, T2, T3, T4, and T5 are the 
query trees and with their transaction IDs 1, 2, 3, 4, and 5 
respectively. In addition, Definition 4 defines the frequent 
XML query pattern mining problem in this paper. 
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Figure 1. The rooted subtrees of the XML query tree. 

 
 
 

 
 
Figure 2.The XML query trees in the database D. 

 
 
 
FREQUENT XML QUERY PATTERN MINING FOR 
ebXML APPLICATIONS 
 
In this section, the study proposes an encoding scheme 
(namely XCode) to represent an XML tree with its 
corresponding query trees, a data structure (namely 
XList) to store the codes of XML nodes based on the 
XCode scheme, and a mining algorithm (namely 
ebX2Miner algorithm) based on XCode and XList to 
discover the frequent XML query patterns for ebXML 
applications in e-commerce. 
 
 
An encoding scheme: XCode 
 
XCode encodes the nodes of an XML tree in a xy 
coordinate system where xy is the coordinate of the two-
dimensional space. The following symbols Ti, r, k, p, l, fc, 
and nc are used to represent the nodes in  an  XML  tree. 

Symbol Ti represents an XML tree, r indicates the root 
node in Ti, k represents a node in Ti, p indicates the 
parent node of k, l represents the left sibling node of k, fc 
denotes the first child node of k, and nc represents the 
child node of k expect the first child fc. The encoding 
rules are described for the nodes in an XML tree Ti and 
listed as follows:  
 
(1) For an XML tree Ti, the root node r is set on the origin 
whose coordinates x and y are (0, 0). 
(2) For any node k in the tree Ti, if k is the fc node of its 
parent node p and p’s coordinates are (xp, yp), then k’s 
coordinates are (xp+1, yp+1). 
(3) For any node k in the tree Ti, if k is the nc node of its 
parent node p and its left sibling node l has m 
descendant nodes with the coordinates (xl, yl), then k’s 
coordinates are (xl+m, yl). 
 
Note  that,  for  simplify,  hereafter,  the  coordinates  of  a  
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Figure 3. The xcodes of the nodes in the XML tree in Figure 2(a). 

 
 
 
node in an XML tree based on the XCode scheme are 
namely the xcode of a node. 
  
Example 1. Consider the XML tree in Figure 1. Suppose 
that all of nodes in the tree are encoded by the rules of 
the proposed XCode scheme. The xcodes of these 
nodes are shown in Figure 3. According to Rule (1), the 
root node book in the XML tree in Figure 1 is set on the 
origin and its xcode is (0, 0). According to Rule (2), the 
nodes title, XML, author1, john, jane, 2000, head1, origins, 
and head2 are the fc nodes of a node in the tree and their 
xcodes are (1, 1), (2, 2), (3, 2), (5, 3), (4, 3), (5, 2), (6, 2), 
(7, 3), and (8, 3) respectively. Also, by Rule (3), the 
nodes allauthor, year, chapter, author2, section1, and 
section2 are the nc nodes of a node in the tree and their 
xcodes are (2, 1), (4, 1), (5, 1), (4, 2), (7, 2), and (9, 3) 
respectively.  

Derived from the XCode encoding rules, Lemmas 1, 2, 
3 and 4 show the features of xcodes of an XML tree. 
Lemma 1 describes that an xcode reveals the level of a 
node in an XML tree, Lemmas 2 and 3 illustrate the 
relationship between two xcodes of nodes in an XML tree, 
and Lemma 4 illustrates that the values of xcode are 
bigger than or equal to 0. 

Lemma 1 for any two nodes f1 and f2 in an XML tree Ti 
with the xcodes (x1, y1) and (x2, y2) respectively, if node f2 
is a child node of f1, then y2 = y1 + 1. 

 Proof: If f2 is the first child node of f1, according to Rule 
(2), the xcode (x2, y2) of f2 is equal to (x1+1, y1+1); 
otherwise, that is equal to (xs+m, ys), where (xs, ys) is the 
xcode of f1’s first child node fs and fs has m descendant 
nodes. Thus, if f2 is the first child node of f1, y2 = y1+1. In 
addition, since y2 = ys and ys = y1 + 1 which result in y2 = 
ys = y1 +1. As a result, y2 = y1 + 1. 
Lemma 2: For any node f in an XML tree Ti, if f’s xcode is 
(x, y), then the value of y is equal to the level l of the 

node f in Ti.  
 
Proof: We prove the lemma by showing that the value of 
y is equal to that of l. There are three cases, depending 
on whether node f is the root, fc, or nc node in Ti.  
 
Case 1: Suppose that node f is the root node in Ti. 
According to Rule (1), the xcode of f is (0, 0). Thus, the 
value of y is equal to 0. Also, since f is the root node, f’s 
level/ is equal to 0. As a result, the value of y is equal to 
that of l. 
 
Case 2: Suppose that f is the fc node in Ti. Since f is not 
the root node and with the level l, it has the ancestor 
nodes p0,p1,.., pl-1, where pl-1 is f’s parent node, pl-2 is pl-

1’s parent node,…, and p0 is the root node. According to 
Rule (1), the xcode of p0 is (0, 0). Thus, yp0 is equal to 0. 
Also, according to Lemma 2, p1’s xcode yp1 = yp0+1. 
Thus, yp1 = yp0 + 1 = 0 + 1 = 1. In consequence, p2’s 
xcode yp2 = yp1 + 1 = 1 + 1 = 2. Therefore, pl-1’s xcode ypl-

1 = l-1. Since f is the child node of yp-1, f’s xcode y = ypl-1 + 
1 = l – 1 + 1 = l. As a result, the value of y is equal to that 
of f’s level l. 
 
Case 3: Suppose that f is the nc node and thus has a 
sibling node fc in Ti. According to Case 2, the fc’s xcode 
yfc = l. In consequence, according to Rule (3), f’s xcode y 
is equal to yfc. As a result, y = yfc = l and the value of y is 
equal to that of f’s level l. 
Based on Case 1, Case2, and Case 3, we thus prove this 
lemma. 
 
Lemma 3: For any two nodes f1 and f2 in an XML tree Ti 
with the xcodes (x1, y1) and (x2, y2) respectively, if node 
f2 is a descendant node of f1, then both of the values of x2 
and y2 are bigger than those of x1 and y1 respectively. 
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Figure 4. The structures and contents of xNodes in XList. 

 
 
 
Proof: the study proves the lemma by showing that x2 > 
x1 and y2 > y1. There are two cases, depending on 
whether node f2 is a child node or not of f1. 
 
Case 1: Suppose that node f2 is a child node of f1. If f2 is 
the first child node of f1, according to Rule (2), the xcode 
(x2, y2) of f2 is equal to (x1+1, y1+1); otherwise, that is 
equal to (xs+m, ys), where (xs, ys) is the xcode of f1’s first 
child node fs and fs has m descendant nodes. Thus, if f2 is 
the first child node of f1, x2 = x1 + 1 and y2 = y1+1 which 
result in x2 > x1 and y2 > y1 respectively. In addition, since 
x2 = xs + m, y2 = ys, xs = x1 + 1, and ys = y1 + 1 which 
result in x2 >= xs > x1 and y2> ys > y1. As a result, x2 > x1 
and y2 > y1. 
 
Case 2: Suppose that node f2 is not a child node of f1 and 
has a parent node fa which is a child node of f1. According 
to Case 1, node fa’s xcode xfa > xf1 and yfa > yf1. Also, 
since f2’s xcode xf2 > xfa and yf2 > yfa, they result xf2 > xf1 
and yf2 > yf1. 

Based on Case 1 and Case2, we thus prove this 
lemma. � 
 
Lemma 4: For any node f in an XML tree Ti, the values in 
f’s xcode (x , y) are bigger than or equal to 0. 
 
Proof: There are three cases, depending on whether 
node f is the root, fc, or nc node in Ti. 
 
Case 1: Suppose that node f is the root node in Ti. 
According to Rule (1), f’s xcode (x, y) is (0, 0). As a 
result, the values in f’s xcode (x, y) are equal to 0. 
 
Case 2: Suppose that f is the fc node and f has ancestor 
nodes p0,p1,.., pn in Ti, where pn is f’s parent node, pn-1 is 
pn’s parent node,…, and p0 is the root node. According to 
Case 1, the values of p0’s xcode are equal to 0. Also, 
according to Rules (2) or (3), the values of p1’s xcode are 
the sum of those of p0’s xcode  with  1  or  the  number  of 

descendant nodes of its sibling node. Therefore, the 
values of p1’s xcodes are bigger than 0. In consequence, 
according to Rules (2) or (3), the values of the xcodes in 
p2, p3, …, pn are thus bigger than 0. Since, according to 
Rule (2), the values in f’s xcode are the sum of those of 
pn’s xcode with 1. As a result, the values in f’s xcodes are 
bigger than 0.   
 
Case 3: Suppose that f is the nc node and thus has a 
sibling node fc in Ti. According to Case 2, the values of 
fc’s xcode are bigger than 0. In consequence, according 
to Rule (3), the values in f’s xcode are the sum of those 
of fc’s xcode with 1 or the number of fc’s descendant 
nodes. As a result, the values in f’s xcode are bigger 
than 0. 

Based on Case 1, Case 2, and Case 3, the study 
proves this lemma.
 
 
XList 
 
In this subsection, the data structure XList that plays an 
important role in the design of our mining algorithm is 
described. XList is designed to record the xcodes of 
nodes in XML query trees. In order to store an XML node, 
in XList, a new node (namely xNode) with two variables 
and two pointers is created. Figure 4 (a,b) presents an 
XML node to be stored in an xNode of XList. Variable 
code is used to store an XML node’s xcode, and variable 
count is used to store the number of occurrences of the 
XML node of a user query tree in a database. Also, two 
pointers parent and sibling are used to link the XML 
node’s parent and sibling nodes respectively. 
Furthermore, the sibling pointer has a variable s-count to 
record the number of occurrences of the relationships 
between two XML nodes. For example, the title node is 
shown in the query trees T1, T2, and T3 in the database D. 
Through the XCode scheme, the xcode of the title node is 
(1, 1) and it can be stored in an xNode  of  XList;  the  title  
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node’s parent and sibling nodes are the book and 
allauthor nodes and linked by its parent and sibling 
pointers respectively. The xcodes of nodes book and 
allauthor are (0, 0) and (2, 1) respectively, while the 
numbers of occurrences of those nodes are 5 and 3 
respectively. In addition, the s-count variable between the 
title and allauthor nodes is 2.  

In the mining scheme, XList is constructed to store the 
nodes of XML query trees including their xcodes and the 
number of their occurrences in an XML query tree 
database. Construction of the XList consists of two steps. 
In the first step, the path information of an XML query 
tree is concerned (that is, the XL-Path algorithm), while in 
the second step, the subtree information of an XML query 
tree is considered (that is, the XL-Subtree algorithm). In 
the XL-Path algorithm, the leaf nodes of XML query trees 
are concerned to record the path information of an XML 
query tree. If no xNode exists in XList, these leaf nodes 
are stored in the new created xNodes of XList; otherwise, 
their xcodes are compared with the variables code of the 
existing xNodes. On the other hand, in the XL-Subtree 
algorithm, the relationship of a pair of leaf nodes of XML 
query trees is considered to deal with the subtree 
information of an XML query tree. If the relationship is not 
recorded in XList, the sibling pointers of xNodes are 
used; otherwise, the number of their occurrences is 
recorded in the existing variables s-count. The following 
symbols Ti, li, (lx, ly), ti, ai, ni, and di are used in the XL-
Path and XL-Subtree algorithms to represent how to 
record the information of XML query trees in XList. 
Symbol Ti represents an XML query tree, li indicates a 
leaf node of Ti, and (xl, yl) denotes the xcode of li. On the 
other hand, for the data structure XList, symbol ni 
represents a new created xNode, ti represents the 
xNodes which are not lined by any parent pointer of an 
xNode, ai indicates an ancestor node of ti , and di shows a 
descendant node of an xNode. 

Lines 2-5 store all of Ti’s leaf nodes into the new 
created xNodes since there is no xNode in XList. Lines 7-
28 compare the xcode (lx, ly) with the variable code of ti in 
XList. Line 10 adds the value 1 to the variables count of ti 
and all of ti’s ancestor nodes ai since ti’s code is the same 
as the xcode of li. Lines 13-15 store li into a new created 
xNode ni and link ti’s parent pointer to ni since li is an 
ancestor node of ti and ti has no ancestor node. Line 17 
adds the value 1 to the variables of node ai and all of ai’s 
ancestors since ai is the same as li. Lines 19-22 find an 
xNode ai which is a descendant node of li, store li into a 
new created xNode ni, and insert ni between ai and ai’s 
parent node. Lines 24-25 store li into a new created 
xNode ni and link ni’s parent pointer to ti since li is a 
descendant node of ti. Finally, Line 27 stores li into a new 
created xNode ni since li and ti have no ancestor-
descendant relationship (Figure 5). 

For example, suppose that all of the query trees T1, T2, 
…, and T5 are sequential read and processed by the XL- 
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Path algorithm as shown in Figure 6. Firstly, T1 is read 
and Lines 2-5 are executed since there is no xNode in 
XList. Thus, the leaf nodes XML and john of T1 are stored 
in the new xNodes n1 and n2 of XList. Then, T2 is read 
and Line 10 is executed since the leaf node XML of T2 is 
the same as the xNode n1. Therefore, the value 1 is 
added into the variable count of n1 and results. In 
consequence, T3 is read and Lines 13-15 are executed 
since T3’s leaf nodes title and allauthor are the ancestors 
of xNodes n1 and n2 respectively. Thus, two new xNodes 
n3 and n4 are created to store the two leaf nodes and 
xNodes n1 and n2’s parent pointers are linked to n3 and n4 
respectively. Also, the values of variables count of n3 and 
n4 are set by the values 3 and 2 which are the sum of the 
value 1 and those values in variables count of n1 and n2, 
respectively. After reading T4, Lines 2-5 are executed and 
the new xNode n5 is thus created for T4’s leaf node 
chapter. Finally, T5 is read and Lines 24-25 are executed. 
The new xNodes n6, n7, and n8 are created for T5’s leaf 
node head1, head2, and section2. Also, the parent 
pointers of n6 , n7, and n8 is linked to n5. 

In Figure 7, Line 3 links the sibling pointers between 
the two leaf nodes li and lj’s corresponding xNodes ni and 
nj in XList. Lines 5-10 add the value 1 to the variables s-
count between xNodes ni and nj.  

For example, suppose that all of query trees T1, T2, …, 
and T5 are sequential read and processed by the XL-
Subtree algorithm as shown in Figure 7. Firstly, T1 is read 
and Lines 3-8 are executed since the relationship 
between the leaf nodes XML and john are not recorded in 
their corresponding xNodes n1 and n2. Thus, the sibling 
pointer of n1 is linked to n2 and the variable s-count is set 
to the value 1. Then, T2 is read and is not processed 
since it has no a pair of leaf nodes. In consequence, T3 is 
read and Lines 7-8 are executed since T2’s leaf nodes 
title and allauthor are the ancestors of xNodes n1 and n2 
respectively. Thus, the sibling pointer between xNodes n3 
and n4 are created. Also, the value of variable s-count is 
set by the sum of value 1 and the value of di’s s-count. In 
addition, T4 is read and not to be processed since it has 
no a pair of leaf nodes. Finally, T5 is read and then Lines 
3-5 are executed to show the result in Figure 8. 
 
 
An XML frequent pattern mining algorithm for ebXML 
applications: ebX2Miner 
 
This subsection provides an overview of the ebX2Miner 
algorithm to mine frequent XML query patterns from 
anXML query tree database for ebXML applications. The 
ebX2Miner is an efficient mining algorithm to discover 
frequent XML query patterns based on the novel 
encoding scheme XCode and data structure XList. Figure 
9 shows the procedure of the ebX2Miner algorithm. The 
following symbols ni, ti, pi, (cx, cy), zi, temp_n, ct, fp, and 
fs are used to describe the ebX2Miner algorithm. In  XList,  
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Figure 5. Algorithm XL-path. 

 
 
 
symbol ni illustrates an xNode, ti indicates the node 
which has no descendant node, pi represents ti’s parent 
node, (cx, cy) represents the code  in  ti,  zi  indicates  the 

sibling node of ti, and temp_n represents a temp xNode. 
Symbol ctz indicates a cross subtree of nodes ti and zi. In 
addition,  symbol fp indicates a set frequent path, while fs

Algorithm XL-Path (Ti) 

Input: An XML query tree Ti 

Output: XList 

1         if there is no xnode in XList then 

2        create the new xnodes n1, n2,…, ni for all of Ti’s leaf nodes l1, l2,…, li respectively 

3        store the xcodes of nodes l1, l2,…, li into the variables code of xnodes n1, n2,…, ni  

4     respectively 

5       set the variables count of xnodes n1, n2,…, ni with the value 1 

6        else 

7        for each leaf node li of Ti 

8      compare the li’s xcode (lx, ly) with the variable code of each ti in XList 

9        if xcode (lx, ly) is the same with ti’s code then 

10        add value 1 to the count variables of ti and all of ti’s ancestor nodes ai 

11          else 

12        if li is the ancestor node of ti and ti has no ancestor node ai 

13            store the node li into a new created xnode ni  

14            link the parent pointer of ti to ni 

15            set the value of variable count of ni is the sum of that of ti with 1 

16        if li is an ancestor of ti and ti has an ancestor ai which is the same as li  

17            add value 1 to the variable count of ai and all of ai’s ancestor nodes 

18        if li is an ancestor of ti and all of ti’s ancestor ai are different from li 

19           find the xnode ai which is a descendant node of li 

20           store node li into a new created xnode ni 

21           link the parent pointer of ni to ai’s parent pointer 

22           link the parent pointer of ai to ni 

23         if li is a descendant node of ti  

24           store node li into a new created xnode ni  

25           link ni’s parent pointer to ti 

26           add value 1 to the count variables of ni and all of ni’s ancestor nodes 

27          if li and ti have no ancestor-descendant relationship 

28           store node li into a new created xnode ni in XList 

29         end if 

30        end for 

31         end if 

32        return XList 
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Figure 6. The XList for the XML query trees in Figure 4 after executing the XL-Path algorithm. 

 
 
 

 
 
Figure 7. Algorithm XL-Subtree. 

(2, 2) 1
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(a)
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n1(XML)

(5, 3) 1
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(b)
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n1(XML)
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n2(john)
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n3(title)
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(c)
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n1(XML)
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n2(john)

(1, 1) 3

n3(title)

(2, 1) 2

n4(allauthor)

(5, 1) 2

n5(chapter)

(6, 2) 1

n6(head1)

(8, 3) 1

n7(head2)

(8, 4) 1

n8(section2)

(d)  

Algorithm XL-Subtree(Ti) 

Input: An XML query tree Ti 

Output: XList 

1 for each pair of leaf nods li and lj of Ti 

2    if the relationship between li and lj is not recorded in xnodes ni and nj 

3     link the sibling pointers between ni and nj  

4     if there is no variable s-count of the descendant nodes di of ni and nj 

5       set the variable s-count between ni and nj with the value 1 

6     else 

7       set the variable s-count between ni and nj with the value which is the sum of 

8          the value of variable s-count of di and value 1 

9    else 

10       add 1 to the s-count variables between ni and nj 

11  end if   

12 end for 

13 end while 

14 return XList 
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Figure 8. The XList for the XML query trees in Figure 4 after executing the XL-Subtree algorithm. 

 
 
 

 
 
Figure 9. Algorithm ebX2Miner. 

shows a set of frequent subtrees. 
In Figure 9, firstly, all of XML user query trees in D are 

read and encoded by the proposed scheme XCode to 
construct XList. This step is done by the algorithms XL-
Path and XL-Subtree. Secondly, the study prunes the 
infrequent query trees in XList by executing Lines 6-13. 
Finally, the study enumerates the frequent XML query 
pattern from XList by executing Lines 14-26.  

For example, suppose that the database D has five 
query trees T1, T2, …, and T5 and the value of m is 0.4. 
Firstly, after executing Lines 2-5, the content of XList is 
shown. Then, Figure 10 shows the results after executing 
Lines 6-13. Finally, sets fp and fs after executing Lines 
14-26 are shown.  
 
 
COMPARISONS 
 
In this section, there is the comparison of ebX2Miner with 
other algorithms, including the VBUXMiner (Bei et al., 
2009), XQPMiner, XQPMinerTID, and 2PXMiner (Yang et 
al., 2008) algorithms. 
 
 
Comparing with VBUXMiner 
 
ebX2Miner is more suitable for ebXML applications in e- 
commerce than the VBUXMiner algorithm. First, most of 
XML queries in ebXML applications have the same data 
structure. However, the VBUXMiner algorithm does not 
consider the characteristic of the XML queries in ebXML 
applications and thus merges all of queries into the 
CGTG tree. Therefore, to obtain the frequent XML query 
trees, the incomplete information of an XML query tree on 
the CGTG tree is collected by executing the tree-join 
process. In contrast, ebX2Miner considers the charac-
teristic of ebXML applications and thus encodes the 
nodes of XML user query trees. As a result, the path  and  

(2, 2) 2

n1(XML)

(5, 3) 1

n2(john)

(1, 1) 3

n3(title)

(2, 1) 2

n4(allauthor)
(5, 1) 2

n5(chapter)

(6, 2) 1

n6(head1)

(8, 3) 1

n7(head2)

(8, 4) 1

n8(section2)

12

1

1 1

Algorithm ebX2Miner(D, m) 

Input: A set of query trees in D; specified minimum su

Output: A set of frequent query subtrees  

1  /*scan the database D to construct XList;*/ 

2  for each Ti in the database D 

3   XList = XL-Path(Ti); 

4   XList = XL-Subtree(Ti); 

5  end-for; 

6  /* remove the infrequent nodes from XList; */ 

7  for each xnode ni in XList 

8   if the value of count is small than m 

9     delete the xnode ni 

10    delete ni’s sibling pointer  

11    delete all of n’s descendant nodes 

12  end if 

13  end for 

14  /* generate the frequent subtrees from XList; */ 

15  for each xnode ti with xcode (cx, cy) in XList 

16   while cx > 0 

17      add a path (pi, ti) into set fp 

18      if ti has the sibling node zi 

19         add the cross subtree ctz into set fs 

20      end if 

21      set temp_n is pi 

22      set pi is the parent of pi 

23    end while 

24    delete ti 

25    delete ti’s sibling pointer 

26  end for 
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Figure 10. The frequent query patterns for the XML query trees. 

 
 

 
 
Figure 11. The CGTG tree of the query trees in database D. 

 
 
 
subtree information of an XML query tree are preserved 
in the leaf nodes’ codes and the tree-join process for 
producing the frequent query trees can be ignored. For 
example, the query trees are merged by the VBUXMiner 
algorithm and result in the CGTG tree as shown in Figure 
11. In Figure 11, the incomplete information of a frequent 
XML query tree is shown and results in the VBUXMiner 
algorithm to execute the tree-join process or database 
scans. However, the complete information (that is, path 
and subtree) of a frequent query tree is preserved by the 
XCode and XList schemes in ebX2Miner. Therefore, the 
tree joining process and database scans cannot be used 
in ebX2Miner for generating frequent XML query trees.  
 
 
Comparing with XQPMiner, XQPMinerTID, and 
2PXMiner 
 
One reason confirms that ebX2Miner may outperform 
XQPMiner, XQPMinerTID, and 2PXMiner. XQPMiner, 
XQPMinerTID, and 2PXMiner construct the T-GQPT tree 

to summarize all of query trees in database D and then 
generate all of single branch candidate subtrees from the 
T-GQPT tree. Through tree joining process (that is, 
constructing data structure ECTree), the single branch 
candidate subtrees are merged to produce the frequent 
query trees. Therefore, for ebXML applications, more 
XML query trees are processed on the T-GQPT tree and 
thus cost a lot of time to produce frequent XML query 
trees. In contrast, ebX2Miner encodes the nodes of an 
XML query tree and thus preserves the path and subtree 
information of the query tree in the system to reduce time 
and space costs. 
 
 
PERFORMANCE STUDY 
 
Two experiments are performed to illustrate the perfor-
mance under ebX2Miner and VBUXMiner algorithms. 
Parameters and their settings in the simulation are listed 
in Table 1. The parameter n denotes the number of XML 
query trees  in  the  database  D,  while  the  parameter  s  
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Table 1. Simulation parameters and settings. 
 

Parameters Descriptions Settings 

n Number of XML query trees 10000 ~ 50000 
S Minimum supports 3%~8% 

 
 
 

 
 
Figure 12. The execution time with varying number of XML query trees. 

 
 
 
represents the value of minimum support in the system. 

The first experiment (Figures 12 and 13) observes the 
execution time and memory space (Y-axis) of these 
algorithms under different number of XML query trees (X-
axis). The memory space used in ebX2Miner and 
VBUXMiner is measured by their created nodes in XList 
and CGTG tree respectively. The specified minimum 
support s is set to be 5%. ebX2Miner outperforms 
VBUXMiner on the execution time. Both curves for 
VBUXMiner and ebX2Miner increase as the number of 
XML query trees increases. Obviously, ebX2Miner 
changes slightly as the number of XML query trees 
increases. In contrast, VBUXMiner changes heavy. One 
reason could be the high efficiency and stability of the 
ebX2Miner. VBUXMiner does not consider the path and 
subtree of XML user query trees in its CGTG tree. Thus, 
the tree-joining process and database scans are executed 
to combine this information. As a  result,  more  execution 

time is used in VBUXMiner for generating the frequent 
XML query patterns. This is consistent with the experi-
mental result. The used nodes generated from ebX2Miner 
in XList are less than those from VBUXMinr in CGTG 
tree. A possible reason is that the XCode scheme 
encodes the path and subtree information in the nodes of 
XList and results in a few XML nodes in query trees 
stored in XList. 

The second experiment (Figure 14) observes the exe-
cution time (Y-axis) of ebX2Miner and VBUXMiner under 
different minimum supports (X-axis). The specified 
number of XML query trees is set to 30000. ebX2Miner 
outperforms VBUXMiner on the execution time. Both 
curves for VBUXMiner and ebX2Miner change slightly as 
the specified minimum support increases. A possible 
reason is that when the specified minimum support 
increases, most of the candidate subtrees of ebX2Miner 
and VBUXMiner are produced from XList  and CGTG tree  
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Figure 13. The enumerated nodes with varying number of XML query trees. 

 
 

 
 
Figure 14. The execution time with varying minimum supports. 

 
 
 
respectively. The execution time of ebX2Miner is less 
than that of VBUXMiner. The reason is that VBUXMiner 
cost a lot of time to  execute  the  tree-joining  process  to 

produce the frequent XML query patterns. 
The two experiments as mentioned above show that 

ebX2Miner    has     higher    mining     performance   than  

0

2

4

6

8

10

12

14

16

10000 20000 30000 40000 50000

N
u
m
b
er
 o
f u

se
d
 n
o
d
es

Number of XML user query trees

ebX2Miner VBUXMiner

2.05 2.05 1.93 1.89 1.66 1.68

21.43

25.02

20.78

22.90

25.05 25.03

0

5

10

15

20

25

30

3% 4% 5% 6% 7% 8%

E
xe
cu
ti
o
n
 t
im

e 
(s
)

Minimum support

ebX2Miner VBUXMiner



 
790          Afr. J. Bus. Manage. 
 
 
 
VBUXMiner. This is because by XCode and XList 
schemes, the path and subtree information are preserve 
in the leaf nodes of query trees and result in less space 
and time cost in the ebX2Miner. 
 
 
Conclusion 
 
This paper presents an efficient mining algorithm 
ebX2Miner to discover frequent XML query patterns. 
Unlike the existing algorithms, the study proposes a new 
idea by encoding XML user query trees (that is, XCode) 
and thus, stores these codes (that is, XList) to preserve 
the path and subtree information of query trees. With this 
idea, it becomes obvious that ebX2Miner is not capable of 
maintaining all of the user queries and thus takes less 
execution time and memory space to produce frequent 
XML query patterns for ebXML applications. The future 
work in this study includes expanding XML query patterns 
with repeating-siblings, since ebX2Miner cannot mine the 
frequent XML query patterns with sibling repetitions. 
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