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In this paper, we develop ARMA-GARCH type models for modelling volatility and financial market risk of 
shares on the Johannesburg Stock Exchange under the assumption of a skewed Student-t distribution. 
Daily data is used for the period 2002 to 2010. Several GARCH type models are used including 
threshold GARCH, GARCH-in mean and exponential GARCH. The results suggest that daily returns can 
be characterized by an ARMA (0, 1) process. This means that shocks to conditional mean dissipate after 
one period. Empirical results show that ARMA (0,1)-GARCH(1, 1) model achieves the most accurate 
volatility forecast. These results are useful to financial managers and modellers in both emerging and 
developed economies. 
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INTRODUCTION 
 
Financial time series data such as stock prices and 
returns are characterized by high volatility and fat tails. 
They exhibit high frequency, non-constant mean and 
variance. Models for volatility modelling were first 
developed by Engle (1982). These models known as the 
autoregressive conditional heteroskedasticity (ARCH) 
models were developed to capture the non-constant 
variance. ARCH models were later extended to 
generalized ARCH (GARCH) models by Bollerslev (1986) 
and Nelson (1991). This paper investigates the behaviour 
of ARMA-GARCH type models for modelling volatility and 
financial market risk of shares on the Johannesburg 
Stock Exchange (JSE). The JSE is licensed as an 
exchange under the Securities Services Act of 2004 and 
is Africa’s premier exchange (JSE website). It has 
operated as a market place for the trading of financial 
products for nearly 120 years. The JSE is also a major 
provider of financial information. In everything it does, the 
JSE strives to be a responsible corporate citizen. The 
JSE does not only channel funds into the economy, but 
also provides investors with returns on investments in the 
form    of    dividends.    The    JSE    analyzes    business  
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information to identify areas of risk and make 
recommendations on profitability models. The exchange 
is fulfilling its main function by rechanneling cash 
resources into the productive economy activity, thus 
building the economy while enhancing job opportunities 
and wealth creation. In this time, the JSE has evolved 
from a traditional floor based equities trading market to a 
modern securities exchange providing fully electronic 
trading, clearing and settlement in equities, financial and 
agricultural derivatives and other associated instruments 
and has extensive surveillance capabilities. Volatility is 
defined as the statistical measure of the dispersion of 
returns for a security or market index within a specific 
time horizon. Volatility can either be measured by using 
the standard deviation or variance between returns from 
that same security or market index. It is used to quantify 
the risk of the financial instrument over the specified time 
period. Investors and financial analysts are concerned 
about the uncertainty of the returns on their investment 
assets caused by market risk and instability of business 
performance (Alexander, 1999). 

 
 
DATA 

 
Daily  data  of  stock  prices  of  all   counters   listed   on   the   JSE 
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Figure 1. Plot of daily prices for JSE stock index (2002 - 2010). 
 
 
 

 
 

Figure 2. Plot of daily returns for JSE stock index (2002-2010). 
 
 
 

Table 1. Descriptive statistics for indices and returns. 
 

 Mean Median Max Min Std. dev. Skew. Kurtosis Jarque-Bera 

Prices 19249 20212 33233 7361 7876 0.02883 1.4776 217.5 (0.000) 

Returns 0.00049 0.00094 0.06834 -0.07581 0.01348 -0.11421 6.105 910.4 (0.000) 
 
 
 

for the period 2002 to 2010 is used. Graphical plots of price indices 
and returns are shown in Figures 1 and 2, respectively. Figure 1 
shows that the daily stock prices are not stationary while Figure 2 
for the returns shows that volatility occurs in bursts and shows 
volatility clustering.  

Formal unit root tests were carried out using the Augmented-
Dickey Fuller tests. The results indicated that the logs of stock 
prices are stationary after taking the first difference. Based on the 

stationarity requirements, we calculated the daily returns (𝑟𝑡) as 
shown in Equation 1: 

1𝑟𝑡 = ln𝑃𝑡 − ln𝑃𝑡−1                                                                           (1) 
 

where  𝑃𝑡  , 𝑃𝑡−1 are the current and one period lagged prices, 
respectively. 

Table 1 shows descriptive statistics for stock indices and returns. 
The skewness of the indices is positive showing that the distribution 
of these indices has a long right tail. The kurtosis of the indices is  

                                                           
1 𝑟𝑡 = ∇𝑙𝑛𝑃𝑡 =  1 − 𝐵 𝑙𝑛𝑃𝑡 = ln𝑃𝑡 − ln𝑃𝑡−1 = 𝑙𝑛
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1.4776. The skewness of the returns is negative. This is an 
indication that the distribution of the returns has a long left tail. The 
kurtosis of returns is very high and greater than three indicating that 
the distribution of the returns is leptokurtic, that is it is fat tailed. This 
shows that the sample data exhibits financial characteristics of 
leptokurtosis and volatility clustering. The negative value of 
skewness suggests greater probability of large decreases in stock 
returns during the sample period. 

The high value of kurtosis for the returns also suggests that 
extreme price changes occurred more frequently. For both prices 
and returns, the null hypothesis of normality was rejected as shown 
by the Jarque-Bera test statistics which were all significant at the 
5% level.   
 
 

THE MODELS 
 

Modelling volatility in time series data using GARCH-type models 
has been studied extensively over the past three decades. More 
recent work includes that of (Lee and Kim, 2008; Horv´ath et al., 
2008; Kallsen and Vesenmayer, 2009; He and Maheu, 2010; Kim et 
al., 2010; Matías et al., 2010; Mohammadi and Su, 2010; Zanotti et 
al., 2010). Our modelling consists of two steps. Initially, we specify 
the ARMA (p, q) model for the mean returns; this is followed by 
fitting GARCH (p, q) models for conditional volatility. In both steps 
residual analysis is carried out. The results from this analysis 
suggest that the returns may be modelled as an ARMA (0, 1) 
process. That is: 
 

  1tttr                 (2) 

 

where tr  are returns,    is the mean value of the returns and t
represents the error term with mean zero and potentially subject to 
conditional heteroskedasticity. 
 
 
The generalized ARCH (GARCH) process  
 
Following the natural extension of the ARMA process as a 
parsimonious representation of a higher order AR process, 
Bollerslev (1986) extended the work of Engle to the generalized 
ARCH or GARCH process. The GARCH (p, q) process is defined 
as,  
 

𝜎𝑡
2 = 𝜔 +  𝛼𝑖

𝑞

𝑖=1

𝜀𝑡−𝑖
2 +  𝛽𝑗

𝑝

𝑗=1

𝜎𝑡−𝑗
2  

𝜔 > 0, 𝛼𝑖 ≥ 0, 𝛽𝑗 ≥ 0 .                                                     (3)   

 

where 𝜎𝑡 
2 is the conditional variance, which is a linear function of 𝑞 

lags of the squares of the error terms 𝜀𝑡
2 or the ARCH terms and 

𝑝 lags of the past value of the conditional variances 𝜎𝑡
2 or the 

GARCH terms, and the constants 𝛼𝑖 , 𝛽𝑗  and 𝜔. The inequality 

restrictions are imposed to guarantee a positive conditional 
variance, almost surely. Often, the GARCH (1, 1) process, that is: 

 
𝜎𝑡

2 = 𝜔 + 𝛼1𝜀𝑡−1
2 + 𝛽1𝜎𝑡−1

2 ,  

 
is sufficient enough to explain the characteristics of the time series 
and is a popular model in econometric and financial time series, 
(Hansen and Lunde, 2001). 
 
 

GARCH-in-mean (GARCH-M) 
 
Financial theory suggests that an increase in  variance  (that  is,  an 
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increase in risk) results in a higher expected return. To account for 
this, GARCH-in-mean models are also considered Floros (2008). 
The standard GARCH-M model is given by: 

 
𝑟𝑡 = 𝜇 + 𝛽1𝜎𝑡

2 + 𝜀𝑡          

 𝜀𝑡~𝑁(0, 𝜎𝑡
2)  

 𝜎𝑡
2 = 𝜔 + 𝛼εt−1

2 + 𝛽𝜎𝑡−1
2                                    (4) 

 
If 𝛽1  is positive (and significant), then increased risk leads to a rise 

in the mean return (𝛽1𝜎𝑡
2 can be interpreted as a risk premium). 

 
 
Exponential-GARCH (EGARCH) 
 
EGARCH models were designed to capture the leverage effect 
noted in Black (1976) and French et al. (1987). The EGARCH 
model was developed by Nelson (1991). A simple variance 
specification of EGARCH is given by: 
 

log 𝜎𝑡
2 = 𝜔 + 𝛽 log 𝜎𝑡−1

2 + 𝛼  
𝜀𝑡−1

𝜎𝑡−1
 + 𝛾

𝜀𝑡−1

𝜎𝑡−1
                             (5) 

 
The EGARCH models were developed to capture the leverage 
effect, Floros (2008). For stock prices, negative shocks (bad news) 
generally have large impacts on their volatility than positive shocks 
(good news). The presence of leverage effect can be tested by the 
hypothesis that 𝛾 < 0. If 𝛾 ≠ 0, then the impact is asymmetric. 
 
 
Threshold-GARCH (TGARCH) 
 
The TGARCH model was introduced by Zakoian (1994) and 
Glosten et al. (1993). The TGARCH specification for the conditional 
variance is given by: 
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where 𝑑𝑡 = 1 if 𝜀𝑡 < 0 and 𝑑𝑡 = 0 otherwise. In this model, good 
news (𝜀𝑡 > 0) and bad news (𝜀𝑡 < 0) have differential effects on the 
conditional variance. Good news has impact of 𝛼, while bad news 
has impact of 𝛼 + 𝛾. If 𝛾 > 0 then the leverage effect exists and bad 
news increases volatility, while if 𝛾 ≠ 0 the news impact is 
asymmetric. 

 
 
EMPIRICAL RESULTS AND DISCUSSION 
 

The models were tested on JSE data. We first estimate 
ARMA (p, q) models with 𝑟𝑡  as the dependent variable. 
The ARMA (0, 1) model is selected for all the indices. We 
then estimate GARCH (p, q) type models. 

The QQ-plot for the returns shown in Figure 3 falls 
nearly on a straight line except at the beginning, where 
the plot goes up marginally. QQ-plots that fall on a 
straight line in the middle but curve upward at the 
beginning indicate that the distribution is leptokurtic and 
has a thicker tail than the normal distribution. 

Results of the ARMA (0, 1)-GARCH (1, 1) model for 

returns are shown in Table 2. The estimate of   is 

significant supporting the use of ARMA (0, 1) model for 
the returns. Volatility shocks are persistent since the sum 
of the ARCH and GARCH coefficients  are  very  close  to  
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Figure 3. Q-Q plot for daily returns. 

 
 
 

Table 2. ARMA (0, 1)-GARCH (1, 1) models for returns. 
 

Mean equation  Variance equation Model diagnostics 

𝜇 = 0.000699 (0.0025 ) 𝜔 = 0.00000275 (0.0002) 𝛼 + 𝛽 = 0.981264 

𝜃 = 0.052105 (0.0157) 𝛼 = 0.100866 (0.0000) )20(Q  =  16.591 (0.618) 

 β = 0.880398 (0.0000) )20(2Q  = 110.74 (0.000) 

  )10( ARCH  = 0.098048(0.0002) 
 

)20(Q  and )20(2Q
 
are the Box-Pierce Q statistics tests for serial correlations in the standardized residuals 

and the standardized residuals squared respectively with 20 lags while ARCH (10) is Engle’s LM test of ARCH 
effects up to the 10th order. P-values are shown in parentheses. In all cases 5% level of significance is used. 

 
 
 

one. The estimates for  and  are highly significant. 

The Box-Pierce Q statistics is insignificant up to lag 20 
indicating that there is no excessive autocorrelation left in 
the residuals. Engle’s LM test indicate that there are no 
more ARCH effects left up to lag 10.  

Table 3 summarizes the parameter estimates for the 
ARMA (0, 1)-GARCH (1, 1)-M model. The coefficient in 
Equation 4 denoted by 𝛽1 is positive and insignificant 
meaning that increased risk does not necessarily imply 
higher returns. Volatility shocks are persistent. The 
coefficient of  is significantly positive and less than one, 

indicating that the impact of “old” news on volatility is 
significant. The box-pierce Q statistics  up  to  lag  20  are 

insignificant showing that there is no correlation left in the 
residuals. Engle’s LM test indicate that there is no more 
ARCH effects left up to lag 10.  

Table 4 presents results for the ARMA (0, 1)-EGARCH 
(1, 1) model. The leverage effect term,  is negative, 

indicating the existence of the leverage effect in future 

returns during the sampling period. Since 0 the news 

impact is asymmetric, supporting the use of the skewed 

Student-t distribution for tz  (the standardized residuals). 

Engle’s LM test indicates that there are no more ARCH 
effects left up to lag 10. 

The ARMA (0, 1)-TGARCH (1, 1)  model  for  returns  is 
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Table 3. ARMA (0, 1)-GARCH (1, 1)-M model for returns. 
 

Mean equation Variance equation Model diagnostics 

𝜇 = 0.000700 (0.0666) 𝜔 = 3.51E-06 (0.0000) 𝛼 + 𝛽 = 0.973041 

𝜃 = 0.038229 (0.0771) 𝛼 = 0.087248 (0.0000) )20(Q = 17.364 (0.565) 

𝛽1= 1.992545 (0.4863) 𝛽 = 0.885793(0.0000) )20(2Q  = 20.185 (0.384) 

  )10( ARCH  = 0.051124 (0.0339) 
 

Note: See Table 2. 
 
 
 

Table 4. ARMA (0, 1)-EGARCH (1, 1) model for returns. 
 

Mean equation Variance equation Model diagnostics 

𝜇 = 0.000585 (0.0117) 𝜔 = -1.283838(0.0000) 𝛼 + 𝛽 = 0.98663 

𝜃 = 0.043173 (0.0517) 𝛼 = 0.104387 (0.0000) )20(Q  = 18.990 (0.457) 

 𝛽 = 0.882243 (0.0000) )20(2Q  = 110.74 (0.000) 

 𝛾 = -0.148124 (0.0000) )10( ARCH  =  0.098048(0.0002) 
 

See Table 2. 
 
 
 

Table 5. ARMA (0, 1)-TARCH (1, 1) model for returns. 
 

Mean equation Variance equation Model diagnostics 

𝜇 = 0.000111 (0.6278) 𝜔 = 0.0000024 (0.0000) 𝛼 + 𝛽 = 0.9253794 

𝜃 = 0.046135 (0.0296) 𝛼 = -0.002896 (0.8408) )20(Q = 16.310 (0.636) 

 𝛽 = 0.925377 (0.0000) )20(2Q = 25.018 (0.160) 

 𝛾 = 0.126200 (0.0000) )10( ARCH = 0.04526 (0.067) 
 

See Table 2. 
 
 
 

Table 6. Out of sample forecast evaluation for conditional variance.  
 

 
ARMA(0, 1)-
GARCH(1, 1) 

ARMA (0, 1)-
GARCH (1, 1)-M 

ARMA (0, 1)-
EGARCH (1, 1) 

ARMA(0, 1)-TGARCH 
(1, 1) 

RMSE 0.013475 0.013483 0.013480 0.013476 
 
 
 

shown in Table 5. Since 0 the news impact is 

asymmetric. The leverage effect exists since  is 

significantly positive. This implies that bad news will 
increase volatility. Persistence in volatility shocks is 
evident as the sum of the ARCH and GARCH terms is 
close to one. 
 
 

Out of sample predictions  
 
The  root  mean  squared  error  (RMSE)  is  used  in  the 

evaluation of the out of sample predictions for the period 
January to March 2011. The RMSE for the conditional 
mean are calculated as follows: 

 

n

rr
n

t

ftat




 1

2

RMSE ,                              (7)  

 
where n is the number of out of sample forecast data 

points, with ftat rr  being the forecast errors. The  terms  
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ftat rr  and are the actual return and its future forecast, 

respectively. 
For the conditional volatility models RMSE is calculated 

as follows: 
 

 

n

n

t

ftat




 1

222

RMSE



,                                        (8)  

 

where 
22  and ftat  are realized and forecasts of volatility, 

respectively. Table 6 presents the RMSE for the out of 
sample forecast evaluation for conditional variance.  The 
RMSE statistics is used to rank the models based on 
their out of sample forecasting accuracy. The ARMA (0, 
1)-GARCH (1, 1) model achieve the most accurate 
volatility forecasts. 
 
 
Conclusion 
 
We used GARCH type models for modeling daily returns 
on the Johannesburg Stock Exchange. Empirical results 
show that returns are characterized by an ARMA (0, 1) 
process.  

This implies that shocks to conditional mean dissipate 
after one period. The results indicate that the daily 
returns can be characterized by the GARCH type models. 
The out of sample forecasting evaluations indicate that 
the ARMA (0, 1)-GARCH (1,1) model achieve the most 
accurate volatility forecasts. Our results show that 
increased risk does not necessarily imply an increase in 
returns. The high values of kurtosis for the returns 
suggest that extreme price changes occurred more 
frequently during the sample period, 2002 to 2010. 

Future research should look at forecasting volatility of 
daily data using Markov regime switching GARCH 
models, extreme value theory in predicting the 
probabilities of extreme returns and the use of the 
Bayesian GARCH approach in the estimation of the 
volatility of the residual returns. These will be considered 
elsewhere. 
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