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In stock markets, many types of time series models such as statistical time series model, fuzzy time 
series model, and advanced time series model based on artificial intelligence algorithms were advanced 
by academic researchers to forecast stock price. Some drawbacks are issued for these models as 
follows: (1) mathematical assumptions are required for statistical time series models; (2) the forecast 
from fuzzy time series model is a linguistic value that is not as accurate as statistical time series; and 
(3) a proper threshold is not easy to be produced by advanced time series model and the forecasting 
algorithm is unintelligible. To deal with these problems, we propose a novel price-pattern detection 
method to look for certain price-patterns (“price trend” and “price variation”) contained in time series 
variables that can be used to forecast stock market. From model verification using a nine-year period of 
Taiwan stock market index (TAIEX) as experimental datasets, it is shown that the proposed model 
outperforms three listing fuzzy time series (Su et al.,2010; Huarng and Yu ,2006; Chen,1996), and 
statistic time series models (AR(1),AR(2) and ARMA(1,1)).  
 
Key words: Stock forecasting, price-pattern, time series, fuzzy time series. 

 
 
INTRODUCTION 
 
Many stock investors have made a great loss because 
they made wrong judgment on stock price trend. In most 
cases, they have not enough professional knowledge to 
analyze market trend or useful forecasting tools to 
analyze stock market. Therefore, for stock market 
participators, finding a forecasting tool that can predict 
future trend accurately or a model in which most of stock 
observations behave has been regarded as a path to 
make rich.  

For academic researchers, stock price forecasting is 
one of popular research issues and time series model is 
one of major forecasting approaches to predict stock 
market. Time series forecasting is to build a model with 
known past observations to forecast future events. In past 
literature of stock forecasting, many types of time series 
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models were proposed to forecast stock market and we 
summarized them as three types of models: (1) statistical 
time series model (Hanke and Reitsch,1995; Bollerslev, 
1986; Engle, 1982); (2) fuzzy time series model (Chen et 
al., 2008; Chen et al.,2007; Cheng et al., 2006;; Huarng 
and Yu, 2005; Yu, 2005; Huarng, 2001; Hwang et 
al.,1998; Chen,1996; Song and Chissom, 1993); and (3) 
advanced fuzzy time series model based on artificial 
intelligence algorithm (Su et al., 2010; Cheng et al.,2010; 
Teoh et al., 2009; Huarng and Yu , 2006; Chen and 
Chung, 2006; Pai PF and Lin CS, 2004). Statistical time 
series model is the original model and it employs 
mathematic formula based on statistical theory to model 
time series observations. As artificial intelligence (AI) 
arising in recent scientific research, many advanced 
theories and algorithms (that is fuzzy set, neural network, 
genetic algorithm and rough set algorithm) were applied 
in   time  series  to  deal  with  complex    and    non-linear 
relationships within stock market. Fuzzy time series 
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applied the fuzzy sets (Zadeh, 1975a, b, 1976) to convert 
numeric observations into linguistic observations and 
extracted non-linear relationships, fuzzy logical 
relationship (Song and Chissom, 1993), from historical 
time series observations as a rule base to forecast future 
events. Besides, to improve forecasting performance of 
fuzzy time series, some AI-based algorithms such as 
neural network (Huarng and Yu, 2006), genetic algorithm 
(Cheng et al., 2010; Chen and Chung, 2006) and rough 
set algorithm (Su et al., 2010; Teoh et al., 2009) were 
applied to refine fuzzy time series model as advanced 
fuzzy time series model. 

After reviewing the forecasting principles of the past 
models, three disadvantages are addressed: (1) specific 
statistical assumptions about observations (stock price) 
are made for statistical time series and the model is 
represented as mathematic formula that is quite 
unreadable for common investor; (2) the forecast from 
fuzzy time series models is a linguistic value and the 
defuzzification method such as “centroid” method 
(Chen,1996) to defuzzify the linguistic value usually 
produce a rough forecast that is not as accurate as 
statistical time series ; and (3) the optimal threshold to 
reach the best performance for AI-based time series is 
generated with a great effort and the forecasting 
algorithm is unintelligible. 

To avoid the disadvantages, this paper has proposed a 
novel price-pattern detection method to extract “occurred 
patterns” from time series observations to forecast stock 
market. The proposed method is to analyze present stock 
price-pattern, defined as “price trend” and “price variation” 
in this paper, and measure the similarity with past 
“occurred patterns” in history stock data. The stock price-
patterns with higher similarity are used the pattern basis 
for forecasting.  Additionally, to promote forecasting 
accuracy, an adaptive model (Chen et al., 2008) is 
utilized in forecasting process of the proposed model. 
With the price-pattern detection method and the adaptive 
model, we argue that the proposed model could produce 
more “understandable” and “accurate” forecasts than past 
models. 
 
 

LITERATURE REVIEW 
 

Statistical time series 
 

Time series forecasting is the use of a model to forecast 
future events based on known past events: to predict 
data points before they are measured. An example of 
time series forecasting in econometrics is predicting the 
opening price of a stock based on its past performance. 
Models for time series data can have many forms and 
represent different stochastic processes.  When modeling 
variations in the level of a process, three broad classes of 
practical importance are: (1) the autoregressive (AR) 
models, (2) the integrated (I) models, and (3) the  moving 
average (MA) models. 

The simplest correlated stationary processes are  

 
 
 
 
autoregressive processes, where Yt is modeled as a 
weighted average of past observations plus a white noise 
“error,” which is also called the “noise" or disturbance."  
Starting with AR (1) processes, the simplest 
autoregressive processes is given by following statement 
(Ruppert, 2011).  

Let t ,..., 21  be white noise with a mean of “0” and a 

variance of   . Y1, Y2, …,Yt is an AR(1) process by 

below equation if for some constant parameters   and 

 , for all t. 

 

ttt YY    )( 1  

 
where the parameter   is the mean of the process. 

A process Yt is a moving average process if Yt can be 
expressed as a weighted average (moving average) of 

the past values of the white noise process t . The MA (1) 

(moving average of order 1) process is defined by the 
equation (Ruppert, 2011): 
 

1 tttY   

 
Where as before the white noise with a mean of “0” and a 

variance of  .   

The three classes of models, the AR models, 
the integrated (I) models, and the MA models, depend 
linearly (Gershenfeld, 1999) on previous data points. 
Combinations of these above models produce time series 
models such as autoregressive moving average (ARMA) 
and autoregressive integrated moving average (ARIMA).  
Box and Jenkins (1976) developed a general linear 
stochastic model which supposes a time series to be 
generated by a linear aggregation of random shocks (Box 
and Jenkins, 1976). The important property of the 
resulting ARMA models is that it perform forecast at linear 
stationary condition (Box and Jenkins,1976). An ARMA 
(p, q) model combines both AR and MA terms and is 
defined by the equation, which shows how Yt depends on 
lagged values of itself and lagged values of the white 
noise process (Ruppert, 2011). 
 

qtttptptt YYY    ...)(...)()( 111
 

 
Nevertheless, many empirical time series behave as 
through them had no fixed mean. Models that describe 
such homogeneous non-stationary behavior can be 
obtained by supposing some suitable difference of the 
process to be stationary. The properties of the important 

class of models for which the d -th difference is a sta-

tionary  mixed  autoregressive-moving  average  process. 
These models are called Autoregressive Integrated 
Moving Average (ARIMA) processes (Box and Jenkins,  



 
 
 
 
1976). Traditionally, the ARIMA model has been one of 
the most widely used linear models in time series 
forecasting. 

Non-linear dependence of the level of a series on 
previous data points is of interest, partly because of the 
possibility of producing a chaotic time series. Among 
other types of non-linear time series models, there are 
models to represent the changes of variance along time 
that is called “heteroskedasticity”. Engle (1982) 
suggested the ARCH (Autoregressive Conditional 
Heteroscedasticity) to model time series variables and it 
has played an important role in financial analysis 
(Engle,1982). The GARCH (Generalized ARCH) model is 
generalized from ARCH (Bollerslev, 1986). The collection 
of ARCH comprises a wide variety of representation such 
as GARCH, TARCH, EGARCH, FIGARCH, and 
CGARCH. 
 
 

Fuzzy time series 
 

Time series models had failed to consider the application 
of fuzzy sets (Zadeh,1975a,b, 1976) until fuzzy time 
series was advanced by Song and Chissom (1993). They 
proposed the definitions of fuzzy time series and methods 
to model fuzzy relationships among obser-vations of 
enrollment. For producing better forecasting results, the 
following researcher, Chen (1996) proposed an arithmetic 
approach to improve the initial model. After that, many 
following researchers proposed several fuzzy time series 
model to improve forecasting accuracy (Su et al., 2010; 
Cheng et al., 2010; Teoh et al., 2009; Chen et al., 2008; 
Chen et al., 2007; Huarng and Yu, 2006; Chen and 
Chung, 2006; Cheng et al., 2006; Huarng and Yu, 2005; 
Yu, 2005; Huarng, 2001; Hwang et al., 1998).  

In this paper, the definitions and forecasting procedures 
for Song and Chissom’s (1993) model and Chen’s model 
(1996), refereed by many following researchers, are used 
to introduce the main concepts of fuzzy time series.  
 
 

Song and Chissom’s (1993) fuzzy time series 
 

Definition 1: Y(t) (t =… 0, 1, 2,…) is a subset of a real 
number. Let Y(t) be the universe of discourse defined by 
the fuzzy set fi(t). If F(t) consists of Fi(t)(i =1, 2,…), F(t) is 
defined as a fuzzy time series on Y(t) (t =…, 0,1, 2,…).  
 

Definition 2: If there exists a fuzzy logical relationship 

R(t-1, t), such that F(t)＝F(t-1) x R(t-1, t), where x 

represents an operation, then F(t) is said to be caused by 
F(t-1). The logical relationship between F(t) and F(t-1) 
can be represented as F(t-1) F(t). 
 

Definition 3: Let F(t-1)=Ai and F(t)=Aj. The relationship 
between two consecutive  observations,  F(t)  and  F(t-1),  
referred to as a fuzzy logical relationship (FLR), can be 

denoted by Ai
Aj, where Ai is called the Left-Hand Side 

(LHS) and Aj the Right-Hand Side (RHS) of the FLR. 
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Definition 4: All fuzzy logical relationships in the training 
dataset can be further grouped together into different 
fuzzy logical relationship groups according to the same 
Left-Hand Sides of the fuzzy logical relationship. For 
example, there are two fuzzy logical relationships with the 
same Left-Hand Side (Ai): Ai→Aj 1 and A i →Aj 2 . These 
two fuzzy logical relationships can be grouped into a 
fuzzy logical relationship group. 
 

Definition 5: Suppose F(t) is caused by F(t-1) only, and 
F(t) = F(t-1) × R(t-1,t). For any t, if R(t-1,t) is independent 
of t , then F(t) is named a time-invariant fuzzy time series 
, otherwise a time-variant fuzzy time series. 
 
Definition 6: Assume that F(t) is a fuzzy time series and 
F(t ) is caused by F (t-1 ), F(t-2 ), . . . , and F(t-n), then 
the fuzzy logical relationship can be represented as 
following: F (t-1), F (t-2), . . . , F(t-n) → F(t). This 
expression is called the n-th order fuzzy time series 
forecasting model, where n ≧ 2(Chen, 1996; Chen and 
Chung,2006). 
 
Song and Chissom employed six main procedures in 
time-invariant fuzzy time series and time-variant fuzzy 
time series models as follows: (1) define and partition the 
universe of discourse; (2) define fuzzy sets for the 
observations; (3) partition the intervals; (4) fuzzify the 
observations; (5) establish the fuzzy relationship, FLR, 
and forecast; and (6) defuzzify the forecasting results. 
 
 

Chen’s (1996) fuzzy time series 
 

After Song and Chissom’s (1993) model, Chen (1996) 
proposed an arithmetic approach in the procedures of 
fuzzy time series to enhance the original model. The 
algorithm of Chen’s model is introduced as follows. 
 
Step 1: Define the universe of discourse and intervals for 
rules abstraction.  
Based on the issue domain, the universe of discourse 
can be defined as: U = [starting, ending]. As the length of 
interval is determined, U can be partitioned into several 
equal length intervals. 
 

Step 2: Define fuzzy sets based on the universe of 
discourse and fuzzify the historical data. 
 

Step 3: Fuzzify observed rules. 
For example, a datum is fuzzified to Aj if the maximal 
degree of membership of that datum is in Aj . 
 

Step 4: Establish fuzzy logical relationships and group 
them based on the current states of the data of the fuzzy 
logical relationships.  
  For example, A1→A2, A1→A1, A1→ A3, can be grouped 
as: A1→A1, A2, A3 . 

 
Step 5: Forecast.  

Let   iAtF 1 . 
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Case 1: There is only one fuzzy logical relationship in the 
fuzzy logical relationship sequence. If Ai →Aj, then F(t), 
forecast value, is equal to Aj. 
Case 2: If  Ai →Ai , Aj , …, Ak, then F(t), forecast value, is 
equal to Ai , Aj , …, Ak . 
 

Step 6: Defuzzify.  Apply “centroid” method to get the 
results. This procedure (also called center of area, center 
of gravity) is the most often adopted method of 
defuzzification. 
 
 

Proposed concepts 
 

After reviewing literature related to statistical time series 
and fuzzy time series models, we discovered two 
disadvantages for past time series models as following 
statements.  

Firstly, some mathematic assumptions for observations 
are made in statistical time series models. The time 
series variables are independent each other and 
identically distribution as normal random variables, and it 
should be tested whether the variables are stationary or 
not. Additionally, the time series models are usually 
represented as complex mathematic equations or 
formulas that are unintelligible for common stock 
investors. 

Secondly, the forecast generated by fuzzy time series 
models is usually less accurate than statistical time series 
models. Fuzzy numbers are used to represent 
observations and, therefore, the forecast from fuzzy time 
series models is a linguistic value which has to be 
defuzzified to produce a numeric forecast by a 
defuzzification process. The defuzzification method such 
as “centroid” method (Chen, 1996) usually produce a 
rough forecast from some specific linguistic values.  

In order to enhance fuzzy time series forecasting 
accuracy and avoid the disadvantages of statistical time 
series models, a novel forecasting method based on time 
series (research framework is illustrated in Figure 1) is 
proposed and three improvement concepts are factored 
into the proposed method:  

(1) the mathematic assump-tions such as stationary 
and variable independence is ignored; (2) employ 
objective stock price-pattern, consisting of price trend and 
variation, contained in history stock data as historical rule 
basis for forecasting; (3) apply multi-period adaptation 
model (Chen et al.,2008) in forecasting process to 
produce self-adapted forecast (Kmenta,1986) to promote 
forecasting accuracy.  

The detailed step-by-step computation processes are 
proposed in next subsection to crystallize the refined 
concepts into forecasting. 

 
 
Proposed algorithm 

 
The proposed algorithm employs the TAIEX of year 2000 
processes. 

 
 
  
 
Step 1: Produce price-pattern (price trend and variation) 
between two consecutive days as historical rule basis. 

In this step, price-pattern, which consists of price 
variation and trend, between consecutive two days are 

produced as historical rule basis. The variation, )(tV , is 

defined as Equation (1), and the trend is defined as the 
sign of the variation such as “+” or “-”, defined in Equation 
(2) .  
 

)1()()(  tPtPtV                  1 

 

)1()()(  tPtPofsignthetSign      2 

 

Where )(tP  denotes stock index at time t. 

Take Table 1 as example, the )(tV  for the TAIEX on 

2000/01/07 (time = 4) is produced by following 

equation: 56.76)3()4()4(  PPV , and the Sign(t) is 

‘-’ which have shown that the price variation and trend 
between the 3-th and 4-th day (2000/01/06 and 
2000/01/07).  

 
Step 2: Measure difference between present price-
pattern and past price-patterns contained in historical rule 
basis. 

 
In this step, “pattern difference”, which consists of pattern 
distance and sign dissimilarity, between the present price-
pattern and all of history price-patterns are produced one 
by one. In order to compute the pattern difference, the 
concept of Euclidean distance (Breu et al., 1993) is 
employed to represent as “pattern distance”, which is 
defined by Equation (3).  
 

   2)()()(),(),( bababa tVtVtVtVdttD        3 

 

Where )( atV  is the variation at time at ; )( btV  is the 

variation at time bt ; and ),( ba ttD is the difference 

between )( atV  and )( btV . 

Take Table 2 as example, if the future stock index on 
2000/11/01 (time = 225) is used as a predicted object, 
then the price-pattern on 2000/10/31, Sign (224) 
and )224(V , is selected as “present price-pattern”. Then, 

pattern distance and sign dissimilarity between the 
present pattern and past patterns are measured and 
compared with one by one (from V(2) to V(223) and from 
Sign(2) to Sign(223)). To simplify computation of this 
step,  the  process  of  distance  difference  measuring   is 
ignored when the sign of present price-pattern (Sign 
(224)) is not the same as past patterns. For example, 

)224(V  is “114.9” and )4(V  is “76.56”. The pattern 

distance, )4,224(D , between them is calculated by the 

following equation: 34.38)4()224( VV .  
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Forecast Generating 

Measure difference between present price-pattern and 
past price-patterns contained in historical rule basis 

Examine and determine the optimal threshold to select 
historical price-patterns for forecasting 

Data Preprocessing 

Stock Data 
Base 

Produce price-pattern (price trend and variation) 
between two consecutive days as historical rule basis 

Forecast Modifying  

Apply the multi-period adaptation model 
 to modify forecast 

Performance Evaluation  

 
 
Figure 1. Research framework. 

 
 
 

Table 1. Examples of pattern generations in the TAIEX (2000). 

 

Time Date P(t) 
Price-Pattern 

Sign(t) V(t)  

1 2000/01/04 8756.55 N.A. N.A. 

2 2000/01/05 8849.87 + 93.32 

3 2000/01/06 8922.03 + 72.16 

4 2000/01/07 8845.47 - 76.56 

5 2000/01/10 9102.60 + 257.13 

6 2000/01/11 8927.03 - 175.57 

7 2000/01/12 9144.65 + 217.62 

8 2000/01/13 9107.19 - 37.46 

  

  

 

222 2000/10/27 5805.17 + 13.79 

223 2000/10/30 5659.08 - 71.52 

224 2000/10/31 5544.18 - 42.80 
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Table 2. Examples for producing pattern difference. 
 

Time Date P(t) 
Price-pattern Sign dissimilarity 

D(224, tb) 

Pattern distance 

D(224, tb) Sign(t) V(t) 

1 2000/01/04 8756.55 N.A. N.A. N.A. N.A. 

2 2000/01/05 8849.87 + 93.32 dissimilarity -- 

3 2000/01/06 8922.03 + 72.16 dissimilarity -- 

4 2000/01/07 8845.47 - 76.56 similarity 33.76 

5 2000/01/10 9102.60 + 257.13 dissimilarity -- 

6 2000/01/11 8927.03 - 175.57 similarity 132.77 

7 2000/01/12 9144.65 + 217.62 dissimilarity -- 

8 2000/01/13 9107.19 - 37.46 similarity 5.34 

   

 

 

 

 

222 2000/10/27 5805.17 + 13.79 dissimilarity -- 

223 2000/10/30 5659.08 - 71.52 similarity 28.72 

224  2000/10/31 5544.18 - 42.80 similarity 0 

255 2000/11/01 ?     
 

“-- “denotes that it is not necessary to measure” pattern difference”  

 
 
 

However, )3,224(D  is not necessary to be calculated 

because Sign (224) is not the same as Sign (3) (Sign 
(224) = “-” and Sign (3) = “+”). 

 
Step 3: Examine and determine the optimal threshold to 
select historical price-patterns for forecasting. In this step, 

the n similar price-patterns, )( 1tV , )( 2tV ,…, 

)( itV ,where i = 1 to n, with lower difference and the 

same sign are selected as forecasting rule basis to 
produce a prediction. The consecutive price-pattern 
(V(ti+1), Sign(ti+1)) for each similar price-pattern (V(ti), 
Sign(ti)) is employed as one forecasting pattern because 
history stock patterns maybe reoccur. Therefore, n 
forecasting patterns will generated if n similar price-
patterns are discovered from step 2. In this step, the most 
important issue is to determine a proper threshold, the 
amount of n similar patterns. For finding out the optimal 
value, the threshold is selected from 1% to 20% with a 
stepped value of 1%. The optimal threshold is determined 
when the forecasting performance reaches the minimum 
error. The threshold is defined by Equation (4). 

 

%100
N

n
Threshold    4 

Where the amount of these similar patterns is defined as 
n and the amount of total patterns in training dataset is 
defined as N.  

In this step, average method is utilized to produce an 
initial forecast, and two equations are defined in the 

method as Equations (5) and (6).  
 







n

i

ii

n

tVtsign
tpatternforecastInitial

1

)1()1(
)1(__   5 

 

)()1(__)1(_ tPtpatternforecastInitialtforecastInitial    6 

 

Where V(ti+1) is the forecasting variation based on a 
similar pattern, V( ti ); Sign(ti+1) is the forecasting sign 
based on a similar pattern, Sign(ti); 

)1(__ tpatternforecastInitial is the average 

forecasting pattern for the future; P(t) is the present stock 

price at time t; )1(_ tforecastInitial is the forecasting 

value for the future price. 
To evaluate forecasting performance, two error 

indicators, MAPE (defined in Equation (7)) and RMSE 
(defined in Equation (8)), are used as error indicators. 
 

MAPE 





N

t t

tt

d

zd

N 1

100
                 7 

 

RMSE  
5.0

1

21









 


N

t

tt zd
N

    8 

 

Where N  is the number of forecasting periods, td  is the 

actual stock price at period t , and tz  is the forecasting 

stock price at period t .  

Tables 3 and 4 list out the forecasting performance based 
on MAPE and MAPE under the different thresholds 
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Table 3. MAPE and RMSE for different thresholds (from 1 to 10%). 
 

Threshold 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 

MAPE 3.2043 2.5802 2.1457 2.1293 2.123 2.1075 2.1379 2.0477 1.9904 1.9818 

RMSE 198.60 164.61 140.59 139.18 142.54 139.29 143.54 138.43 136.27 138.23 

 
 
 

 
 

Figure 2 The MAPE for different thresholds in the TAIEX of year 2000.  

 
 
 
from 1 to 20%. Figure 2 illustrates the MAPE for the 
proposed model using different thresholds. Figure 3 
illustrates the RMSE for the proposed model using 
different thresholds. From the performance tables, the 
optimal threshold is 15% when using MAPE as error 
indicator and 17% when using RMSE as error indicator. 
Figure 4 illustrates the initial forecasting results and 
actual values for the TAIEX of year 2000 with MAPE. 
 

Step 4: apply multi-period adaptation model to modify 
forecast 
In order to promote accuracy of proposed model, in this 
step, the multi-period adaptation model (Chen et al., 
2008) is taken to enhance forecasting performance. The 
adaptive model is defined in Equation (9)  
 





k

i

iihtPtForecastAdapted
1

*)()1(_      9 

 

Where )1(_ tForecastAdapted  is forecast for the 

future stock price; )(tP  is the present stock price on 

time t ; i  is the i -th period of forecast error; ih  is a 

adaptive parameter for i .  

In step, one adaptive parameter (referred to 0.01~1.00 
with a stepped value 0.01) to adapt to modify initial 
forecast to reach better forecasting performance. With 
the adaptive parameter, the initial forecasts (MAPE 
=1.8450%) are modified as more accurate forecasts 
(MAPE =1.8389%). Figure 5 illustrates the adapted 
forecasts and actual values for the TAIEX of year 2000 
with MAPE. 

 
 
Model verification  

 
This section consists of three subsections: (1) introduction for 
experimental datasets TAIEX (Taiwan Stock Exchange 
Capitalization Weighted Stock Index) and performance indicators; 

(2) performance comparison with fuzzy time series models; and (3) 
performance comparison with statistic time series models. 

 
 
Experiment datasets and performance indicators 

 
In this paper, a nine-year period of the TAIEX (Taiwan Stock 
Exchange Capitalization Weighted Stock Index), from 1997 to 2005, 
is selected as experiment datasets, which are collected from the 
official  website  of  TSEC  (Taiwan  Stock   Exchange   Corporation) 
retrieved from http:// www.tse.com.tw ). One-year period of stock 
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Figure 3 The RMSE for different thresholds in the TAIEX of year 2000. 

 
 
 

 
 
Figure 4 Initial forecasts results with the threshold of 15% (MAPE =1.8450%). 

 
 
 
index is used as one unit of experimental dataset. Each unit of 
dataset is divided into two sub-datasets: (1) previous 10-month 
period is used as training dataset, and (2) the rest 2-month period, 

from November to December, is used for testing (Su et al., 2010; 
Teoh et al., 2009; Chen et al., 2008; Chen et al.,  2007).  Taking  the  
TAIEX of year 2000 as example, if the cut point date is set on 

2000/10/31, the training period is defined from 2000/01/04 to 
2000/10/31, and the testing period is from 2000/11/01 to 2000/12/30 
(Figure 6).  

    In the experiment dataset, the training dataset contains 224 
observations, and the testing dataset contains 47 observations. 

Two error indicators, the RMSE (root mean square error) and  the 
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Figure 5. Adapted forecasts based on an adaptive model (MAPE =1.8389%). 

 
 
 

 

Testing period 

 
 
Figure 6. The TAIEX from 2000/01/04 to 2000/12/30. 

 
 

 

MAPE (mean absolute percent error), defined in Equation (7) and 
Equation (8), are employed to evaluate forecasting models. 
Although the RMSE is a common indicator to measure forecasting 
performance for fuzzy time series models(Teoh,2009;Chen et 
al,2008; Chen et al,2007), many researchers used the MAPE for 

evaluating forecasting accuracy (Hanke,1995; Bowerman et al., 
2004). Therefore, in this paper, the MAPE and the RMSE are both 
used    as    performance    indicators    to     examine     forecasting  

performance. 

 
 
Performance comparisons with fuzzy time series 
 
To evaluate the performance of the proposed model 
carefully, three fuzzy time series models,  Chen’s  (1996),  



5198      Afr. J. Bus. Manage. 
 
 
 

Table 4. MAPE and RMSE for different thresholds (from 11 to 20%). 
 

Threshold 11% 12% 13% 14% 15% 16% 17% 18% 19% 20% 

MAPE 1.934 1.9315 1.9465 1.8848 1.8450* 1.8708 1.8464 1.8588 1.9066 1.8924 

RMSE 136.99 137.30 135.23 131.29 128.34 128.71 127.36* 128.55 129.17 128.29 
 

*denotes the minimum among 20 thresholds 
 

 
 

Table 5. Performance comparison with fuzzy time series model. 

 

Dataset TAIEX 

Year 1997 1998 1999 2000 2001 2002 2003 2004 2005 

Chen’s Model(1996) 154 134 120 176 148 101 74 83 66 

Huarng and Yu’s Model(2006) 141 121 109 152 130 84 56 79 69 

Su et al.’s  Model (2010) - - - - 122 94 55 69 65 

Proposed Model 141* 115* 104* 130* 114* 66* 53* 55* 53* 
 

“*” denotes the minimum RMSE among four models. 

“-” denotes that performance datum is unavailable.  
 

 
 

Table 6. Performance comparison with statistic models (MAPE). 

 

Dataset TAIEX 

Year 1997 1998 1999 2000 2001 2002 2003 2004 2005 

AR(1) 1.43* 1.37* 1.02 1.82 1.91 1.10* 0.70 0.67* 0.68 

AR(2) 1.44 1.39 1.01* 1.80* 1.91 1.11 0.71 0.68 0.68 

ARMA(1,1) 1.44 1.38 1.01 1.80 1.91 1.11 0.71 0.68 0.69 

Proposed Model 1.43* 1.38 1.05 1.84 1.89* 1.10* 0.69* 0.67* 0.66* 
 

* denotes the minimum value 

 
 
 

Huarng and Yu’s (2006) and Su et al.’s (2010), are 
employed as comparison models. Chen’s (1996) model is 
a typical case of fuzzy time series model. Huarng and 
Yu’s (2006) model is an advanced model based on 
neural networks. Su et al.’s (2010) model is also an 
advanced model using a rough set algorithm. Referred to 
Huarng and Yu’s (2006) and Su et al.’s (2010) research, 
the datum of forecasting performance for the three 
models is summarized and listed in Table 5. The 
performance indicator utilized in their papers is the 
RMSE. The performance comparison data indicates that 
the proposed model outperforms the other three models 
in forecasting accuracy. 
 

 

Performance comparisons with statistic time series 
 

To validate the superiority of the proposed model, three 
statistical time series models, AR(1), AR(2) and ARMA(1, 
1) are taken as comparison models. Tables 6 and 7 list 
separately forecasting performance for four models with 
two performance indicators they also show that the 
proposed model bears the minimum value of the MAPE 
and the RMSE in six testing datasets (1997, 2001, 2002, 
2003, 2004, and 2005). Although there is  little  difference  

in forecasting performance among the four models for 
each experimental dataset, we still can see that the 
proposed model outperforms the statistical time series 
models in most of datasets.  
 

 

Conclusions 
 

A novel price-pattern detection method based on time 
series has been proposed in this paper. After delicate 
model verification, the conclusion is given with 
confidence that the proposed method can provide more 
accurate forecast than fuzzy time series and traditional 
statistical time series models. From performance 
comparisons above, two major reasons for the superior of 
the proposed model are summarized as follows. 

Firstly, Table 5 has shown that the proposed model 
outperforms three fuzzy time series models, Chen’s 
(1996), Huarng and Yu’s (2006) and Su et al.’s (2010), in 
forecasting accuracy. The reason may be assumed by 
that two computation procedures of fuzzy time series 
models (fuzzify and defuzzify) have made their forecasts 
less accurate and stable.  

Secondly, Tables 6 and 7 clearly indicate that the 
proposed model performs better than three statistical time  
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Table 7. Performance comparison with statistic models (RMSE). 
 

Dataset TAIEX 

Year 1997 1998 1999 2000 2001 2002 2003 2004 2005 

AR(1) 141* 114* 102* 130 115 66*` 54 55* 54 

AR(2) 141* 115 102* 129* 114 67 55 55* 54 

ARMA(1,1) 141* 114* 103 129* 115 67 55 55* 54 

Proposed Model 141* 115 104 130 114* 66* 53* 55* 53* 
 

* denotes the minimum value 

 
 
 

series models, AR(1), AR(2) and ARMA(1, 1). The reason 
why the proposed model outperforms the statistical 
models is stated as follows. A specific mathematic 
formula is built for statistical time series models and the 
forecasting mechanism is fixed no matter how stock 
market fluctuates. But the proposed model applies multi-
period adaptation model to produce self-adapted 
predictions to deal with recent price fluctuations in stock 
market to reduce forecasting error. 

After implementing the experiment, three major 
advantages for the proposed model are issued as follow: 
(1) no mathematic assumptions about observations are 
required to form forecasting algorithms and the computer 
system using the proposed algorithms is easy to build up 
with lower complexity; (2) the proposed model produce 
accurate forecasts based on “stock price-patterns” that 
are understandable for common investors instead of 
“statistical formula” or “fuzzy logic relations” that are 
complicated words for common investors; and (3) by 
using multi-period adaptation model, the proposed 
method can produce self-modified forecasts to reach 
better accuracy when stock market go flat and to make 
smaller loss when stock market fluctuates violently.  

In the future works, some suggestions can be offered to 
improve the proposed model as follows: (1) apply high-
order time series (more than two consecutive time series 
observations) in the price–pattern detection method to 
evaluate the proposed model; (2) employ other stock 
market data such as Hong-Kong’s stock market (HSI) and 
American’s stock market (DJI) as experimental dataset to 
verify the proposed model; and (3) utilize a investing 
strategy to buy or sell stock index to evaluate the profit 
return of the proposed model.  
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