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This paper considers a discrete-time Geo/G/1 queue, in which the server operates a single vacation at 
end of each consecutive service period. After all the messages are served in the queue exhaustively, 
the server immediately leaves for a vacation. Upon returning from the vacation, the server inspects the 
queue length. If there are some messages waiting in the queue, the server either resumes serving the 
waiting messages (with probability p) or remains idle in the system (with probability 1-p) until the next 
message arrives; and if no message presents in the queue, the server stays dormancy in the system 
until at least one message arrives. Using the generating functions technique, the system state evolution 
is analyzed. The probability generating functions of the system size distributions in various states are 
obtained. Some system characteristics of interest are also derived. With the vacation of fixed length 
time (say T), the long run average cost function per unit time is analytically developed to determine the 
joint optimal values of T and p at a minimum cost. 
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INTRODUCTION 
 
Starting from Levy and Yechiali (1975), the modelling 
analysis for the queueing systems with vacations has 
been done by a considerable amount of work in the past. 
A comprehensive and excellent study on the vacation 
models, including some applications such as production/ 
inventory system and communication/ computer systems, 
can be found in Doshi (1986), Takagi (1991), and Tian 
and Zhang (2006).  

On the other hand, along with the advent of computer 
and communication technologies, the analysis of 
discrete-time queueing systems has received more 
attention in the scientific literatures over the past years 
(Meisling, 1958; Hunter, 1983; Bruneel and Kim, 1993; 
Takagi, 1993; Woodward, 1994). The reason for this is 
that discrete-time systems are more appropriate than 
their continuous-time counterparts in their applicability for 

the study of many computer and communication systems 
applications in which time is divided into fixed-length time 
intervals (‘slots’). The applications to communication and 
computer systems include asynchronous transfer mode 
multiplexers in the broadband integrated services digital 
network, slotted carrier-sense multiple access protocols, 
and time-division multiple access schemes. An excellent 
and complete study on discrete-time queueing systems 
with vacations has been presented by Takagi (1993). 
Zhang and Tian (2001) investigated a Geo/G/1 queue 
with multiple adaptive vacations. Tian and Zhang (2002) 
analyzed a GI/Geo/1 queueing system with multiple 
vacations by matrix-geometric solution method and Li 
and Tian (2007) used the same method to study a 
GI/Geo/1 queueing system with working vacation and 
vacation interruption.  
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Zhang and Tian (2001), and Li and Tian (2002), they 
gave the stochastic results for the queue length and 
waiting time. We should note that in Zhang and Tian 
(2001), and Li and Tian (2002), no optimal vacation 
policies for sensitivity analysis are obtained.  

In this paper, a discrete-time Geo/G/1 system with a 
single vacation policy with randomized activation (namely 
<V, p> policy) was considered. The <V, p> policy is 
performed under the following conditions: (i) the server 
leaves for a single vacation when the system is empty, (ii) 
if the server returns from the vacation and at least one 
message is waiting in the queue, the server may either 
activates with probability p or stays dormancy in the 
system with probability q( p1 ),and (iii) when the 

server is dormant in the system, he activates to serve the 
waiting messages as the next message arrives.  

To the best of our knowledge, the discrete-time Geo/ 
G/1 queue with <V, p> policy has not been studied. Such 
a model has a potential application in wireless local area 
networks (WLANs). Access Points (APs) are specially 
configured nodes on WLANs and act as a central 
transmitter and receiver of WLAN radio signals. To keep 
the APs functioning well, some maintenance activities are 
needed. For example, virus scan is an important main-
tenance activity for the APs. It can be performed when 
the AP is idle and be programmed to perform on a 
regular basis. After finishing the maintenance activity, AP 
can enter the sleep mode when there is no radio signal to 
be transmitted for power saving. It can also enter the 
sleep mode after finishing the some kinds of maintenance 
activities such as refreshing AP current status. AP will 
awake from sleep mode and begin to serve when the 
new radio signal arrives. 

In this study, we first investigate the Markov chain, the 
probability generating functions and probability distri-
butions of queue length in various server states, including 
their main expectation. Next, we derive the turned-off 
period, turned-on (busy) period of the server and the 
waiting time distribution in the queue. Finally, we develop 
a cost model with a fixed positive integer V (say T), and 
the joint optimal threshold values ( ** , pT ) are deter-

mined which minimize the cost. 
 

 

MODEL DESCRIPTION 
 

The study considers a discrete-time queue with a single-
server where the time is divided into constant length 
intervals (called slots). It is well-known that the probability 
of an arrival and a departure occurring simultaneously is 
not zero in discrete time. This probability is positive in the 
discrete-time setting. That is why the order of the arrivals 
and departures must be stated. There are two different 
laws: if the arrivals precede the departures (late arrival 
system (LAS)) and if the departures precede the arrivals 
(early arrival system (EAS)). These concepts and other 
related ones can be found in Takagi (1993). We adopt 
the LAS policy in the present model (Figure 1). 

 
 
 
 

Messages arrive according to a Bernoulli process with 

rate , that is,   (respectively,  1 ) is the 

probability that a message arrives (respectively, does not 
arrive) in each slot. The service times of the messages 
are independent and identically distributed according to a 

general probability mass function 


1}{ iib  with probability 

generating function (pgf) 





1

)(
i

i

iubuB and jth factorial 

moments jB . After all the messages are served in the 

queue exhaustively, the server operates a <V, p> policy. 
As soon as the system becomes empty, the server 
immediately takes a single vacation, where the vacation 
time is a discrete random variable, denoted by V, with 

probability mass function 


1}{ iiv  having pgf 







1

)(
i

i

iuvuV and jth factorial moments jV . At the 

vacation completion instant, the server checks the 
system to see if there is any waiting message and 
decides the action to take one of the following two cases 
according to the state of the system: 
 
Case 1: If there is any message waiting in the queue, the 
server will resume serving the queue with probability p or 
to stay dormancy in the system with probability 

pq 1( ) until at least one message arrives. 

Case 2: If there is no message waiting in the queue, the 
server remains idle in the system until the next message 
arriving. 
 
Arriving messages form a single waiting line based on the 
order of their arrivals; that is, they are queued according 
to the first-come, first-served (FCFS) discipline. The 
server can serve only one message at a time. If the 
server is busy, arriving message has to wait in the queue 
until the server is available. All messages arriving to the 
system are assumed to be eventually served, that is, 

11 B . Furthermore, various stochastic processes 

involved in the system are independent of each other. 
 
 
THE ANALYSIS: MARKOV CHAIN AND PROBABILITY 
GENERATING FUNCTION 
 

At time n , the state of the system is described by the 

process
( ) ( ) ( )( , , )n n nL  .

)(n denotes the state of the 

server, where it can be 0, 1, or 2 representing the server 
on vacation, idle, or busy,  respectively. As Takagi (1993), 

)(nL is the number of messages in the system. If 
( ) 0n  , then 

( )n  denotes the remaining vacation 

time. If 
( ) 2n  , then 

( )n  represents the remaining 

service        time.       The       sequence       of        triplets  
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Figure 2-a. Cost with different values of T  and p ( =0.1, 1B =0 
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Figure 1. A: Late arrival model. B: Queue size and remaining service time observed immediately after slot boundaries.  

 
 
 

( ) ( ) ( ){( , , ); 0,  1,  2, }n n nL n    is a Markov chain 

whose state space is 

as }0:),1(;1,0,2,0:),,{(  kkikjikj . 

Let us define the following limiting probabilities: 

 
( ) ( ) ( )

, limPr[ 0, , ]n n n

k i
n

L k i 


     ,  

1,0  ik , ],,1Pr[lim )()( kL nn

n
k 


  

0k , 
( ) ( ) ( )

, lim Pr[ 2, , ],n n n

k i
n

L k i 


       1,1  ik . 

 
The Kolmogorov equations for the stationary distribution 
are given by 
 

1,~~
1,01,1,0   iv iii                         (1) (1) 

 

1,1,~~~
1,11,,   ikikikik                      (2)                                            

 01,00
~                                                          (3)  

                                                                          

1,~~
1,11,   kqq kkkk                           (4)                                                           

 
1,~~

1,11,21,11,11,00,1   ibbbpbpb iiiiiii 

                                                                                       (5) 
 

, 1 1,1 ,1 , 1 1,1 1, 1 ,1 ., 2, 1k i k i k i k i k i k i k i k ib p b p b b b k i                           

                                                                                       (6) 

 
 
To resolve (1) to (8), we use the following generating 
functions:  
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1,

1

)( k

k

k

B zz  




  ( 1z  and 1u ), 

 
And the normalization condition 
 

1)1,1()1()1,1(  BIV GGG . 

 

Multiplying (1) and (2) by 
kz and summing over k  after 

multiplying (1) and (2) by 
iu  and summing over i , it 

finally yields: 
 

)()()(),(
)(

1,1 zzuVzuG
u

zu
VV 





.          (7) 

 

Inserting )( zu    in (7), we obtain 

 

1,1
)(

)(
)( 






z

zV
zV






.                            (8) 

 
Substituting (8) into (7), we get  
  

 
1,1

)(

)()(
),( 





zu

zVuVu
zuGV




 .              (9) 

 

Multiplying (3) and (4) by 
kz and summing over k , we 

obtain 
 

)()(~)( 1,0 zzqpzG VI   .       (10) 

 
Substituting (8) into (10), it gives 
 

 1,11,0 )(~)( 



zqVpzGI  .             (11) 

 

Multiplying (5) and (6) by 
kz and summing over k  after 

multiplying (5) and (6) by 
iu  and summing over i , we 

have 
 

1,0
~)()()()()()(),(

)(



uBpzuBzpzGuzBzuG

u

zu
VIB 

  

 

1,1)()()(
)(

 uBzz
z

zuB
B 







 
 .              (12) 

 

Letting       )( zu  
     

 in      (12),      it       gives 

 
 
 
 

  
 zzBz

zVqzpzpzzB
zB






)()(

)()(1~)1()(
)(

1,11,0




   

                                                                                     (13)        
 
Substituting (8), (11), (13) into (12), we obtain  
 

    
   zzBzu

zVqzpzpzBuBuz
zuGB






)()(

)()(1~)1()()(
),(

1,11,0



                                            

                                                                                     (14) 
 
Letting u = 1 in (9) and (14) respectively, it yields 
 

 
1,1

)(1

)(1
),1( 





z

zV
zGV




 ,                              (15) 

 
and 
 

    
   zzBz

zVqzpzpzBz
zGB






)()(1

)()(1~)1()(1
),1(

1,11,0



   

                                                                                     (16) 
 
Let S(z) be the probability generating function of the 
number of messages in the system. Since 

),1()(),1()( zGzGzGzS BIV  , it follows from (11), 

(15) and (16) that  
 

  
 zzB

zVqzpzpzB
zS






)(

)()(1~)1()(
)(

1,11,0




  

                                                                                     (17) 
 
 

The derivation of 1,0
~  and 1,1  

 

Differentiating ik

k i

ik

V uzzuG ,

0 1

~),( 








  with respect to 

u and then setting 0 zu , we obtain 
 

1,0

0

,

0 1

1

0

~~),(  

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


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


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
zu
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k i

ik

zu

V uizzuG
u
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By proceeding similar manner with Equation (9) yields 
 

1,1

0

)(),( VzuG
u uz

V 






.                                      (19) 

 

It follows from (18) and (19) that  
 

)(

~
1,0

1,1





V
 .                                                               (20) 



 
 
 
 

Using the normalization condition )1(S 1 and Equation 

(20), it yields  
 

 )(

)()1(~

1

1,0





pVVq

V




 ,                                      (21) 

 
and 
 

 )(

)1(

)(

~

1

1,0

1,1









pVVqV 


 .                                  (22) 

 

Substitution 1,0
~  and 1,1  to Equation (17) gives 

 

 
0

1

(1 ) ( ) 1 ( ) ( )
( ) ( ) ,

(1 ) ( )

p z V p qz V z
S z S z

z q V pV

  

 

      
 

    

               (23) 

 

Where )(0 zS  is the pgf for the classical Geo/G/1 queue 

without vacation and  
 

0

(1 )(1 ) ( )
( )

( )

z B z
S z

B z z

  

 

  


   

.    

                                                    

Remark: As p = 1, )(zS  can be simplified into 

 

 
0

1

(1 ) ( ) 1 ( )
( ) ( )

(1 ) ( )

z V V z
S z S z

z V V

  

 

     
 

   

,       

                                      
This is referred to the Geo/G/1 queue with a single 
vacation. 
 
 
Stationary distribution of the server state 
 
Let us define the following probabilities 
 

VP  The probability that the server is on vacation; 

IP  The probability that the server is idle; 

onP The probability that the server is turned on 

(working); 

offP  The probability that the server is turned off 

(vacation or idle). 
 
Substituting (21) and (22) into (11), (15) and (16) and 
then setting z = 1, it yields  
 

 )(

)1(
),1(lim

1

1

1 



pVVq

V
zGP V

z
V







.                 (24) 
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By proceeding similar manner with )(zGI  and ),1( zGB , 

it finally yields 
 

 
 )(

)()1(
)1(

1 



pVVq

pVq
GP II




 ,                            (25) 

 
and 
 

onP .                                                                      (26) 

 
From (24) and (25), the study obtains  
 

 1IVoff PPP .                                              (27) 

 
 
The probability of system empty 
 
Now, we want to find that the probability of system empty. 
Inserting u = 1 and z = 0 in (9) and using (22), we obtain: 
 

 
 )(

)(1)1(~

1
1

,0





pVVq

V

i
i










.                                     (28) 

 
It follows from (3) and (21) that we have 
 

 )(

)()1(

1

0




pVVq

V




 .                                          (29) 

 
Thus the probability of system empty is as 
 

 )(

)1(~

1

0

1

,00





pVVq
P

i

i









.                 (30) 

 
 
The expected number of messages in the system 
 

Differentiating )(zS  in (23), we note that the numerator 

and denominator are both 0. The study applies 
L’Hospital’s rule twice and finally find the expected 
number of messages in the system given by, 

 

 )(2

2

1

2

2

1
,





pVVq

VVq
LL pV




 ,                       (31) 

 

Where 
)1(2

2

2









B
L  is the expected number of 

messages in the system for the classical Geo/G/1 queue 
without vacations (Takagi, 1993: 6). 
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THE TURNED-OFF PERIOD AND TURNED-ON 
PERIOD 
 
This section studies the turned-off period (which is 
comprised of vacation period and idle period) and turned-
on period (busy period). Let us define the following 
terminology: A vacation period starts at the departure 
instant of a message which leaves the system empty and 
terminates at returning instant from a vacation.  

An idle period starts the end of a vacation and 
terminates at the end of the next succeeding slot during 
which an arrival occurs. A busy period starts at the 
beginning of a service and terminates when a service is 
completed and the system is empty. 

 
 
The turned-off period 

 
According to the definition, we have 

 
1. The joint pgf for the length of a vacation and the 
probability that no message arrives during that vacation is 

given by )(
1

uVvu i

i

i

i  




. 

2. The joint pgf for the length of a vacation and the 
probability that at least one message arrives during that 

vacation is given by )()( uVuV  . 

3. The pgf for the length of an idle period is given by 

( ) /(1 )I u u u   . 

   
From the results listed previously, the pgf of the server 
turned-off period is given by 
 

    )()()()()()()()( uIuVuVquIuVuVuVpuIV   ,                           

(32) 
 
Which leads to the expected length of the turned-off 
period as 
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The turned-on (busy) period 
 

Let   be the pgf of busy period of classical Geo/G/1 
with late arrive delay access. From Takagi (1993), we 
have 
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The busy period begins as one of the following three 
cases: 

 
 
 
 
Case 1: j messages arrive during the vacation period 
which vacation time is k slots. After the vacation 
completion instant, the server begins service with 
probability p. Such event occurs with probability 
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k vpCpv    ( kjk  ,2,1,2,1  ). 

Case 2: j messages arrive during the vacation period 
which vacation time is k slots. At the end of the vacation, 
the server remains idle in the system with probability q. In 
this case, the server begins providing service as next 
message arrives. Such event occurs with probability 
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Case 3: No message arrives during the vacation period 
which vacation time is k slots. In this case, the server 
starts providing service as a message arrives. Such 
event occurs,  
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According to the definition, the pgf of the sub-busy period 
is extended by case 1 as 
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The pgf of the sub-busy period extended by case 2 is 
given by  
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The pgf of the sub-busy period extended by case 3 is 
given by 
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From the results listed previously, the pgf of the busy 
period for the <V, p> policy Geo/G/1 queueing system is 
given by 
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Which implies the expected length of the turned-on 
period (busy period) is given by  
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From (33) and (36), we obtain the expected length of 
busy cycle 
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WAITING TIME IN THE QUEUE 
 

The waiting time in the queue (measured in slots) in the 
slot n +1 as the time that a message would wait in the 
corresponding system if it arrived in the slot n +1 (Takagi, 
1993). Thus, the waiting time in the system (measured in 
slots) in the slot n +1 is the sum of the waiting time in the 
queue in the slot n +1 plus the service time. Let us define 
the following pgfs:  
 

)(zWV The pgf of the waiting time in the queue of a 

test message (that arrives in the slot n +1) when server is 
on vacation. 

)(zWI The pgf of the waiting time in the queue of a test 

message (that arrives in the slot n +1) when server is in 
idle period.  

)(zWB The pgf of the waiting time in the queue of a test 

message (that arrives in the slot n +1) when server is  
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busy. 
 

)(zWQ
The pgf of waiting time in the queue of a test 

message that arrives in the slot n +1. 
 
For the Geo/G/1 system with <V, p> policy, an arrival 
may occurs as one of the following three cases:  
 
Case 1: The test message that arrives while the server is 

on vacation and find k message( 0k ) in the system: (i) 

while the vacation is just end, the server is switched to 
busy period with probability p, the test message must 
wait the service time of the preceding k messages; and 
(ii) while the vacation is just end, the server is switched to 
idle period with probability q until the next message 
arrives, the test message must wait the next message 
arriving plus the service time of the preceding k 
messages. 
Case 2: There are exactly k messages in the queue and 
the server is idle in the system when the message 
arrives. 
Case 3: The test message that arrives while the server is 
busy and finds k messages in the system. In this case,  
the waiting time in the queue of the message consists of: 
 
(i) The remaining service time of the message being 

served at time
n ; and  

(ii) The service time of the k-1 messages in the queue at 

time 
n . 

 
From Case 1 yields, 
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Inserting (9) in the previous equation, it yields: 
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Which 1,1  is given by (22). Following Case 2, it gives, 
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From Case 3, we have  
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The pgf of waiting time in the queue of a test message when server is on vacation or in idle period is 

as  )()()1(
)1(

1
)( zWPzWPzW IIVIOFF 
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. From (38) and (39), we obtain 
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Finally, the pgf of the waiting time in the queue of a test 
message is given by 
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Which implies 
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Which is in accordance with 1, / BL pV   which confirms 

the result of Little’s formula. 
 
 
OPTIMIZATION ANALYSIS 
 

As a particular case, the Geo/G/1 queueing system with 
<T, p> policy, in which the server takes a vacation of fixed 
length T at the ending of the busy period and the server 
begins service with probability p if messages present in 
the queue at vacation completion instant. We construct 
the total expected cost function per unit time for the <T, 
p> policy system. The main objective of this study is to 

determine the discrete time T , say
*T , and the 

probability p , say 
*p , simultaneously so that the 

expected cost function is minimized. To do this, we define 
the following cost elements:  

 

hC Cost per unit time per message present in the 

system, 

sC Cost per unit time for a cycle, 

rC Profit per unit time due to vacation. 

 
Using these cost elements listed in the foregoing and  the  

 
 
 
corresponding system characteristics, the expected cost 

function ),( pTF  per message per unit time is given by 
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                                                                                     (43) 
 
The cost function in (43) would have been a hard task to 

develop analytic results for the optimum value ),( ** pT  

because one is discrete variable T and one is continuous 
variable p. We first use direct search method to find the 

discrete variable, say 
*T  when p  is fixed. Next, we fix 

*T  and derive the continuous value of p , say
*p . 

 
 
Direct search method 
 

In practical use, the discrete variable T  is bounded by a 

positive integer UT . Under a given p, we successively 

use direct substitution of ascendant values of 

UTT ,...,2,1  into the cost function. The optimum value 

*T  could be determined by the following: 
  

)()(
1

* pTFMinimizepTF





, },...,2,1{ UTT   (44) 

Some numerical examples are presented to demonstrate 

that the cost function is really convex in T  and the 
solution gives a minimum. For convenience, the 
numerical experiments are performed by considering 

0.11 B  and the following three cases with cost 

parameter elements: hC = $20/message/unit time, sC =  

$1000/unit time, and rC = $50/unit time. 
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Figure 2-a. Cost with different values of T  and p ( =0.1, 
1B =0.1, hC =$20, sC =$1000, 

and rC =$50). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-b. Cost contour with different values of T  and p (The contour of Figure 2-a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-a. Cost with different values of T  and p ( =0.5, 1B =0.1, hC =$20, sC =$1000, 
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1B =0.1, hC =$20, sC =$1000, 

and rC =$50). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-b. Cost contour with different values of T  and p (The contour of Figure 2-a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-a. Cost with different values of T  and p ( =0.5, 1B =0.1, hC =$20, sC =$1000, 
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Figure 2. A: Cost with different values of T  and p ( = 0.1, 1B = 0.1, hC = $20, sC = 

$1000, and rC =$50). B: Cost contour with different values of T  and p (The contour of 

Figure 2A). 
 
 

 

Case 1:  = 0.1 and vary the values of p  andT . 

Case 2:  = 0.5 and vary the values of p  and T . 

Case 3:  = 0.9 and vary the values of p  and T . 

The  numerical  results  are displayed  in  Figures 2 to 4 
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and 
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Figure 3-b. Cost contour with different values of T  and p (The contour of Figure 3-a). 
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Figure 3. A: Cost with different values of T  and p ( = 0.5, 1B = 0.1, hC = $20, sC = $1000, 

and rC = $50). B: Cost contour with different values of T  and p (The contour of Figure 3A). 
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Figure 4-b. Cost contour with different values of T  and p ( The contour of Figure 4-a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. The illustration of the implement  
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Figure 4. A: Cost with different values of T  and p ( = 0.9, 1B = 0.1, hC = $20, 

sC = $1000, and rC =$50). B: Cost contour with different values of T  and p (The 

contour of Figure 4A). 

 
 
for the three cases, respectively. Figures 2 to 4 (both 3-D 
and cost contours graphs) show the global optimal values 
can be obtained.  
 

 

Optimize p 
 

After we find 
*T , we will find p  such that the minimum 

value of ),( * pTF  is achieved, say ),( ** pTF . The  cost 

minimization problem can be illustrated mathematically 
as 
 

),(),( *

1

** pTFMinimizepTF





                            (45)  

 

The study notes that the derivative of the cost function F  
with respect to p  indicates the direction which cost 

function increases. 
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Table 1. The illustration of the implement process of 
*p . 

 

( , 1B ) (0.1, 0.2) (0.1, 0.5) (0.1, 0.8) (0.1, 1.0) (0.5, 1.0) (0.9, 1.0) 

*T  31 30 30 30 10 3 

*p  1 1 1 1 1 1 

),( *** pTF  12.46 12.98 13.48 13.8 69.99 46.32 

dp

pdF )(
 in (0,1) -15.94 -15.63 -15.48 -15.38 -6.02 -2.86 

       

 <0 <0 <0 <0 <0 <0 
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The first derivative test supposes that p is a critical 
number on the interval [0, 1] of the continuous cost 

function F  with respect to
p

. From Equation (46), 

dp

pdF )(
does not change sign at p, then F  has no local 

maximum or minimum at p.  
 
If  
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then the derivative 
dp

pdF )(
 of equation (46) is 

negative, and shows that F  cost function is decreases 

on the interval [0, 1] of p . Thus, the cost function F  has 

an absolute minimum (or global minimum) at 1p . 

 

If 
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then the derivative 
dp

pdF )(
 of equation (46) is positive 

on the interval [0, 1] of p , and shows that F  cost 

function increases. Thus, the cost function F  has an 

absolute minimum (or global minimum) at 0p . 

A  numerical  illustration  is  provided  by  consider  the  
cases:  

Case 4: hC = $20, sC = $1000, rC = $50, and vary the 

values of   and 1B . 

Case 5:  = 0.5, 1B = 1.0, sC = $1000, rC = $20, and 

vary the values of hC = 1, 10, 100, 1000 and $10000. 

Case 6:  = 0.5, 1B = 1.0, hC = $20, rC = $20, and vary 

the values of sC = 1, 10, 100, 1000 and $10000. 

Case 7:  = 0.5, 1B = 1.0, hC = $20, sC = $1000, and 

vary the values of rC = 1, 10, 100, 1000 and $10000. 

 
For illustrative purpose, we present the four cases listed 
previously to illustrate the optimization procedure shown 
in Tables 1 to 4, respectively. The results are in 
accordance with the analysis listed previously. From 

Tables 1 to 4, it is seen that (i) 
*T  increases as   or 1B  

decreases; (ii) 
*T  increases as hC  decreases or sC  

( rC ) increases.  

 
 
CONCLUSIONS 

 
The study introduces the <V, p> policy for a discrete-time 
Geo/G/1 queueing system, in which a single server 
randomly reactivates when some messages present in 
the queue at ending of vacation completion instant. Some 
important system characteristics are derived, including 
the system length distribution, the turned-off period, the 
busy period distribution and waiting time distribution.  

The study finally develops efficient methods to find the 
optimal <T, p> policy that minimizes the expected cost 
function. 
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Table 2. The illustration of the implement process of 
*p . 

 

hC  1 10 100 1000 10000 

*T  45 14 4 1 1 

*p  1 1 1 1 1 

),( *** pTF  12.11 58.21 184.24 245 245 

dp

pdF )(
 in (0,1) -0.46 -1.68 -13.22 -377.5 -4877.5 

      

 <0 <0 <0 <0 <0 
 

 
 

Table 3. The illustration of the implement process of 
*p . 

 

sC  1 10 100 1000 10000 

*T  1 1 3 10 32 

*p  1 1 1 1 1 

),( *** pTF  -4.75 -2.5 15.38 84.98 301.25 

dp

pdF )(
 in (0,1) -12.38 -11.25 -10.18 -3.02 -1.17 

      

 <0 <0 <0 <0 <0 
 
 

 

Table 4. The illustration of the implement process of 
*p . 

 

rC  1 10 100 1000 10000 

*T  8 8 9 10 10 

p  0 0 0 1 1 

),( *** pTF  543.6 540 462.73 44.99 -4454.13 

dp

pdF )(
 in (0,1) 92.3 91.58 67.6 -11.01 -909.78 

      

 >0 >0 >0 <0 <0 
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